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FELL’S SUBGROUP ALGEBRA
FOR LOCALLY COMPACT ABELIAN GROUPS

AND L1-COVARIANCE ALGEBRAS

BY

DETLEV POGUNTKE (BIELEFELD)

For any topological space X Fell has introduced (see [6]) a quasi-compact
topology on the set Φ(X) of all closed subsets of X: For each quasi-compact
subset C (the empty set is not excluded) and each finite family F (the empty
family is not excluded) of nonempty open subsets of X let Q(F , C) be the
set of all Y ∈ Φ(X) such that Y ∩ C = ∅ and Y ∩ F 6= ∅ for all F ∈ F .
The sets Q(F , C) form a basis of this topology. If X happens to be locally
quasi-compact then Φ(X) is Hausdorff, hence compact. In this paper we
shall be exclusively interested in locally compact spaces X, very often even
in locally compact (abelian) groups.

Our first proposition says that a locally compact transformation group
(G,X) gives rise to a continuous action of G on Φ(X). Then we special-
ize to X = G, where an alternative description of the above topology on
Φ(G) was given by Bourbaki [3]. Next, two subspaces of Φ(G) are stud-
ied, namely the space Σ(G) of closed subgroups and the space Λ(G) of left
cosets, Λ(G) = {gH | g ∈ G,H ∈ Σ(G)}. The space Σ(G) is the basis for
the construction of Fell’s subgroup algebra As(G) (see [7] and below). We
show that the Banach algebra As(G) has a bounded two-sided identity, and
that the restriction maps As(G) → L1(H) are surjective for all H ∈ Σ(G).

In the second section the case of abelian groups G is treated. Then
As(G) is a commutative regular symmetric algebra, whose structure space
is homeomorphic to Λ(G∧), where G∧ denotes the Pontryagin dual. The
arguments developed for those results also show that the map Σ(G) 3 H 7→
H⊥ ∈ Σ(G∧) is a homeomorphism, which was proved by Williams [21].
Furthermore, it is shown that if the Haar measures on the various subgroups
H ∈ Σ(G) are chosen continuously then the associated Haar measures on the
subgroups ∆ of G∧, via Poisson’s summation formula, depend continuously
on ∆ ∈ Σ(G∧).
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In the final section we extend some results of Pytlik [18], in particular
we determine the ∗-primitive ideal spaces of covariance algebras L1(G,B),
where G and B are commutative and some additional mild assumptions are
satisfied. As an application we compute the support of the conjugation rep-
resentation for semidirect products of abelian groups. This representation
has recently drawn some attention (see [11, 12] and the references given
there).

1. Some properties of Φ(X) and of the subgroup algebra. We
start with an easy lemma, used several times in this article. For the notion
of (sub)nets we refer to [13, p. 65ff].

Lemma 1.1. Let X be a locally compact space, and let (Si)i∈I be a
convergent net in Φ(X). Then the following subsets of X coincide with
S := limi∈I Si:

M1 :=
⋂
J

( ⋃
j∈J

Rj

)−
,

where (Rj)j∈J is any subnet of (Si)i∈I ,

M2 :=
⋂
J

( ⋃
j∈J

Sj

)−
,

where J is any cofinal subset of I,

M3 :=
⋂
i0∈I

( ⋃
i∈I
i≥i0

Si

)−
,

and

M4 := {x ∈ X | there exists a subnet (Rj)j∈J of (Si)i∈I
and points xj ∈ Rj such that x = lim

j∈J
xj}.

P r o o f. The inclusions M1 ⊂M2 ⊂M3 are obvious. To show M3 ⊂M4

let x ∈ M3 be given. Let V be a basis of the neighborhoods of x in X,
and let J := I ×V with the obvious ordering, i.e., (i, V ) ≤ (i′, V ′) if i ≤ i′

and V ⊃ V ′. For j = (i, V ) ∈ J choose n = n(i, V ) = n(j) ∈ I such that
Sn ∩ V 6= ∅ and n(i, V ) ≥ i, and choose a point xj ∈ Sn ∩ V . Clearly,
the required subnet (Rj)j∈J is defined by Rj = Sn(j), and the net (xj)j∈J
converges to x.

To see M4 ⊂ S, let x ∈M4, let (Rj)j∈J be a subnet of (Si)i∈I , let xj ∈
Rj , and suppose that x = limj∈J xj exists, but that x 6∈ S = limi∈I Si =
limj∈J Rj . Then there exists a compact neighborhood V of x with V ∩S = ∅.
The set Q(∅, V ) ⊂ Φ(X) is a neighborhood of S in Φ(X). Hence there exists
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j0 ∈ J such that Rj ∈ Q(∅, V ) for all j ≥ j0, i.e., Rj ∩ V = ∅. But this is
absurd as (xj) converges to x.

Finally, we have to show that S is contained in M1, i.e., for any subnet
(Rj)j∈J of (Si)i∈I the set S has to be contained in (

⋃
j∈J Rj)

−. Let x ∈ S
(if S is empty there is nothing to prove), and let F be any neighborhood
of x in X. Then Q({F}, ∅) ⊂ Φ(X) is a neighborhood of S. As (Rj)j∈J
converges to S there exists j0 ∈ J such that Rj ∩ F 6= ∅ for all j ≥ j0. In
particular, F ∩

⋃
j∈J Rj 6= ∅ for all F , whence x ∈ (

⋃
j∈J Rj)

−.

Proposition 1.2. Let (G,X) be a locally compact transformation group.
Then there is a natural action G × Φ(X) → Φ(X), (g, S) 7→ gS, which is
continuous, i.e., (G,Φ(X)) is a transformation group.

P r o o f. Clearly, it suffices to check the continuity at a point (e, S).
Let a typical neighborhood Q(F , C) of S be given. There exists a compact
symmetric neighborhood V of e such that S ∩ V C = ∅. For each F ∈ F
choose a point sF ∈ F ∩S, a neighborhood VF of sF ∈ X, and a symmetric
neighborhood WF of e in G such that WFVF ⊂ F . Then put C ′ = V C,
F ′ = {VF | F ∈ F} and form the neighborhood Q(F ′, C ′) of S. It is easily
verified that the neighborhood W := V ∩

⋂
F∈F WF has the property that

g ∈W , S′ ∈ Q(F ′, C ′) implies gS′ ∈ Q(F , C).

Now we consider Φ(G) for a locally compact group G. In this case
Bourbaki has defined a topology on Φ(G) which is more closely related to
the Hausdorff distance in the context of metric spaces. For S ∈ Φ(G), a
neighborhood V of the identity in G and a compact set A in G let

P (S, V,A) = {R ∈ Φ(G) | S ∩A ⊂ V R, R ∩A ⊂ V S}.
These sets P (S, V,A), where V and A are varying, form a neighborhood basis
of S for a certain topology on Φ(G), which we call the Bourbaki topology .
As pointed out in [3] there is a natural uniform structure which gives this
topology.

Proposition 1.3. For any locally compact group G the Bourbaki topology
and the formerly introduced topology on Φ(G) coincide.

P r o o f. Clearly, as both topologies are compact (for the Bourbaki topol-
ogy see [3, pp. 188–189]), it would suffice to prove one inclusion of the
topologies, but in order to clarify the relation it seems best to prove both
inclusions.

First, let P (S, V,A) be given. We have to construct a finite family F
of open sets in G and a compact set C in G such that S ∈ Q(F , C) ⊂
P (S, V,A). Choose an open symmetric neighborhood U of e in G such that
U2 ⊂ V . There exist finitely many elements s1, . . . , sn in the compact set
A ∩ S such that A ∩ S is covered by Usj , 1 ≤ j ≤ n. Put F := {Usj |
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j = 1, . . . , n} and C := A \
⋂n
j=1 Usj . Then one verifies S ∈ Q(F , C) ⊂

P (S, V,A).
Secondly, let S ∈ Q(F , C) be given. We have to construct a neighbor-

hood V of the identity and a compact set A in G such that P (S, V,A) ⊂
Q(F , C). For each F ∈ F choose a point sF ∈ F ∩ S. Then choose a
symmetric neighborhood V of the identity such that S ∩ V C = ∅ and
V sF ⊂ F for all F ∈ F . If A := C ∪ {sF | F ∈ F} then one checks
that P (S, V,A) ⊂ Q(F , C).

