

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC. 2

ON A PROBLEM OF S. HARTMAN ABOUT NORMAL FORMS

BY

VERA T. SÓS (BUDAPEST)

With the usual notation let x, y be integers and

$$\min_{y} |xa - \beta - y| = ||xa - \beta||.$$

A pair of numbers (a, β) is called normal, positively normal and negatively normal if the inequality

$$||xa - \beta|| < 1/t$$

is soluble for any $t > t_0$ with |x| < ct, 0 < x < ct and -ct < x < 0 respectively, where t_0 , c depend only on β and a.

- S. Hartman [2] raised the question, whether or not a normal pair is necessarily positively or negatively normal. In this note we shall give a negative answer to this question constructing a normal pair (α, β) which is neither positively nor negatively normal. Before the proof we remark the following:
 - 1. Suppose that 0 < a < 1, α is irrational,

$$a = \frac{1}{a_1 +} \frac{1}{a_2 +} \dots \frac{1}{a_k + \dots},$$

 a_k (k = 1, 2, ...) are positive integers,

$$p_0 = -1, \quad q_0 = 0, \quad p_1 = 0, \quad q_1 = 1,$$

$$\frac{p_k}{q_k} = \frac{1}{a_1 + \dots} \frac{1}{a_{k-1}} \quad (k = 2, 3, \dots)$$

the convergents of a, and $d_k \stackrel{\text{def}}{=} q_k a - p_k$ (1) $(d_0 = -1)$. Then we have

PRINTED IN POLAND

⁽¹⁾ The sequence d_k has alternative signs for $k=1,2,\ldots$ and $|d_k|$ is monotonically decreasing.

the well-known recursive formulas

(2)
$$q_{k+1} = a_k q_k + q_{k-1} \quad (k = 1, 2, ...),$$

(3)
$$d_{k+1} = a_k d_k + d_{k-1} \quad (k = 1, 2, ...).$$

We note the identity

$$1 = d_1 + \sum_{k=1}^{\infty} a_k d_k$$

as a consequence of (2) and (3), and

(5)
$$\frac{1}{a_k+1} < |d_k| q_k < \frac{1}{a_k} \quad (k=1, 2, \ldots).$$

In [1] and [3] it is proved that for any $0 < \beta < 1$ with the d_k 's defined above, it is possible to determine uniquely a sequence b_k of nonnegative integers — which we call throughout this note digits of β according to α — with the following properties:

$$\beta = \sum_{\nu=1}^{\infty} b_{\nu} d_{\nu};$$

(b)
$$1 \leq b_1 \leq a_1 + 1, \quad 0 \leq b_{\nu} \leq a_{\nu} \quad (\nu = 2, 3, ...);$$

(c) if ξ is defined by

$$\min_{0 < x < t} ||xa - \beta|| = ||\xi a - \beta||,$$

then with suitable l, r

(6)
$$\xi = b_1 q_1 + \ldots + b_{l-1} q_{l-1} + r q_l \quad (0 \leqslant r < b_l).$$

As in [3], (2.13), it is easy to see that

(7)
$$\|\xi \alpha - \beta\| = \left| b_1 d_1 + \ldots + b_{l-1} d_{l-1} + r d_l - \sum_{\nu=1}^{\infty} b_{\nu} d_{\nu} \right|$$
$$= \left| (b_l - r) d_l + \sum_{\nu=l+1}^{\infty} b_{\nu} d_{\nu} \right|.$$

According to (b) and footnote (1) we have, using (6),

$$\left|\sum_{\mathit{v}=\mathit{l}}^{\infty}b_{\mathit{v}}d_{\mathit{v}}\right|\leqslant\sum_{\mathit{v}=\mathit{0}}^{\infty}a_{\mathit{l}+\mathit{2}\mathit{v}}|d_{\mathit{l}+\mathit{2}\mathit{v}}|=|d_{\mathit{l}-\mathit{1}}|\,.$$

Therefore we get from (7)

