valle $(0, 1)$ on a évidemment $d\psi/az \geq 0$. Posons $\omega = \sup(\xi, \eta)$. En vertu de (18), (17), (18) et (5) nous avons

$$\Theta(1) = \int^1_0 f(a) dy \leq \int^1_0 f(a) dy \leq 0,$$

en contradiction avec (11). Ainsi, en supposant pour $t = 1$ l'inégalité $t^{-1}g(t) \leq 0$ vérifiée pour tout t, nous avons été amenés à une contradiction. Par conséquent la fonction $t^{-1}g(t)$ admet dans l'intérieur de l'intervalle $(0, 1)$ un maximum positif. Posons $f(\alpha) = -f(\alpha)$. La fonction $g(\alpha) = -g(\alpha)$ qui correspond à la fonction $f(\alpha)$ admet dans l'intérieur de l'intervalle $(0, 1)$ un maximum négatif. Comme nous l'avons montré, la fonction $f(\alpha)$ est alors identiquement nulle et il en est de même de la fonction $f(\alpha)$.

TRAITEMENT PRÉSENTÉ

UNIVERSITÉ DE LÖSE

Recu par la Rédaction le 10. 5. 1958

UNE REMARQUE SUR LA PROPRÉTÉ DE WEIERSTRASS

PAR

H. FAST (WROCŁAW)

Nous disons qu'une fonction réelle $f(x)$, définie sur la droite entière ou dans un intervalle, satisfait à la condition W (1) si l'ensemble des valeurs admissées par $f(x)$ dans un intervalle quelconque (x', x'') contient tous les nombres entre $f(x')$ et $f(x'')$.

Soit $F(x, y)$ une fonction réelle arbitraire définie sur le plan entier. Nous allons démontrer le théorème suivant:

THÉORÈME. Il existe une fonction réelle $u(x)$ définie sur la droite entière telle que la fonction $F(x, y) + u(x)$ satisfait à la condition W pour chaque y, fixé.

Démonstration. Définissons deux fonctions $g(x)$ et $h(x)$ de la manière suivante: pour un nombre x dont la partie fractionnelle $x - [x]$ a un développement dyadique de la forme

$$m \geq 0, a_0, a_1, \ldots, a_n 011 \ldots 1011 \ldots 1011 \ldots 101 \ldots 00_{b_1}0_{b_2}0_{b_3}0 \ldots$$

$(a_k, b_k = 0, 1; q \geq 2; k, m, n, p \geq 0)$

posons

$$g(x) = (m - n) = 0, a_0b_1b_2b_3 \ldots$$

$$h(x) = (p - q) = 0, b_0b_1b_2b_3 \ldots$$

Pour les autres valeurs de x posons $g(x) = h(x) = 0$. Ainsi, les fonctions $g(x)$ et $h(x)$ sont bien déterminées, puisque, évidemment, le développement (1) détermine d'une manière unique la suite $b_0, b_1, b_2, b_3, \ldots$ et les nombres m, n, p, q.

Lemme. Pour tout nombre y et pour tout intervalle (x_1, x_2) l'ensemble $h(g^{-1}(y) \cap (x_1, x_2))$ contient tous les nombres réels.

(1) dite propriété de Weierstrass ou propriété de Darboux.
En effet, des nombres y et z étant donnés arbitrairement, soient

\[y = [y] + b_1b_2b_3 \ldots \quad \text{et} \quad z = [z] + b_1b_2b_3 \ldots \]

les développements dyadiques (qui peuvent être finis) de leurs parties fractionnelles.

Soient

\[0, a_0a_1 \ldots a_20000 \ldots \quad \text{et} \quad 0, a_0a_1 \ldots a_21000 \ldots \]

(\(a_1 = 0, 1\))
deux nombres de l'intervalle \((a_1+r, a_1+r+1)\) où \(r\) est un nombre entier convenable. Désignons par \(m, n, p\) et \(q\) des entiers positifs pour lesquels

\[[y] = m - n, \quad [z] = p - q \]

et par \(z\) le nombre dont le développement est de la forme (1), où \(a_1, b_1, m, n, p, q\) sont donnés par (2)-(4). Nous avons alors \(x = a_1+\epsilon(x_1, x_2)\), \(g(z) = y, \; h(z) = z\), d'où la conclusion du lemme.

Définissons la fonction \(u(x)\) par la formule suivante:

\[u(x) = h(z) - F(x, g(z)) \]

Pour tout \(y\) réel nous avons

\[F(x, y) + u(x) = h(z) \quad \text{pour} \quad x = g^{-1}(y). \]

Du lemme et de (5) nous déduisons que pour tout \(y\) fixé la fonction \(F_j(x, y) + u(x)\) de la variable \(x\) prend toutes les valeurs réelles sur chaque intervalle, donc elle satisfait à la condition \(W\), c. q. f. d.

Les deux corollaires suivants résultent de notre théorème, si la fonction \(F(x, y)\) est choisie d'une manière convenable.

1. Soit \(f(x)\) une fonction arbitraire d'une variable réelle définie sur la droite entière. Posons

\[F(x, y) = \begin{cases} f(x) & \text{pour} \quad y \neq 0, \\ 0 & \text{pour} \quad y = 0. \end{cases} \]

Notre théorème entraîne dans ce cas que \(f(x) + u(x)\) est \(W\) et en posant \(y = 0\), que \(u(x)\) est \(W\), d'où \(u(x)\) est \(W\). Ainsi, toute fonction \(f(x)\) est la somme de deux fonctions \((f(x) + u(x))\) et \((u(x))\) satisfaisant à la condition \(W\). Ce théorème, publié sans démonstration par A. Lindenbaum, a été aussi démontré par Sierpiński (1).