The subset Σ(G) of Φ(G) consisting of all closed subgroups of G is
closed (see [7]), hence Σ(G) is a compact space. Next we consider the
larger set Λ(G) of all left cosets, i.e., Λ(G) is the image of the obvious map
G×Σ(G) → Φ(G). This map defines an equivalence relation ∼ on G×Σ(G).

Proposition 1.4. The subset Λ(G)∪{∅} of Φ(G) is closed , hence com-
pact , and the space Λ(G) with the relativized topology is locally compact.
The above equivalence relation ∼ on G×Σ(G) is open, i.e., the saturations
of open sets are again open. The natural map from the space of equivalence
classes in G×Σ(G) onto Λ(G) is a homeomorphism.

P r o o f. Let (λi)i∈I be a net in Λ(G) ∪ {∅} which converges to a point
λ ∈ Φ(G). We have to show that λ belongs to Λ(G) ∪ {∅}; of course, we
may assume that λ 6= ∅. Let x ∈ λ. Passing to a subnet if necessary,
and using the same letters I and λi again, by Lemma 1.1 we find xi ∈ λi,
i ∈ I, with x = limxi. The λi define a net of subgroups Hi := {y ∈ G |
λiy = λi}, i ∈ I, and without loss of generality we may assume that this
net converges to H ∈ Σ(G). Considering G as a G-transformation group
for the left translations, Proposition 1.2 shows that G acts continuously by
left translations on Φ(G). In particular, the convergence of (xi) and of (Hi)
implies that λi = xiHi converges to xH, whence λ = xH is a left coset.

To see the openness of the equivalence relation on G × Σ(G) we prove
the (equivalent) “dual” version, namely that the closure of any saturated
subset A of G × Σ(G) is again saturated. So, let (gi,Hi)i∈I be a net in
A which converges to (g,H) ∈ G × Σ(G), and let (g′,H) be equivalent to
(g,H), i.e., g′ = gh with h ∈ H. Without loss of generality we may assume
by Lemma 1.1 that there exist hi ∈ Hi such that limhi = h. The points
(gihi,Hi), i ∈ I, are in A because A is saturated, and the net (gihi,Hi)i∈I
converges to (g′,H). We have seen that A is saturated.

The homeomorphy of (G × Σ(G))/∼ with Λ(G) follows from the con-
tinuity of G × Σ(G) → Λ(G) by a similar reasoning as above, where we
started with a convergent net (λi) in Λ(G) and constructed xi and Hi.

R e m a r k 1.5. Since the locally compact group G acts continuously on
the whole (compact) space Φ(G), it acts in particular continuously on the
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locally compact space Λ(G) (by left translations). Each closed subgroup of
G can be realized as the stabilizer of some point in Λ(G).

Moreover, if another locally compact group M acts continuously and
homomorphically on G then M acts continuously on Σ(G). In particular,
G acts by conjugation continuously on Σ(G). This fact was used in [10].

It might be illuminating to see a simple example of a space Λ(G). The
closed subgroups of G = R can be parametrized by R+ = [0,∞]: to 0 <
x < ∞ corresponds the subgroup xZ, to x = 0 the whole group R and to
x = ∞ the trivial group. This map is a homeomorphism between Σ(R)
and R+. The space Λ(R) is homeomorphic to (R×R+)/∼, where (t, x) and
(t′, x′) are called equivalent if either 0 < x = x′ < ∞ and 1

x (t − t′) ∈ Z, or
x = x′ = 0, or x = x′ = ∞ and t = t′.

As was shown in [3] and [8] there exists a continuous choice of Haar
measures on the various closed subgroups of a locally compact group G.
Actually, Bourbaki first topologized Σ(G) by viewing it as the quotient
M/R+, where M is the set of all Haar measures on closed subgroups en-
dowed with the weak convergence w.r.t. Cc(G), and then compared with the
topology described above.

Proposition 1.6 (Glimm [8, appendix]). For each locally compact group
G there exists a choice of left Haar measures νH on the closed subgroups
H of G such that for all f ∈ Cc(G) the function H 7→

∫
H
f(x) dνH(x) is

continuous on Σ(G). Moreover , for each such choice and each compact
subset C of G there is a constant E = EC such that νH(xC∩H) ≤ E for all
x ∈ G and all H ∈ Σ(G). Therefore, the function (f,H) 7→

∫
H
f(x) dνH(x)

on Cc(G)×Σ(G) is continuous in both variables if Cc(G) is endowed with the
usual inductive limit topology. Furthermore, the choice of νH is essentially
unique: Two choices differ by a positive factor , which is continuous on Σ(G)
and hence in particular bounded and bounded away from zero.

Glimm obtains the desired normalization of the Haar measures as follows.
Fix f0 ∈ Cc(G) with f0 ≥ 0 and f0(e) > 0 and demand that∫

H

f0(x) dνH(x) = 1.

Moreover, Glimm shows that with this choice of νH one has νH(C∩H) ≤ EC
for all H ∈ Σ(G) and all compact subsets C. The above stated uniform
version can be proved along the same lines.

From the essential uniqueness of the νH ’s, which was observed by Fell [7],
it follows that the assertions remain true for other continuous choices.

Motivated by the work of Glimm, Fell has associated with each locally
compact group G the so-called subgroup algebra As(G) which is defined as
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follows. Consider the closed subspace Y of G×Σ(G) consisting of all pairs
(x,H) such that x ∈ H. If Haar measures νH on H ∈ Σ(G) are selected
according to 1.6 then define a norm ‖ ‖s, a multiplication and an involution
on Cc(Y ) by

‖f‖s = sup
H∈Σ(G)

∫
H

|f(x,H)| dνH(x),

(f ∗ g)(x,H) =
∫
H

f(xy,H)g(y−1,H) dνH(y),

f∗(x,H) = ∆H(x)−1f(x−1,H)−,

where ∆H denotes the modular function of H. In that way Cc(Y ) becomes
an involutive normed algebra, and As(G) denotes its completion. The next
proposition says among other things that L1(H) is a quotient of As(G) for
each H ∈ Σ(G).

Proposition 1.7. The algebra As(G) has a two-sided bounded approx-
imate identity which may be chosen in Cc(Y ). For each H ∈ Σ(G) and
each f ∈ Cc(Y ) define RHf ∈ Cc(H) by (RHf)(x) = f(x,H). The map
RH extends to a bounded ∗-morphism from As(G) onto the involutive Ba-
nach algebra L1(H). Furthermore, the algebra C(Σ(G)) acts in an obvi-
ous manner on Cc(Y ), and this action extends to As(G). The kernel of
the extended map RH : As(G) → L1(H) is just the closure of the span of
As(G){g ∈ C(Σ(G)) | g(H) = 0}.

P r o o f. An approximate identity can be constructed by the usual pro-
cedure. For each neighborhood U of the unit in G choose a function ψ =
ψU ∈ Cc(G) such that ψ ≥ 0, ψ(e) > 0, and suppψ ⊂ U . Then define the
continuous function I on Σ(G) by I(K) =

∫
K
ψ(x) dνK(x), and h = hU on

Y by h(y,K) = ψ(y)I(K)−1. The family (hU ) is an approximate identity.
Clearly, RH induces a bounded ∗-morphism from As(G) into L1(H) for

each H ∈ Σ(G). To see the surjectivity it is enough to show that there is an
ε > 0 such that for each ϕ ∈ Cc(H) there exists f ∈ Cc(Y ) with RHf = ϕ
and ‖f‖As(G) ≤ (1 + ε)‖ϕ‖1. Actually, we shall prove this claim for each ε.
Choose any extension ϕ̃ ∈ Cc(G) of ϕ. Without loss of generality we may
assume that ϕ is different from zero. From the continuity of the family νK ,
K ∈ Σ(G), follows the existence of a neighborhood V of H in Σ(G) such
that ∣∣∣ ∫

K

|ϕ̃(x)| dνK(x)−
∫
H

|ϕ(x)| dνH(x)
∣∣∣ ≤ ε
∫
H

|ϕ(x)| dνH(x)

for all K ∈ V . Then choose g ∈ Cc(Σ(G)) such that 0 ≤ g ≤ 1, g(H) = 1,
and g = 0 outside V . The function f ∈ Cc(Y ) given by f(y,K) = ϕ̃(y)g(K)
has the required properties.

Checking the final assertions is routine.
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2. Abstract abelian harmonic analysis, Σ(G) and As(G). For lo-
cally compact abelian groups G we first consider the canonical map Σ(G) 3
H 7→ H⊥ ∈ Σ(G∧), where H⊥ denotes the annihilator of H in the Pontrya-
gin dual G∧.