(8)
$$|b_l - v - 1| |d_l| \leq ||\xi \alpha - \beta|| \leq (b_l - r + 1) |d_l|$$

and in the case $r = b_l - 1$, when $a_{l+1} > b_{l+1}$,

$$\|\xi\alpha-\beta\| = \Big|d_l + \sum_{r=l+1}^{\infty} b_r d_r\Big| = \Big|d_{l+2} - a_{l+1} d_{l+1} + b_{l+1} d_{l+1} + \sum_{r=l+2}^{\infty} b_r d_r\Big|,$$

and consequently, since d_{l+1} and $-d_{l+2}$ have the same sign,

$$(9) (a_{l+1} - b_{l+1})|d_{l+1}| \leq ||\xi a - \beta|| \leq (a_{l+1} - b_{l+1} + 2)|d_{l+1}|.$$

As to the uniqueness of the representation (a) we remark that if

$$(10) 0 < b_k < a_k, 0 \leqslant b_k^* \leqslant a_k,$$

and

$$\gamma = \sum_{r=0}^{\infty} b_{r} d_{r} = \sum_{r=0}^{\infty} b_{r}^{*} d_{r},$$

then

$$(11) b_{\nu} = b_{\nu}^* (\nu = 1, 2, \ldots).$$

Namely, if there exists an index l — and we take without loss of generality the first one for which $b_l \neq b_l^*$ — then we consider

$$\gamma' = \sum_{
u=1}^{\infty} b_{
u} d_{
u} = \sum_{
u=1}^{\infty} b_{
u}^* d_{
u}.$$

According to footnote (1)

$$(-1)^{l+1} \sum_{
u=l}^{\infty} b_{
u}^{*} d_{
u} = b_{l}^{*} |d_{l}| - \sum_{
u=0}^{\infty} b_{l+2
u+1}^{*} |d_{l+2
u+1}| + \sum_{
u=1}^{\infty} b_{l+2
u}^{*} |d_{l+2
u}|$$
 $\stackrel{ ext{def}}{=} b_{l}^{*} |d_{l}| - \sum_{l=1}^{\infty} + \sum_{l=1}^{\infty} ,$

$$(-1)^{l+1} \sum_{\mathfrak{r}=l}^{\infty} b_{\mathfrak{r}} d_{\mathfrak{r}} = b_{l} |d_{l}| - \sum_{\mathfrak{r}=0}^{\infty} b_{l+2\mathfrak{r}+1} |d_{l+2\mathfrak{r}+1}| + \sum_{\mathfrak{r}=1}^{\infty} b_{l+2\mathfrak{r}} |d_{l+2\mathfrak{r}}|$$

$$\stackrel{\text{def}}{=} b_l |d_l| - \sum_1 + \sum_2.$$

From (3) and (10)

$$0\leqslant \sum_1^*\leqslant |d_l|,\quad 0\leqslant \sum_2^*\leqslant |d_{l+1}|,$$

and consequently

$$(12) (b_l^* - 1)|d_l| \leq (-1)^{l+2} \gamma' \leq b_l^* |d_l| + |d_{l+1}|.$$

Similarly, taking into account that $0 < b_{\nu} < a_{\nu}$ and using (3), we get

$$|d_{l+1}| < \sum_1 < |d_l| - |d_{l+1}|, \quad 0 < \sum_2 < |d_{l+1}|,$$

and consequently

$$(13) (b_l-1)|d_l|+|d_{l+1}| < (-1)^{l+1}\gamma' < b_l|d_l|.$$

Since b_l and b_l^* are integers, (12) and (13) cannot be satisfied simultaneously, which means that (11) holds.

