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ON THE VOLUME METHOD
IN THE STUDY OF AUERBACH BASES

OF FINITE-DIMENSIONAL NORMED SPACES

BY

ANATOLIJ M. P L I C H K O (L’VIV)

In this note we show that if the ratio of the minimal volume V of
n-dimensional parallelepipeds containing the unit ball of an n-dimensional
real normed space X to the maximal volume v of n-dimensional crosspoly-
topes inscribed in this ball is equal to n!, then the relation of orthogonal-
ity in X is symmetric. Hence we deduce the following properties: (i) if
V/v = n! and if n > 2, then X is an inner product space; (ii) in every
finite-dimensional normed space there exist at least two different Auerbach
bases and (iii) the finite-dimensional normed space X is an inner product
space provided any two Auerbach bases are isometrically equivalent. Prop-
erty (i) generalizes a result of Lenz [8], and (iii) answers a question of R. J.
Knowles and T. A. Cook [7].

An element x of a normed space X is said to be orthogonal to an ele-
ment y if ‖x‖ ≤ ‖x + λy‖ for every real number λ; we then write x ⊥ y.
A basis (ei)n

i=1 of an n-dimensional normed space is called an Auerbach basis
provided ‖ei‖ = 1 for every i and every ei is orthogonal to any element of
the linear span lin(ej : j 6= i). It seems that for the first time the existence
of an Auerbach basis in every two-dimensional space was established in [1]
in terms of conjugate diameters. Unfortunately, we do not know Auerbach’s
original proof. The definition of an Auerbach basis and the Auerbach theo-
rem in terms of normed spaces appear in Banach’s book [4, Remarks to Ch.
VII]. Proofs were given in the notes [5] and [14].

Auerbach bases of an n-dimensional linear normed space X are ob-
tained as the centers of faces of a minimum volume n-dimensional paral-
lelepiped circumscribed about the unit ball B(X) and from the vertices of
a maximum volume n-dimensional crosspolytope inscribed in B(X). By an
n-dimensional crosspolytope we mean the convex hull conv(±ei)n

i=1 of 2n el-
ements called its vertices. Concrete examples show that the Auerbach bases
obtained by the above minimization and maximization are usually distinct.
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Exceptions are inner product spaces and some two-dimensional spaces. That
is why the following questions naturally came up. Does every n-dimensional
normed space, where n > 1, have at least two different Auerbach bases?
(Here and in the sequel, we do not distinguish Auerbach bases which dif-
fer by ±1 factors.) Is a finite-dimensional normed space an inner product
space if for any two of its Auerbach bases there exists an isometry which
transforms one basis to the other?

In [7] the first question was posed for n = 2 and the second for n > 2.
There it is stated that an answer to the first question (for n = 2) was
given by J. Simons. The existence of at least two different Auerbach bases
in a two-dimensional normed space (probably under a smoothness condi-
tion) was noticed in [2]. The investigation of Auerbach bases in terms of
conjugate diameters was continued in the theory of convex bodies. In partic-
ular, under some additional smoothness assumptions on the norm ‖ ‖ in the
finite-dimensional normed space there exist at least two different Auerbach
bases (see [8]). There it is also proved that under additional smoothness
assumptions we have V/v ≤ n!. Moreover, for n > 2 equality holds for
an inner product space X only. For applications of Auerbach bases see for
example [9; 10; 13; 11, B.4.9].

Theorem. If V/v = n! for a real n-dimensional normed space X, then
the orthogonality relation in X is symmetric, i.e. x ⊥ y implies y ⊥ x.

P r o o f. We prove the theorem by induction on n.
Let n = 2, ‖x‖ = ‖y‖ = 1, x ⊥ y and y 6⊥ x. Let us circumscribe about

the ball B(X) a parallelogram P with sides which are formed by the tangents
at the points x, y. Moreover, the tangent at x is parallel to the vector y.
The area of this parallelogram equals the area of the parallelogram Q whose
sides contain the points x, y and are parallel to the vectors y, x respectively.
Because of the nonorthogonality, the area of Q is strictly less than 2v = V .
Therefore, the area of the circumscribed parallelogram P is strictly less
than V ; a contradiction.

Now assume that the theorem is proved for n−1. If the orthogonality re-
lation is nonsymmetric, then it is nonsymmetric in some (n−1)-dimensional
subspace Y ⊂ X. Thus, in Y there exists an Auerbach basis y1, . . . , yn−1

which spans an (n − 1)-dimensional crosspolytope of nonmaximal (n − 1)-
dimensional volume. Let yn be an element of unit norm contained in the
intersection of the hyperplanes containing the origin and parallel to the hy-
perplanes which are tangent to B(X) at the points yi, where i = 1, . . . , n−1.
The hyperplanes tangent to B(X) at the points yi, where i = 1, . . . , n, form
a parallelepiped P circumscribed about B(X). The volume of P is n! times
the volume of the crosspolytope conv(±yi)n

i=1. Let y′1, . . . , y
′
n−1 be elements

of B(Y ) spanning an (n−1)-dimensional crosspolytope of maximal volume.
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We have
n!v = V ≤ Vol(P ) = n! Vol(conv(±yi)n

i=1)

< n! Vol[conv((±y′i)
n−1
i=1 ,±yn)] ≤ n!v;

a contradiction.

Corollary 1. In every n-dimensional normed space X we have
V/v ≤ n!. If n > 2, then equality holds true in an inner product space
only.

The first part of the corollary is evident. For n > 2, the symmetry of
the orthogonality implies that X is an inner product space (see [6]).

R e m a r k. In a two-dimensional space which has a regular hexagon as
unit ball we have V/v = 2.

Corollary 2. In every n-dimensional normed space there are at least
two distinct Auerbach bases.

Indeed, if the Auerbach bases constructed by the maximization of the
volume of inscribed crosspolytopes and by the minimization of the volume of
circumscribed parallelepipeds coincide, then V/v = n!. By the Theorem, the
orthogonality relation is then symmetric. Hence there are infinitely many
Auerbach bases.

Corollary 3. An n-dimensional normed space X is an inner product
space provided for any two Auerbach bases there is an isometry of X which
transforms one basis to the other.

P r o o f. By Auerbach’s result [3; 12, p. 408], there exists an inner prod-
uct on X whose isometry group G contains the isometry group of the normed
space X. This inner product generates the measure (volume) which is in-
variant with respect to its isometry group. If V/v < n!, then the Auerbach
basis formed by the minimization of the volume of inscribed octahedrons
cannot be isometrically transformed to the Auerbach basis formed by the
maximization of the volume of circumscribed parallelepipeds. Therefore
V/v = n!. Hence the orthogonality relation is symmetric. For n > 2 this
finishes the proof (see Corollary 2).

Let n = 2. By symmetry of the orthogonality relation any element of
the unit sphere is an element of some Auerbach basis. By our assumption,
this implies that the isometry group of the normed space X is infinite and
that it is a closed subgroup of G. It is easily seen that every infinite closed
subgroup of G contains the subgroup of all rotations. Therefore, the norm
of X coincides with the norm generated by the inner product.
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Question (for students). Suppose the orthogonality relation in a two-
dimensional space is symmetric. Is V/v = 2?

The author is grateful to Prof. M. J. Kadec and L. P. Plakhta for useful
advice.
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