Proposition 2.1 (Williams [21]). For each locally compact abelian group
G the map H 7→ H⊥ is a homeomorphism from Σ(G) onto Σ(G∧).

P r o o f. While Williams used L2-spaces of G (and of quotients) our proof
will be based on the duality between L1(G) and L∞(G). This point of view
is more in the spirit of this paper. Later we shall give still another proof
using Poisson’s summation formula and the existence of certain functions.

Let (Hi)i∈I be a convergent net in Σ(G) with limit H∞. As Σ(G∧) is
compact it suffices to show that each convergent subnet of (H⊥

i )i∈I converges
to H⊥

∞. Hence we may assume from the beginning that (H⊥
i )i∈I converges

to ∆, say. We have to prove that ∆ = H⊥
∞. As pointed out by Williams,

the inclusion ∆ ⊂ H⊥
∞ is easy, indeed it readily follows from Lemma 1.1.

For the reverse inclusion we need another type of argument. According
to Proposition 1.6 let Haar measures on the various subgroups of G be
selected. In particular, this gives Haar measures νi on Hi for i ∈ I ∪ {∞}.
For each ϕ ∈ Cc(G) and each i ∈ I ∪{∞} define Tiϕ : G→ C by (Tiϕ)(x) =∫
Hi
ϕ(xh) dνi(h). The Tiϕ are elements in Cc(G/Hi), but we view them as

members of L∞(G/Hi) ⊂ L∞(G).
The norms ‖Tiϕ‖∞ are uniformly bounded, actually one has ‖Tiϕ‖∞ ≤

‖ϕ‖∞EC where C = supp(ϕ) and EC is as in 1.6. We claim that (Tiϕ)i∈I
converges to T∞ϕ in the weak topology of L∞(G). For f ∈ Cc(G) and
i ∈ I ∪ {∞} one has

〈Tiϕ, f〉 :=
∫
G

(Tiϕ)(x)f(x) dνG(x) =
∫
G

( ∫
Hi

ϕ(xh) dνi(h)
)
f(x) dνG(x)

=
∫
Hi

( ∫
G

ϕ(xh)f(x) dνG(x)
)
dνi(h) =

∫
Hi

(ϕ ∗ f∨)(h) dνi(h),

where f∨ is defined by f∨(x) = f(x−1). Since ϕ∗f∨ ∈ Cc(G) the continuity
of the choice of the Haar measures gives

lim
i∈I

〈Tiϕ, f〉 = 〈T∞ϕ, f〉.

As Cc(G) is dense in L1(G) and as the norms ‖Tiϕ‖∞ are uniformly bounded
it follows that indeed (Tiϕ) converges weakly to T∞ϕ.

Because T∞(Cc(G)) is weakly dense in L∞(G/H∞) it follows that
L∞(G/H∞) is contained in the weak closure of

⋃
i≥i0 L

∞(G/Hi) for each
i0 ∈ I. Using the duality between L1(G) and L∞(G) and the fact that the
span of H⊥

i , i ∈ I ∪ {∞}, is weakly dense in L∞(G/Hi), one concludes
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that k(H⊥
∞) contains

⋂
i≥i0 k(H

⊥
i ) = k((

⋃
i≥i0 H

⊥
i )−), where k denotes the

kernel in the “hull kernel sense”. In view of the regularity of L1(G) this
implies that H⊥

∞ is contained in (
⋃
i≥i0 H

⊥
i )−. Hence we know that H⊥

∞ is
contained in

⋂
i0∈I(

⋃
i≥i0 H

⊥
i )−, which coincides with ∆ by 1.1. Since we

already observed that ∆ ⊂ H⊥
∞ the proof is finished.

In order to prove the “continuity” of Poisson’s summation formula and
the regularity of As(G) we need the following lemma.

Lemma 2.2. Let G be a locally compact abelian group, let χ0 ∈ G∧, and
let U be a neighborhood of χ0 in G∧. Then there exist a continuous function
f on G, a compact set B in G and a sequence x1, x2, . . . in G such that

(i) supp(f) ⊂
⋃∞
n=1 xnB,

(ii)
∑∞
n=1 εn <∞, where εn = supx∈xnB |f(x)| (and hence f ∈ L1(G)),

(iii) the Fourier transform f̂(χ) =
∫
G
f(x)χ(x) dx is nonnegative every-

where, f̂(χ0) 6= 0,
(iv) the support of f̂ is compact and contained in U .

P r o o f. Clearly the lemma implies the regularity of L1(G), and our proof
is a slight extension of the standard proof of this fact (compare e.g. [4]).

Without loss of generality we may assume that χ0 = 1. By the structure
theory of locally compact abelian groups the group G can be identified with
Rr ×H, where H contains a compact open subgroup K. Accordingly, G∧

splits into Rr ×H∧, and K⊥ ∩H∧ is a compact open subgroup of H∧. We
choose (relatively compact) open symmetric neighborhoods V and W of the
identity in Rr and in K⊥∩H∧, respectively, such that V 2×W 2 ⊂ U . Then
we choose nonnegative continuous functions α and β on Rr and on H∧,
respectively, which are nonzero at the identity and supported by V and W ,
respectively. In addition, we require that α is a Schwartz function. Then
α⊗ β is in L2(G∧), hence the inverse Fourier transform g = ã⊗ β̃ of α⊗ β,
where

α̃(t) =
∫

Rr

eitxα(x) dx and β̃(h) =
∫̂
H

β(χ)χ(h) dχ,

is a continuous L2-function on G = Rr ×H.
The pointwise product f = gg is a continuous L1-function on G whose

Fourier transform is equal to (α ∗ α∗) ⊗ (β ∗ β∗), which is supported by
V 2 ×W 2, nonnegative and nonzero at the origin.

The function β̃ ∈ L2(H) is constant on K-cosets because suppβ ⊂ H∧∩
K⊥. Hence there is a sequence (hj) of elements in H and a sequence (ηj)
of nonnegative real numbers such that supp(β̃) ⊂

⋃∞
j=1 hjK, |β̃| ≤ ηj on

hjK, and
∑∞
j=1 η

2
j < ∞. Let Q be the closed unit cube in Rr. Since α̃ is

a Schwartz function, for an appropriate sequence (tl) of points in Rr the
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whole space Rr is covered by tl+Q, and |α̃| is bounded on tl+Q by %l with∑∞
l=1 %

2
l < ∞. Note that here Rr is written additively while other abelian

groups are written multiplicatively.
Then put B = Q ×K, and enumerate the points (tl, hj) ∈ G somehow

to obtain the asserted sequence (xn).

Theorem 2.3. Let G be a locally compact abelian group, and let νH ,
H ∈ Σ(G), be a continuous selection of Haar measures in the sense of 1.6.
Normalize the Haar measures µ∆ on the various subgroups ∆ ∈ Σ(G∧) so
that Poisson’s summation formula∫

H

f(x) dνH(x) =
∫

H⊥

f̂(χ) dµH⊥(χ)

holds for all , say , f ∈ Cc(G) ∗ Cc(G) (compare [19, p. 120] and [4, p. 127]).
Then (µ∆) is a continuous selection in the sense of 1.6.

P r o o f. Fix a function f0 on G with the properties (i)–(iv) of 2.2 corre-
sponding to χ0 = 1 ∈ G∧ and an arbitrary U . We shall use the notations
(xn), (εn), B in the meaning of 2.2. As f0 is a continuous L1-function
Poisson’s formula (see [19, p. 122])

I(H) :=
∫
H

f0(x) dνH(x) =
∫

H⊥

f̂0(χ) dµH⊥(χ)

holds true for all H ∈ Σ(G). We next claim that I is a continuous function
on Σ(G). To this end, for any (large) N choose a cut-off function ϕN ∈
Cc(G) such that 0 ≤ ϕN ≤ 1 and ϕN = 1 on

⋃N
n=1 xnB. From the properties

of f0 we conclude that for all H ∈ Σ(G),∣∣∣I(H)−
∫
H

f0(x)ϕN (x) dνH(x)
∣∣∣ ≤ ∞∑

n=1

∫
xnB∩H

|f0(x)|(1− ϕN (x)) dνH(x)

≤
∞∑

n=N+1

εnνH(xnB ∩H) ≤ EB

∞∑
n=N+1

εn

in view of 1.6. Therefore, for a given ε > 0 there exists Nε ∈ N such that∣∣∣I(H)−
∫
H

f0(x)ϕN (x) dνH(x)
∣∣∣ ≤ ε

for all H ∈ Σ(G) and N ≥ Nε. As (νK) is a continuous choice, for a given
H ∈ Σ(G) there is a neighborhood V of H in Σ(G) such that∣∣∣ ∫

H

f0(x)ϕNε(x) dνH(x)−
∫
K

f0(x)ϕNε(x) dνK(x)
∣∣∣ ≤ ε
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for all K ∈ V . Then clearly

|I(H)− I(K)| ≤ 3ε for all K ∈ V.

If according to Glimm the Haar measures d%∆ on ∆, ∆ ∈ Σ(G∧), are
normalized by ∫

∆

f̂0(χ) d%∆(χ) = 1

then (%∆) is a continuous selection. But dµ∆ = I(∆⊥)d%∆, hence we are
done if we use the fact that ∆ 7→ ∆⊥ is continuous (see 2.1).

But from the present considerations one can also very easily deduce that
Σ(G) and Σ(G∧) are homeomorphic: Suppose that the net (Hi)i∈I in Σ(G)
converges to H∞ ∈ Σ(G) and that (H⊥

i ) in Σ(G∧) converges to ∆ ∈ Σ(G∧).
We claim∆ = H⊥

∞. IfH⊥
∞ is not contained in∆ (this is the more challenging

case as was explained in the proof of 2.1) choose χ0 ∈ H⊥
∞, χ0 6∈ ∆, and a

neighborhood U of χ0 in G∧ with U ∩∆ = ∅. To χ0 and U choose a function
g on G as in 2.2. As above the net J(Hi) :=

∫
Hi
g(x) dνHi , i ∈ I, converges

in R to J(H∞) :=
∫
H∞

g(x) dνH∞(x) =
∫
H⊥∞

ĝ(x) dµH⊥∞(x) > 0 by Poisson’s
formula. On the other hand, again by Poisson’s formula, one has

J(Hi) =
∫

H⊥i

ĝ(x) dµH⊥
i

(x) = I(Hi)
∫

H⊥i

ĝ(x) d%H⊥
i

(x).

As I(Hi) stays bounded and as
∫
H⊥

i
ĝ(x) d%H⊥

i
(x) converges by Glimm’s

result to
∫
∆
ĝ(x) d%∆(x) = 0 we conclude that J(Hi) converges to zero, a

contradiction.

For illustration let us consider the space Σ(R2). The set Σ(R2) de-
composes into six GL2(R)-orbits, namely into the two one-point sets Σ0,0

and Σ2,0, consisting of the trivial and the whole subgroup R2, respec-
tively, Σ1,0 := {Rb | b ∈ R2, b 6= 0}, Σ0,1 := {Za | a ∈ R2, a 6= 0},
Σ1,1 = {Za + Rb | a, b ∈ R2 are linearly independent}, and the set Σ0,2 of
all lattices in R2. The sets Σ0,0, Σ2,0 and Σ1,0 are closed in Σ(R2), the
latter being homeomorphic to the real projective line. The closure of Σ0,1

is Σ0,0 ∪ Σ0,1 ∪ Σ1,0. Actually, a given net ajZ in Σ0,1 converges to {0}
iff limj |aj | = ∞, it converges to aZ, a 6= 0, iff limj aj = a after possibly
changing the signs of the aj ’s, and it converges to bR ∈ Σ1,0, |b| = 1, iff
limj aj = 0 and limj aj/|aj | = b after a possible change of signs. In all other
cases the net ajZ does not converge. By duality (the set Σ0,1 is mapped
onto Σ1,1(R2∧)) the closure of Σ1,1(R2) is equal to Σ2,0 ∪ Σ1,1 ∪ Σ1,0, and
one has a similar description of convergence of nets in Σ1,1(R2). It follows
that Σ0,2 is open (and dense) in Σ(R2). In particular, Σ0,2 is locally closed
as are all six GL2(R)-orbits, and hence all are homeomorphic to homoge-
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neous spaces (compare also [3, p. 187]). We do not consider the more subtle
question which nets of lattices converge to boundary points.

The next theorem contains some basic properties of the commutative
Banach algebra As(G).

Theorem 2.4. For each locally compact abelian group G the involutive
Banach algebra As(G) is symmetric and regular. Its structure space As(G)∧

is homeomorphic to the coset space Λ(G∧), which by 1.4 is homeomorphic
to a certain quotient of G∧×Σ(G∧) and , by 2.1, to a quotient of G∧×Σ(G)
as well.

P r o o f. To prove symmetry we must show that each nonzero (bounded)
multiplicative linear functional η on As(G) is hermitean. At the same time
we shall determine the set As(G)∧. As C(Σ(G)) acts on Cc(Y ) (and on
As(G)) we find a multiplicative linear functional η′ on C(Σ(G)) such that

η(ϕf) = η′(ϕ)η(f)

for all ϕ ∈ C(Σ(G)) and f ∈ As(G). The multiplicative linear functionals of
C(Σ(G)) are known: there is a unique H ∈ Σ(G) such that η′(ϕ) = ϕ(H).
Then using 1.7 we conclude that η factors through the (extended) mor-
phism RH : As(G) → L1(H), and yields a multiplicative linear functional
on L1(H). As those are known, there exists χ ∈ H∧ such that

η(f) =
∫
H

χ(x)f(x,H) dνH(x)

for f ∈ Cc(Y ). Clearly η is hermitean. On the other hand, each such pair
(H,χ) gives rise to a multiplicative linear functional of As(G). Moreover,
this set of pairs can be identified with Λ(G∧): to γ∆ ∈ Λ(G∧) corresponds
the pair (γ|∆⊥ ,∆⊥).

Next we show thatAs(G)∧, according to Gelfand equipped with the weak
topology, is indeed homeomorphic to Λ(G∧). More precisely, we show that
the canonical map from the compact space As(G)∧ ∪ {0} into Λ(G∧) ∪ {∅}
is continuous. Let (ηi)i∈I be a convergent net in As(G)∧ ∪ {0} with limit
η∞ and denote by λi, i ∈ I, the corresponding points in Λ(G∧) ∪ {∅}.
Without loss of generality we may assume that ηi 6= 0 for all i ∈ I, i.e.,
λi = γiH

⊥
i for some γi ∈ G∧, Hi ∈ Σ(G), and that (λi)i∈I converges to,

say, λ∞ ∈ Λ(G∧) ∪ {∅}. We have to show that η∞ corresponds to λ∞. To
this end, we distinguish two cases.

C a s e 1: η∞ 6= 0, i.e., η∞ corresponds to a point χK⊥ ∈ Λ(G∧), K ∈
Σ(G). For each ϕ ∈ Cc(G) and each a ∈ G define ϕa ∈ Cc(Y ) by ϕa(x,H) =
ϕ(ax), and put ϕi(a) := ηi(ϕa) for i ∈ I as well as ϕ∞(a) = η∞(ϕa), i.e.,
ϕi(a) =

∫
Hi
ϕ(ah)γi(h) dνi(h) and ϕ∞(a) =

∫
K
ϕ(ak)χ(k) dν(k), where dνi

and dν denote the chosen Haar measures on Hi and K, respectively. By
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assumption the functions ϕi on G converge pointwise to ϕ∞. Once more for
all a∈G and all i∈I∪{∞} one has |ϕi(a)|≤‖ϕ‖∞EC , where C=supp(ϕ).

Moreover, for all f ∈ Cc(G) and all i ∈ I,

〈ϕi, f〉 =
∫
G

ϕi(x)f(x) dνG(x) =
∫
G

∫
Hi

ϕ(xh)γi(h) dνi(h)f(x) dνG(x)

=
∫
Hi

(ϕ ∗ f∨)(h)γi(h) dνi(h) = ηi(ϕ ∗ f∨ ⊗ 1|Y ),

and similarly 〈ϕ∞, f〉 = η∞(ϕ∗f⊗1|Y ). Hence 〈ϕi, f〉 converges to 〈ϕ∞, f〉.
As ‖ϕi‖∞ is bounded in i, it follows that the net (ϕi) in L∞(G) converges
weakly to ϕ∞. Then also the net (ϕ̌i) converges to ϕ̌∞ for all ϕ ∈ Cc(G).
The functions ϕ̌i are contained in L∞(G,Hi, γi) consisting of all functions
ψ ∈ L∞(G) with ψ(xh) = γi(h)ψ(x) for h ∈ Hi. And ϕ̌∞ is contained in
L∞(G,K,χ) which is defined accordingly. Using the regularity of L1(G),
the fact that L∞(G,Hi, γi) is “weakly spanned” by the set λi = γiH

⊥
i , and

the fact that {ϕ̌∞ | ϕ ∈ Cc(G)} is weakly dense in L∞(G,K,χ) we conclude
as in the proof of 2.1 that for each i0 ∈ I the coset χK⊥ is contained in the
closure of

⋃
i≥i0 λi. Hence χK⊥ is contained in

⋂
i0∈I(

⋃
i≥i0 λi)

− = λ∞.
In particular, λ∞ is not empty. Passing to a subnet and changing the

γi inside λi if necessary, we may assume that (γi) converges to χ and that
(Hi) converges to H∞. Then λ∞=χH⊥

∞ by 1.4 and 2.1, and χK⊥ ⊂ χH⊥
∞.

As we observed above, for each ϕ ∈ Cc(G) the numbers ϕi(e) =∫
Hi
ϕ(h)γi(h) dνi(h) converge to

∫
K
ϕ(k)χ(k) dν(k). On the other hand, as

(γi) converges to χ uniformly on compacta and (Hi) converges to H∞,
from 1.6 it follows that the integrals

∫
Hi
ϕ(h)γi(h) dνi(h) converge to∫

H∞
ϕ(h)χ(h) dν∞(h), where dν∞ is the chosen Haar measure on H∞. Hence∫

K

ϕ(k)χ(k) dν(k) =
∫

H∞

ϕ(h)χ(h) dν∞(h)

for all ϕ∈Cc(G). Clearly this implies H∞=K, whence χK⊥=χH⊥
∞=λ∞.

C a s e 2: η∞ = 0. We have to show λ∞ = ∅. Suppose to the contrary
that λ∞ 6= ∅. Then we may assume that the γi ∈ λi converge to γ∞ ∈ λ∞,
that (Hi) converges to H∞, and that λ∞ = γ∞H

⊥
∞. Now for each ϕ ∈ Cc(G)

the integrals ϕi(e) =
∫
Hi
ϕ(h)γi(h) dνi(h) = ηi(ϕ⊗1|Y ) converge to zero. On

the other hand, these integrals converge to
∫
H∞

ϕ(h)γ∞(h) dν∞(h). Hence
the latter integral is zero for all ϕ ∈ Cc(G), which is impossible.

To prove the regularity of As(G) take a point η0 in As(G)∧ and a neigh-
borhood V of η0. We have to show the existence of an element a ∈ As(G)
such that η0(a) 6= 0, but η(a) = 0 for η 6∈ V . Since G∧ acts on As(G) and
on As(G)∧ ∼= Λ(G∧) we may assume that η0 corresponds to a subgroup,
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say H⊥
0 , in Λ(G∧). Furthermore, we may assume that V corresponds to

the subset Q(F , C) ∩ Λ(G∧) of Λ(G∧), where F is a finite collection of
open nonempty subsets in G∧, and C is a compact subset of G∧ (for the
definition of Q(F , C) see the introduction). Since As(G) is an algebra and
since Q(F , C) = Q(∅, C) ∩

⋂
F∈F Q({F}, ∅) it is good enough to solve our

problem for each of the cases Q(∅, C) or Q({F}, ∅) separately.

C a s e 1: Suppose that V corresponds to Q({F}, ∅) ∩ Λ(G∧) for some
nonempty open subset F of G∧. Then F ∩ H⊥

0 is not empty; pick χ0 ∈
F ∩ H⊥

0 . Apply 2.2 to χ0 and U = F in order to obtain a function f
on G with the properties stated there. In the following we shall use the
notations B, xn, εn as in 2.2. For each N ∈ N choose a cut-off function
ϕN ∈ Cc(G) with 0 ≤ ϕN ≤ 1 and ϕN = 1 on

⋃N
n=1 xnB. Then define

aN ∈ Cc(Y ) ⊂ As(G) by aN (x,H) = ϕN (x−1)f(x−1). As in the proof of
Theorem 2.3 one sees that the aN form a Cauchy sequence in As(G). Let
a := limN→∞ aN ∈ As(G).

If η ∈ As(G)∧ corresponds to the coset χH⊥ in Λ(G∧) then

η(a) = lim
N→∞

∫
H

χ(h)f(h−1)ϕN (h−1) dνH(h) =
∫
H

χ(h)−1f(h) dνH(h).

Poisson’s summation formula yields

η(a) =
∫

H⊥

f̂(χγ) dµH⊥(γ).

In particular, we have η0(a) =
∫
H⊥0

f̂(γ) dµH⊥0 (γ) > 0. But if η 6∈ V , i.e., if

the corresponding coset χH⊥ is disjoint from F then η(a) = 0.

C a s e 2: Suppose that V corresponds to Q(∅, C) ∩ Λ(G∧) for some
compact subset C of G∧. Then H⊥

0 ∩ C = ∅ and there exists a compact
symmetric neighborhood U of the identity χ0 in G∧ such that H⊥

0 ∩CU = ∅.
To χ0 and U choose a function f on G according to 2.2. Moreover, choose
a continuous function g on Σ(G∧) such that g(H⊥

0 ) 6= 0, but g(H⊥) = 0
if H⊥ 6∈ Q(∅, CU), i.e., H⊥ ∩ CU 6= ∅. If the cut-off functions ϕN are as
above then define aN ∈ Cc(Y ) ⊂ As(G) by

aN (x,H) = g(H⊥)ϕN (x−1)f(x−1).

Observe that Σ(G) 3 H 7→ g(H⊥) is continuous as Σ(G) and Σ(G∧) are
homeomorphic.

Again (aN ) converges to an element a ∈ As(G). And if η ∈ As(G)∧

corresponds to χH⊥ ∈ Λ(G∧) then

η(a) = g(H⊥)
∫
H

χ(h)−1f(h) dνH(h) = g(H⊥)
∫

H⊥

f̂(χγ) dµH⊥(γ).
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Again η0(a)=g(H⊥
0 )

∫
H⊥0

f̂(γ) dµH⊥0 (γ)6=0, but if η 6∈V , i.e., χH⊥ ∩ C 6= ∅,
then η(a)=0: In case H⊥ ∩ CU 6= ∅ the factor g(H⊥) vanishes, in case
H⊥ ∩ CU = ∅ the sets U = U−1 and χH⊥ are disjoint, hence the integral∫
H⊥

f̂(χγ) dµH⊥(γ) vanishes.

In the proof of the theorem the multiplicative linear functionals on As(G)
were first parametrized by pairs (H,χ), H ∈ Σ(G), χ ∈ H∧. Identifying the
set of all such pairs, say X, in a canonical manner with Λ(G∧) we introduced
a topology. This raises the question if the topology on X can be described
in a more internal fashion. We conclude this section by giving an answer to
this question.

Let C be a compact subset of G, let F be a finite family of nonempty
open sets in G, and let A be a finite family of pairs (A,U), where A is a
compact subset of G, and U is an open subset of the torus T. For each such
triple C,F ,A let W (F , C,A) be the set of all pairs (H,χ) in X such that
H ∈ Q(F , C) and χ(H ∩ A) ⊂ U for all (A,U) ∈ A. Clearly, the collection
of all those W (F , C,A) is the basis of a topology on X. Henceforth we shall
view X as being topologized that way. Evidently, for each fixed H ∈ Σ(G)
the relative topology on {(H,χ) | χ ∈ H∧} ⊂ X coincides with the usual
topology on the Pontryagin dual. Furthermore, X is a Hausdorff space: Let
(H1, χ1), (H2, χ2) be given. If H1 6= H2 then these points can be separated
by means of the Hausdorff property of Σ(G). If H = H1 = H2, but χ1 6= χ2

then choose x ∈ H with χ1(x) 6= χ2(x), choose disjoint open neighborhoods
U1 and U2 of χ1(x) and χ2(x), respectively, and choose a relatively compact
open neighborhood F of x in G with closure A such that χj(A ∩H) ⊂ Uj
for j = 1, 2. The two sets W ({F}, ∅, {(A,Uj)}) are disjoint neighborhoods
of (H,χ1) and (H,χ2), respectively.

Theorem 2.5. A net (Hi, χi)i∈I converges in X = {(H,χ) | H ∈
Σ(G), χ ∈ H∧} to (H∞, χ∞) if and only if (Hi)i∈I converges to H∞ in
Σ(G) and if for any subnet (Kj , ωj)j∈J of (Hi, χi)i∈I and any convergent
net (xj)j∈J with xj ∈ Kj the net (ωj(xj))j∈J converges to χ∞(x∞), where
x∞ = limj∈J xj. The canonical map Λ(G∧) → X, γ∆ 7→ (∆⊥, γ|∆⊥), is a
homeomorphism.

R e m a r k 2.6. In view of the characterization of limits in Λ(G∧) (com-
pare Lemma 1.1), the theorem gives a criterion when a net of partially
defined characters can be extended continuously to the whole of G. More
precisely, let (Hi, χi)i∈I be a convergent net in X with limit (H∞, χ∞), and
let an extension γ∞ ∈ G∧ of χ∞ be given. Then there exists a subnet
(Mj , ζj)j∈J of (Hi, χi)i∈I and a net (γj)j∈J in G∧ such that γj |Mj = ζj and
limj∈J γj = γ∞. This consideration also shows that Theorem 2.5 improves
Theorem 2.1.
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P r o o f o f T h e o r e m 2.5. Suppose that (Hi, χi)i∈I is a convergent
net in X with limit (H∞, χ∞). The definition of the topology of X clearly
shows that (Hi) must converge to H∞ in the topology of Σ(G). Suppose
further that the subnet (Kj , ωj)j∈J and the net (xj)j∈J with limit x∞ are as
in the theorem. To a given open neighborhood U of χ∞(x∞) in T choose an
open relatively compact neighborhood V of x∞ in G with χ∞(V ∩H∞) ⊂ U .
Since (xj) converges to x∞ and (Kj , ωj) converges to (H∞, χ∞) there exists
j0 ∈ J such that xj ∈ V and (Kj , ωj) ∈ W (∅, ∅, {(V ,U)}) for j ≥ j0. In
particular, χj(xj) ∈ U for j ≥ j0.

Next, suppose that a net (Hi, χi)i∈I and a point (H∞, χ∞) ∈ X fulfill the
criterion of the theorem, and that a neighborhood W (F , C,A) of (H∞, χ∞)
is given. We have to show that there is an i0 ∈ I such that (Hi, χi) ∈
W (F , C,A) for i ≥ i0. Without loss of generality we may assume that A
consists of one element (A,U). By assumption there exists i1 ∈ I such that
Hi ∈ Q(F , C) for i ≥ i1. Furthermore, either there exists an i0 ≥ i1 such
that i ≥ i0 implies χi(Hi ∩ A) ⊂ U , or the set I ′ := {i ∈ I | i ≥ i1 and
χi(A∩Hi) 6⊂ U} is cofinal in I. In the first case we are done, in the second
case for i ∈ I ′ we choose ai ∈ A ∩Hi with χi(ai) 6∈ U . As A is compact the
net (ai)i∈I′ has a convergent subnet. Therefore, we find a subnet (Kj , ωj)j∈J
of (Hi, χi)i∈I and a convergent net (xj)j∈J with xj ∈ Kj∩A and ωj(xj) 6∈ U .
By the criterion, (ωj(xj)) converges to χ∞(x∞), where x∞ = limj∈J xj ∈
A∩H∞. From (H∞, χ∞) ∈W (F , C,A) it follows that χ∞(x∞) ∈ U , which
leads to a contradiction. Therefore, it is impossible that the above set I ′ is
cofinal in I.

Next, suppose that the above map Λ(G∧) → X is not continuous. Then
there exists a convergent net λi = γi∆i, i ∈ I, with limit λ∞ = γ∞∆∞
and a neighborhood W of (H∞, χ∞) such that (Hi, χi) 6∈ W for all i ∈ I,
where Hi = ∆⊥i and χi = γi|Hi for i ∈ I ∪ {∞}. Passing to a subnet and
changing the γi inside λi if necessary, by 1.1 we may assume in addition that
(γi)i∈I converges to γ∞ in G∧. Since the canonical map Λ(G∧) → Σ(G∧),
γ∆ 7→ ∆, is continuous by 1.4, from 2.1 it follows that (Hi)i∈I converges
to H∞. Now the convergence of the net (γi) readily implies that the above
criterion for the convergence of (Hi, χi) in X is satisfied, which leads to a
contradiction to the assumption that Λ(G∧) → X is not continuous.

To see that the inverse map X → Λ(G∧) is continuous, in view of the
Hausdorff property of X and of the just established continuity we only have
to exclude that there exists a net (λi)i∈I , λi = γi∆i, in Λ(G∧) converging
in Φ(G∧) to the empty set while (Hi, χi), where Hi = ∆⊥i and χi = γi|Hi ,
converges in X to some point (H∞, χ∞). Suppose that (λi) is such a net.
Without loss of generality we may assume in addition that χ∞ = 1: Take
any extension γ ∈ G∧ of χ∞ and consider the net (λ′i)i∈I , λ

′
i = γ−1γi∆i,

which still converges to the empty set (compare 1.5), while (Hi, γ
−1|Hiχi)i∈I
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converges to (H∞, 1) ∈ X. Observe that each γ ∈ G∧ yields by multiplica-
tion a homeomorphism of X. Actually, as soon as the claimed homeomorphy
is established it will be clear that (G∧,X) is a topological transformation
group. The weaker statement (already applied here) follows for instance
from the convergence criterion.

Once more take Haar measures νi, i ∈ I ∪ {∞}, on Hi according to 1.6.
We claim that for each ϕ ∈ Cc(G) the net∫

Hi

ϕ(x)χi(x) dνi(x), i ∈ I,

converges to
∫
H∞

ϕ(x) dν∞(x). Denote by A the support of ϕ. By definition
of the topology on X the net (εi)i∈I , where εi := supx∈Hi∩A |χi(x) − 1|,
converges to zero. Using Tietze’s extension theorem we find continuous
functions ψi : G→ C such that ψi = χi on Hi ∩ A and |ψi(x)− 1| ≤ εi for
all x ∈ G. Clearly, (ϕψi)i∈I converges to ϕ in the inductive limit topology
of Cc(G), hence by 1.6 the integrals∫

Hi

ϕ(x)ψi(x) dνi(x) =
∫
Hi

ϕ(x)χi(x) dνi(x)

converge to ∫
H∞

ϕ(x) dν∞(x).

With this information at hand one may argue exactly as in the proof of 2.4:
For each ϕ ∈ Cc(G) and i ∈ I ∪ {∞} define ϕi : G→ C by

ϕi(a) =
∫
Hi

ϕ(ax)χi(x) dνi(x).

As there, one shows that (ϕi)i∈I converges to ϕ∞ in the weak topology of
L∞(G), and one concludes that H⊥

∞ is contained in
⋂
i0∈I(

⋃
i≥i0 λi)

−, which
contradicts the assumption that (λi) converges to the empty set.

3. Covariance algebras. Throughout this section let G be a second
countable locally compact abelian group, and let B be a separable com-
mutative symmetric regular Banach ∗-algebra with a bounded approximate
identity. Moreover, we assume that a strongly continuous action T of G
on B is given with the usual properties so that we can form the covariance
algebra L1(G,B, T ):

(f ∗ g)(x) =
∫
G

f(xy)y
−1
g(y−1) dy, f∗(x) = f(x−1)∗x,

where we put bx := Tx−1b for b ∈ B and x ∈ G. The separability conditions
are only imposed for the later application of the (ungeneralized) Effros–Hahn
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conjecture to the C∗-completion of L1(G,B, T ). The basic idea is to reduce
questions on the ideal theory of L1(G,B, T ) to questions in terms of the
commutative algebra L1(G,B), which is nothing but the projective tensor
product of L1(G) and B. In the group case this idea, which traces back
to Leptin [15, 2], was exploited by Pytlik [18]. Our first results are easy
translations of Pytlik’s.

Since B has a bounded approximate identity each closed two-sided ideal I
in L1(G,B, T ) is also an ideal in the adjoint algebra [14, p. 196], in particular
if f ∈ I then the following functions are in I as well:

(1) x 7→ f(x)a,
(2) x 7→ f(ax) for all a ∈ G,
(3) x 7→ f(x)b,
(4) x 7→ bxf(x) for all b ∈ B.

Properties (2) and (3) tell that I is an ideal in L1(G,B). Properties (1) and
(4) have consequences for the hull h(Ic), where Ic means the set I considered
as an ideal in the commutative algebra L1(G,B). Clearly, the structure space
of L1(G,B) is just G∧ × B∧ where B∧ is the Gelfand structure space of B
consisting of all nonzero multiplicative (hermitean, by assumption) linear
functionals on B.

Lemma 3.1. Let I be a closed two-sided ideal in L1(G,B, T ). If (γ, β) ∈
G∧ ×B∧ is in the hull h(Ic) of Ic then (γ′, β′) is in h(Ic) as well , provided
that β′ is in the closure of the G-orbit through β ∈ B̂ (x ∈ G acts on β ∈ B∧
by (xβ)(b) = β(bx) for b ∈ B), and that γ and γ′ agree on the stabilizer Gβ
of β.

P r o o f. The assumption (γ, β) ∈ h(Ic) means
∫
G
γ(x)β(f(x)) dx = 0

for all f ∈ I. From (4) we conclude that

0 =
∫
G

γ(x)β(bxf(x)) dx =
∫
G

γ(x)(xβ)(b)β(f(x)) dx

for all b ∈ B and f ∈ I. Using Weil’s formula we obtain∫
G/Gβ

(xβ)(b)
( ∫
Gβ

γ(xh)β(f(xh)) dh
)
dẋ = 0.

Since by [17, Corollary] the collection of functions x 7→ (xβ)(b), b ∈ B,
is weakly dense in L∞(G/Gβ), in the above identity we may replace the
function x 7→ (xβ)(b) by any α ∈ (G/Gβ)∧. Therefore,

0 =
∫

G/Gβ

α(x)
( ∫
Gβ

γ(xh)β(f(xh)) dh
)
dẋ =
∫
G

α(x)γ(x)β(f(x)) dx
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for all f ∈ I and all α ∈ (G/Gβ)∧. But this means that (γ′, β) ∈ h(Ic) if
γ′ = γ on Gβ .

That β may be replaced by anything in its G-orbit (without leaving
h(Ic)) follows immediately from (1).

It is not hard to write down a collection of irreducible representations of
L1(G,B, T ). One simply induces from the stabilizer Gβ of β ∈ B∧ using a
character on Gβ : Given (γ, β) ∈ G∧ × B∧ define representations of G and
B in L2(G/Gβ) by

{πγ,β(x)ξ}(t) = γ(x)ξ(x−1t), {πγ,β(b)ξ}(t) = β(bt)ξ(t),

for t ∈ G/Gβ , ξ ∈ L2(G/Gβ), x ∈ G and b ∈ B. Note that β(bt) = (tβ)(b)
only depends on the coset t ∈ G/Gβ . This covariant pair of representations
defines an irreducible involutive representation πγ,β of L1(G,B, T ) by

πγ,β(f)ξ =
∫
G

πγ,β(x)πγ,β(f(x))ξ dx.

Observe that we have not given directly the induced representation in its
usual form, which acts in a space of functions onG with some transformation
property with respect to γ|Gβ

. However, multiplying the functions in the
latter space by γ one ends up with the above picture.

Of course, it is very easy to compute the kernel of πγ,β , and one obtains
the expected result, whose proof here is omitted (compare also the proof of
Proposition 3.5).

Lemma 3.2. The ideal (kerπγ,β)c in L1(G,B) is the kernel in the hull-
kernel sense of the subset

{(γ′, β′) | γ = γ′ on Gβ , β
′ ∈ (Gβ)−}

of G∧ × B∧.
The representations πγ,β extend to the C∗-hull of L1(G,B, T ), which is

nothing but the transformation group C∗-algebra C∗(G,C∞(B∧), T∧) asso-
ciated with the G-space B∧, the action being given in 3.1. The Effros–Hahn
conjecture [9] gives that the map (γ, β) 7→ kerC∗ πγ,β from G∧ × B̂ into the
primitive ideal space Priv(G,C∞(B∧)) is surjective. Therefore, also (γ, β) 7→
kerL1(G,B,T ) πγ,β from G∧ × B∧ into Priv∗ L1(G,B, T ) is surjective, where
Priv∗ L1(G,B, T ) denotes the set of kernels of irreducible involutive repre-
sentations of L1(G,B, T ). Trivially, the canonical map Priv(G,C∞(B∧)) →
Priv∗ L1(G,B, T ) is continuous if both spaces are equipped with the Jacob-
son topology. Moreover, the above map G∧ × B∧ → Priv(G,C∞(B∧)) is
continuous (see [20]). The next theorem gives more precise information.

Theorem 3.3. The canonical map Priv(G,C∞(B∧))→Priv∗ L1(G,B, T )
is a homeomorphism, i.e., L1(G,B, T ) is a ∗-regular algebra in the sense of



FELL’S SUBGROUP ALGEBRA 257

[1, 2]. Both spaces are homeomorphic to the quotient space (G∧ × B∧)/∼,
where the equivalence relation ∼ is defined by : (γ, β) ∼ (γ′, β′) if (Gβ)− =
(Gβ′)− and γ = γ′ on Gβ (= Gβ′). Saturations (according to this equiva-
lence relation) of open subsets of G∧ × B∧ are again open.

R e m a r k 3.4. TheC∗-part of the theorem was obtained by Williams [20].
While we shall use the continuity of the map (γ, β) 7→ kerC∗ πγ,β , the open-
ness of this map will be an easy consequence of the regularity of the com-
mutative Banach algebra L1(G,B), which is an object not to be seen in the
context of C∗-algebras.

P r o o f o f T h e o r e m 3.3. First we show the openness of the equiv-
alence relation ∼, or rather as in 1.4 its dual version. Let A be a satu-
rated subset in G∧ × B∧, (γ, β) ∈ A and (γ′, β′) ∼ (γ, β). We claim that
(γ′, β′) ∈ A. Let (γn, βn) be a sequence in G∧ × B∧ converging to (γ, β).
Without loss of generality we may assume that the stabilizer groups Gβn

converge in Σ(G), say G′ = limnGβn
. From 1.1 and the fact that B∧ is a

G-space it follows that G′ is contained in Gβ . By definition of the equiva-
lence relation the difference γ−1γ′ is in G⊥β ⊂ (G′)⊥. Since (G⊥βn

) converges
by 2.1 to (G′)⊥ there exist a subsequence (βnk

) and characters αk in G⊥βnk

with limk αk = γ−1γ′. The pairs (αkγnk
, βnk

) are in A, but this sequence
converges to (γ′, β) ∈ A. Since A (and hence A) is G-invariant, where G
acts only on the second component, we conclude that (γ′, β′) ∈ A.

There is a commutative diagram

G∧ × B∧ ψ→ Priv(G,C∞(B∧))
ϕ ↓ ↓

Priv∗ L1(G,B, T ) Id−→ Priv∗ L1(G,B, T )

of surjective continuous maps, where ψ is defined by ψ(γ, β) = kerC∗ πγ,β ,
and ϕ, ϕ(γ, β) = kerL1(G,B,T ) πγ,β , is the composition of ψ with the canon-
ical map Priv(G,C∞(B∧)) → Priv∗ L1(G,B, T ). The ϕ-images ϕ(γ, β) and
ϕ(γ′, β′) coincide if and only if (γ, β) ∼ (γ′, β′). This follows at once from the
description of kerL1(G,B,T ) πγ,β given in 3.2 and the regularity of L1(G,B).
Consequently, the equation ψ(γ, β) = ψ(γ′, β′) implies (γ, β) ∼ (γ′, β′).
On the other hand, if equivalent pairs (γ, β) and (γ′, β′) are given then
ψ(γ, β) = ψ(γ′, xβ) for all x ∈ G as the representations πγ,β and πγ′,xβ
are equivalent. Since β′ is in the closure of Gβ the continuity of ψ implies
ψ(γ, β) ⊂ ψ(γ′, β′), whence equality by interchanging the pairs. Altogether,
in the above diagram we get only bijective maps if we replace G∧ × B∧ by
(G∧ × B∧)/∼.

In order to see that all three maps are homeomorphisms it is enough to
show that the ϕ-image of a closed saturated subset A of G∧×B∧ is closed in
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Priv∗ L1(G,B, T ). Let P = ϕ(γ0, β0) be a point in the closure of ϕ(A), i.e.,

kerL1(G,B,T ) πγ0,β0 ⊃
⋂

(γ,β)∈A

kerL1(G,B,T ) πγ,β .

Transferring this inclusion into L1(G,B) yields by 3.2 and the regularity of
L1(G,B) that [γ0, β0] is contained in A, where [γ0, β0] denotes the equiva-
lence class of (γ0, β0). It follows that P is in ϕ(A), hence ϕ(A) is closed.

For the needs of a forthcoming paper on representations of so-called
diamond groups we include the following proposition. Here it may be con-
sidered as an exercise to Theorem 3.3. In addition to (G,B, T ) let another
second countable locally compact abelian group H and a continuous homo-
morphism % : H → G∧ be given. This homomorphism defines an action R
of H on L1(G,B, T ) by

(Raf)(x) = %(a)(x)−1f(x)

for a ∈ H, f ∈ L1(G,B) and x ∈ G. For any triple (α, γ, β) ∈ H∧×G∧×B∧
we define a representation τ = τα,γ,β of the associated covariance algebra
L1(H,L1(G,B, T ), R) in L2(G/Gβ ∩ ker %̂), where %̂ : G → H∧ denotes the
dual homomorphism, %̂(x)(a) = %(a)(x). The unitary representations τH
and τG of H and G, respectively, are defined by

(τH(a)ξ)(t) = α(a)%(a)(t)−1ξ(t), (τG(x)ξ)(t) = γ(x)ξ(x−1t),

and an involutive representation τB of B is defined by

(τB(b)ξ)(t) = β(bt)ξ(t)

for a ∈ H, x ∈ G, ξ ∈ L2(G/Gβ ∩ ker %̂), t ∈ G/Gβ ∩ ker %̂ and b ∈ B.
Observe that (τG, τB) looks similar to the above πγ,β , but that these rep-
resentations act in different spaces. The representations τG and τB form a
covariant pair for (G,B, T ), hence they yield a representation of L1(G,B, T ),
which together with τH forms a covariant pair of (H,L1(G,B, T ), R). The
latter pair yields τα,γ,β , explicitly

(τα,γ,β(g)ξ)(t) =
∫
H

∫
G

α(a)%(a)(t)−1γ(x)β(g(a, x)x
−1t)ξ(x−1t) dx da

for g ∈ L1(H ×G,B).

Proposition 3.5. The algebra L1(H,L1(G,B, T ), R) is of the type stud-
ied in this section, namely it is isomorphic to L1(G,B′, T ′), where B′ =
L1(H,B) = L1(H)⊗ B, and the action T ′ is given by

(T ′xh)(a) = %̂(x)(a)Tx(h(a))

for x ∈ G, a ∈ H and h ∈ L1(H,B). In particular , in view of 3.3 the algebra
L1(H,L1(G,B, T ), R) is ∗-regular. All the above representations τα,γ,β are
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irreducible. The map

H∧ ×G∧ × B∧ 3 (α, γ, β) 7→ ker τα,γ,β ∈ Priv∗ L1(H,L1(G,B, T ), R)

is surjective and induces a homeomorphism from (H∧ × G∧ × B∧)/≈ onto
Priv∗ L1(H,L1(G,B, T ), R), where the (open) equivalence relation ≈ on
H∧ × G∧ × B∧ is defined as follows: (α, γ, β) ≈ (α′, γ′, β′) if the G-quasi-
orbits through (α, β) and (α′, β′) coincide, where x ∈ G acts on (α, β) ∈
H∧ ×B∧ by x(α, β) = (%̂(x)−1α, xβ), and if γ and γ′ coincide on the stabi-
lizer G(α,β) = ker %̂ ∩Gβ.

Moreover , the action of H on L1(G,B, T ) induces an action of H on
Priv∗ L1(G,B, T ). In terms of the above parametrization of the latter space
the action is given by a·kerπγ,β = kerγ%(a),β for a ∈ H and (γ, β) ∈ G∧×B∧.
Each ideal P in Priv∗ L1(H,L1(G,B, T ), R) defines by restriction an H-
quasi-orbit in Priv∗ L1(G,B, T ). If P = ker τα,γ,β then the corresponding
H-quasi-orbit is parametrized by

{(γ′, β′) ∈ G∧ × B∧ | γ′ = γ on Gβ ∩ ker %̂, (Gβ)− = (Gβ′)−}.

P r o o f. Define J : L1(H ×G,B) → L1(G×H,B) by

(Jg)(x, a) = %(a)(x)−1g(a, x),

which is clearly an isometric isomorphism of Banach spaces. A simple com-
putation shows that J defines a ∗-isomorphism from L1(H,L1(G,B, T ), R)
onto L1(G,L1(H,B), T ′) = L1(G,B′, T ′). The space Priv∗ L1(G,B′, T ′) can
be parametrized by G∧× (B′)∧ according to Theorem 3.3. Identifying (B′)∧
with H∧ × B∧ for each γ ∈ G∧ and each (α, β) ∈ H∧ × B∧ we have an
irreducible representation πγ,(α,β) of L1(G,B′, T ′). Again it is easily veri-
fied that the transferred representation πγ,(α,β) ◦ J of L1(H,L1(G,B, T ), R)
is nothing but τα,γ,β of the proposition. Hence the τα,γ,β are irreducible,
and they exhaust the dual of L1(H,L1(G,B, T ), R) up to weak equivalence.
Transferring the equivalence relation ∼ of 3.3 on G∧ × (H∧ × B∧) clearly
gives the equivalence relation ≈ on H∧ ×G∧ × B∧.

Finally, we consider the kernel of the restriction τ ′ of τα,γ,β to L1(G,B, T ).
This kernel could be computed by writing τ ′ as a direct integral over irre-
ducibles, but we prefer a more direct way, whose arguments also provide us
with a proof of Lemma 3.2. Put S := Gβ ∩ ker %̂ for short; an L1-function
f : G→ B is in the kernel of τ ′ if and only if∫

G/S

∫
G

β(f(x)x
−1t)γ(x)ξ(x−1t)η(t) dx dt = 0

or ∫
G/S

∫
G

(tβ)(f(x))γ(x)ξ(t)η(xt) dx dt = 0
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for all ξ, η ∈ Cc(G/S). Defining F : G/S ×G/S → C by

F (t, u) =
∫
S

(tβ)(f(xs))γ(xs) ds,

where x is any point in the coset u ∈ G/S, this condition may be written as∫
G/S

∫
G/S

F (t, u)ξ(t)η(ut) dt du = 0.

Since each ϕ ∈ Cc(G/S×G/S) can be uniformly approximated by functions
of the form (t, u) 7→

∑n
j=1 ξj(t)ηj(ut), where the ξj , ηj ∈ Cc(G/S) have their

support in a fixed compact subset of G/S depending only on ϕ, the latter
condition is equivalent to∫

G/S

∫
G/S

F (t, u)ξ(t)η(u) dt du = 0

for all ξ, η ∈ Cc(G/S). But this property of F is equivalent to∫
G/S

F (t, u)η(u) du = 0

for all t ∈ G/S and all η ∈ Cc(G/S).
Inserting the expression for F we find that f ∈ L1(G,B, T ) is in the

kernel of τ ′ if and only if∫
G

(tβ)(f(x))γ(x)η(x) dx = 0

for all t ∈ G and all η ∈ Cc(G/S), which is equivalent to∫
G

(tβ)(f(x))γ(x)ζ(x) dx = 0

for all t ∈ G and all ζ ∈ (G/S)∧.
This shows that the “commutative” kernel (ker τ ′)c in L1(G) ⊗ B is

the kernel of the subset C := γ(G/S)∧ × (Gβ)− of G∧ × B∧. The (un-
proved) Lemma 3.2 gives ker τ ′ =

⋂
(γ′,β′)∈C kerπγ′,β′ . Conversely, special-

izing to H = {1} from our above considerations one can immediately deduce
Lemma 3.2.

Using our knowledge, Theorem 3.3, about the topology of the space
Priv∗ L1(G,B, T ) and the H-action we easily conclude that the H-quasi-
orbit associated with {H kerπγ,β}− = {kerπγ′,β′ | (γ′, β′) ∈ C} is just
{kerπγ′,β′ | (γ′, β′) ∈ C, (Gβ′)− = (Gβ)−}; observe that the closure of
%(H) is equal to (ker %̂)⊥ ