

## COLLOQUIUM MATHEMATICUM

VOL. VII

1959

FASC. 1

## ON PYTHAGOREAN ANGLES

вv

## S. ŚWIERCZKOWSKI (WROCŁAW)

An angle  $\varphi$  will be called *Pythagorean* if it is congruent modulo  $\pi/2$  to an angle of a Pythagorean triangle (rectangular triangle whose sides have integral lengths). In other words,  $\varphi$  is Pythagorean if and only if  $\cos \varphi$  and  $\sin \varphi$  are rational. Let  $q_1, q_2, \ldots$  be the sequence of all primes of the form 4k+1 (k natural). It is known that for every  $q_j$  there exists exactly one Pythagorean triangle (we identify isometric ones) the hypotenuse of which has the length  $q_j$ . Let  $\varphi_j$  be one of the acute angles of this triangle. We shall prove the following

THEOREM. An angle  $\varphi$  is Pythagorean if and only if

(1) 
$$\varphi = k_0 \frac{\pi}{2} + k_1 \varphi_{i_1} + k_2 \varphi_{i_2} + \ldots + k_n \varphi_{i_n}$$

where  $k_l$  are integers. The numbers  $k_l$  and  $j_l$  are uniquely determined by  $\varphi$ .

Notation. Let a,b be real numbers and  $\gamma=a+bi$ . We shall denote by  $|\gamma|$  the module of  $\gamma$  and by  $\arg\gamma$  any angle  $\varphi$  for which  $\cos\varphi=a/|\gamma|$ ,  $\sin\varphi=b/|\gamma|$  holds. If a and b are integers, then  $\gamma$  will be called a *complex integer*.

LEMMA. If  $\zeta=x+iy$ , where x and y are relatively prime real integers and  $|\zeta|$  is also an integer, then there exists a complex integer  $\sigma$  for which  $\zeta=i^{\varepsilon}\sigma^{2}$  with  $\varepsilon=0$  or 1.

Proof of the Lemma. Since  $xy\neq 0$ , from  $x^2+y^2=|\zeta|^2$  follows, as it is well known, that there exist real integers m,n such that one of the numbers x,y is  $m^2-n^2$  and the other is 2mn. If  $x=m^2-n^2$ , then we define  $\sigma=m+in$  and  $\zeta=\sigma^2$  follows. If x=2mn, then we define  $\sigma=-m+in$  and consequently  $\zeta=i\sigma^2$ .

Proof of the Theorem. Let  $\varphi$  be a Pythagorean angle. If  $\varphi \equiv 0 \pmod{\pi/2}$ , then there is a representation (1). In the opposite case  $\varphi$  is equal modulo  $\pi/2$  to an acute angle of a Pythagorean triangle. We may assume

icm®

that the lengths of the sides of that triangle are relatively prime numbers. Thus, if we denote by a the length of its hypotenuse, then evidently  $\cos\varphi=x/a$  and  $\sin\varphi=y/a$  where x,y are relatively prime integers. Let us consider the complex integer  $\zeta=x+iy$ . Since  $|\zeta|=a$ , it follows from our lemma that  $\zeta=i^*\sigma^2$  for some complex integer  $\sigma$  and for  $\varepsilon=0$  or 1. There exists a decomposition  $\sigma=i^c\beta_1^{i_1}\beta_2^{i_2}\dots\beta_r^{i_r}$  where c is natural and  $\beta_k$  are complex prime (i. e. indecomposable) integers. It is known [1] that if  $\beta_k$  is not real, then  $\beta_k=u+iv$  with  $u,v=\pm 1$  or  $u^2+v^2$  equal to one of the primes  $q_1,q_2,\dots$  Thus for real  $\beta_k$  and also in the case when the first of the above possibilities holds we have  $\arg\beta_k\equiv 0 \pmod{\pi/4}$  which implies  $\arg\beta_k^2\equiv 0 \pmod{\pi/2}$ . In the other case  $|\beta_k^2|=q_{i_k}$  and thus  $q_{i_k}$  is the hypotenuse of a Pythagorean triangle with one acute angle congruent modulo  $\pi/2$  to  $\arg\beta_k^2$ . Consequently  $\arg\beta_k^2\equiv \pm \varphi_{i_k}(\bmod\pi/2)$ . Now from  $\zeta=i^c\sigma^2=i^{c+2c}\beta_1^{2i_1}\dots\beta_r^{2i_r}$  follows

$$\arg \zeta \equiv (\varepsilon + 2e) \frac{\pi}{2} + \sum_{k=1}^{r} l_k \arg \beta_k^2 \pmod{2\pi}.$$

Since

$$\varphi \equiv \arg \zeta \pmod{2\pi}$$
 and  $\arg \beta_k^2 \equiv 0$  or  $\pm \varphi_{j_k} \pmod{\pi/2}$ 

we find that a representation (1) exists.

The uniqueness of this representaion follows if we prove that

(2) 
$$k_0 \frac{\pi}{2} + k_1 \varphi_{i_1} + \ldots + k_n \varphi_{i_n} = 0$$

implies  $k_0 = k_1 = \ldots = k_n = 0$ . Clearly  $\cos \varphi_j = x_j/q_j$ ,  $\sin \varphi_j = y_j/q_j$ , where  $x_j, y_j$  are integers. Thus from the formulas

(3) 
$$\cos(\varphi + \psi) = \cos\varphi\cos\psi - \sin\varphi\sin\psi, \\ \sin(\varphi + \psi) = \sin\varphi\cos\psi + \cos\varphi\sin\psi$$

it follows that  $\cos k\varphi_j$  and  $\sin k\varphi_j$  can be represented by fractions whose denominator is a power of  $q_j$ . From (2) it follows that  $\cos k_1\varphi_{j_1}$  or  $\sin k_1\varphi_{j_1}$  is equal to  $\pm\cos(k_2\varphi_{j_2}+\ldots+k_n\varphi_{j_n})$ , i. e. to a fraction whose denominator is by (3) relatively prime to  $q_{j_1}$ . But if two fractions with relatively prime denominators are equal, then they are integers. It follows that  $k_1\varphi_{j_1}\equiv 0 \pmod{\pi/2}$ . It is known [2] that if a Pythagorean angle  $\varphi\neq 0 \pmod{\pi/2}$ , then  $\varphi$  is incommeasurable with  $\pi$ . Thus  $\varphi_{j_1}$  is incommeasurable with  $\pi$  and from  $k_1\varphi_{j_1}\equiv 0 \pmod{\pi/2}$  follows  $k_1=0$ . By symmetry we also have  $k_j=0$  for  $j=2,\ldots,n$ . This implies  $k_0=0$ .

## REFERENCES

- [1] E. Landau, Vorlesungen über Zahlentheorie, Leipzig 1927, p. 12-15.
- [2] J. M. H. Olmsted, Rational values of trigonometric functions, American Mathematical Monthly 52 (1945), p. 507-508.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 21. 11. 1958