2. According to our remark in 1, we show that if α is the number defined by

$$(14) a_k = k^4$$

and β is the number for which

$$b_1 = 1$$
,

(15)
$$b_k = \begin{cases} k & \text{if } k = 2\nu, \\ k^4 - k & \text{if } k = 2\nu + 1, \end{cases} \quad (\nu = 1, 2, \ldots),$$

then the pair α , β is normal, but neither positively nor negatively normal. From (4) and (a)

(16)
$$\beta' = 1 - \beta = (a_1 + 1 - b_1) d_1 + \sum_{k=2}^{\infty} (a_k - b_k) d_k.$$

As we proved in 1, from (15) it follows that the digits of β' according to α are uniquely determined by (16) and

$$\begin{array}{lll} b_1' = (a_1 + 1 - b_1), \\ b_k' = a_k - b_k = k^4 - k & \text{if} & k = 2\nu, \\ b_k' = a_k - b_k = k & \text{if} & k = 2\nu + 1. \end{array} (\nu = 1, 2, \ldots),$$

Let

$$c_k \stackrel{\text{def}}{=} b_1 q_1 + \ldots + b_k q_k, \quad c_k' \stackrel{\text{def}}{=} b_1' q_1 + \ldots + b_k' q_k.$$

For any $c_1 < t$ we determine the index k by

$$c_{k-1} < t < c_k.$$

At first we prove that the pair (α, β) defined by (14) and (15) is normal. For the proof we distinguish three cases.

Case a. If $k = 2\nu$, then from (8) with $\nu = 0$, l = k,

$$||c_{k-1}\alpha - \beta|| \leq (k+1)|d_k|.$$

According to (2) and (14)

$$(17) t \leq b_1 q_1 + \ldots + b_k q_k < a_1 q_1 + \ldots + a_{k-1} q_{k-1} + k q_k < (k+2) q_k.$$

Hence by (5) we get for k > 3

$$||c_{k-1}\alpha - \beta|| < \frac{2}{k^3 q_k} < \frac{1}{t},$$

i. e. $x = c_{k-1}$ is a solution of inequality (1).

Case b. If $k = 2\nu + 1$ and

$$c_{k-1} < t \leq (k+2) q_k$$

then, just as before, we get by (9) with l = k-1

$$\|(c_{k-1}-q_{k-1})\,\alpha-\beta\|\leqslant (a_k-b_k+1)\,|d_k|=(k+1)\,|d_k|<\frac{k+1}{k^4}\cdot\frac{1}{q_k}<\frac{1}{t}\,,$$

i. e. $x = c_{k-1} - q_{k-1}$ is a solution of inequality (1).

Case c. If $k = 2\nu + 1$ and

$$(k+2)\,q_k < t \leqslant c_k,$$

then, similarly to (17),

$$c'_k < (k+2)q_k < t \le c_k < (k^4 - k + 2)q_k$$
.

Using (8) with r = 0 and with l = k+1, we get

$$||a_k'\alpha - \beta'|| < (b_{k+1}' + 1)|d_{k+1}| < a_{k+1}|d_{k+1}| < |d_k| < \frac{1}{k^4q_k} < \frac{1}{t},$$

i. e. $x = c'_k$ is a solution of

$$||xa-(1-\beta)|| = ||-xa-\beta|| < \frac{1}{t},$$

i. e. in this case (1) has a solution with $x = -c'_k$.

Now we show that our pair a, β defined in (14) and (15) is neither positively nor negatively normal. In order to show the first part, it is sufficient to give to an arbitrary prescribed c a sequence $t_r \to \infty$, so that (1) has no solution with $0 < x < ct_r$ for r = 1, 2, ...

In order to prove it, let $k = 2\nu + 1$, $t_{\nu} = c_{k-1} + 2k^3q_k$ and

$$\min_{\mathbf{0} < x < ct_v} \|xa - \beta\| = \|\xi_{\mathbf{v}}a - \beta\|.$$

From (8) and (9) it follows that for all $\xi = b_1q_1 + \ldots + b_{l-1}q_{l-1} + rq_l$ with l < k-1 or with l = k-1 and $r < b_{k-1}-1$ we have

$$\|\xi a - \beta\| > |d_{k-1}|,$$

whence, by (5) and the definition of t, we conclude

$$\|\xi\alpha-\beta\|>1/t_{\nu}.$$

On the other hand, we have for k large enough the inequality $\xi_{\nu} \leqslant ct_{\nu} < c_{k}$. Thus (6) shows that it remains to examine as values of ξ_{ν} only the numbers

$$\xi' = b_1 q_1 + \ldots + b_{k-1} q_{k-1} + r q_k$$

with $0 \leqslant r < 2k^3c$, and

$$\xi'' = b_1 q_1 + \ldots + b_{k-2} q_{k-2} + (b_{k-1} - 1) q_{k-1}.$$

160

V. T. SÓS

Using (5) and (8) we get for k large enough

$$\|\xi'a-eta\,\|>(b_k-r-1)|d_k|>rac{k^4-3k^3c-1}{(k^4+1)q_k}>rac{1}{2k^3q_k}>rac{1}{t_
u}$$

and, similarly, using (8) for k large enough

$$\|\xi^{\prime\prime}a-eta\|>(a_k-b_k)|d_k|>rac{k}{(k^4+1)\,q_k}>rac{1}{2k^3\,q_k}>rac{1}{t_{_{m p}}},$$

i. e. for $t_{\nu} = c_{k-1} + 2k^3 q_k$, $k = 2\nu + 1$, $\nu > \nu_0$, the inequality

$$||x\alpha - \beta|| < 1/t$$

has no solution with 0 < x < ct.

In an analogous way it is possible to show that for $t = c'_{k-1} + 2k^3q_k$, k = 2v, $v > v_0$, inequality (1) has no solution with -ct < x < 0, which completes the proof.

REFERENCES

- [1] R. Descombes, Sur la répartition des sommets d'une ligne polygonale régulière non fermée, Annales Scientifiques de l'École Normale Supérieure 75 (1956), p. 284-355.
 - [2] S. Hartman, P 262, Colloquium Mathematicum 6 (1958), p. 334.
- [3] Vera T. Sós, On the theory of diophantine approximations II, Acta Mathe matica Academiae Scientiarum Hungaricae 9 (1958), p. 229-241.

Reçu par la Rédaction le 10. 4. 1959

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC, 2

REMARKS ON A CONCJECTURE OF HANANI IN ADDITIVE NUMBER THEORY

BY

W. NARKIEWICZ (WROCŁAW)

In his paper [1] P. Erdös mentions the following conjecture due to H. Hanani:

(H₀) If $A(x) = \sum_{a_k \leqslant x} 1$ and $B(x) = \sum_{b_k \leqslant x} 1$, where $\{a_k\}$ and $\{b_k\}$ are both infinite sequences of increasing integers, and if every sufficiently great integer can be represented in the form $a_i + b_i$, then

$$\overline{\lim_{x\to\infty}} \frac{A(x)B(x)}{x} > 1.$$

This conjecture can be stated in the following equivalent form:

 (\mathbf{H}_0') If by f(n) we denote the number of representations of the integer n in the form a_i+b_j , $f(n)\geqslant 1$ for $n\geqslant n_0$, and

$$\overline{\lim}_{x\to\infty}\frac{A(x)B(x)}{x}\leqslant 1,$$

then one of the sequences {ak}, {bk} must be finite.

It seems very probable that the following stronger conjecture holds:

 (\mathbf{H}_1) If $f(n) \geqslant k$ for $n \geqslant n_0$, and

$$\overline{\lim_{x\to\infty}}\frac{A(x)B(x)}{x}\leqslant k,$$

then one of the sequences $\{a_k\}$, $\{b_k\}$ must be finite.

The purpose of this paper is to prove the following theorem associated with the conjecture (H_1) :

THEOREM. If $f(n) \ge k$ for almost all integers, and

$$\overline{\lim}_{x\to\infty}\frac{A(x)B(x)}{x}\leqslant k,$$

then:

Colloquium Mathematicum VII.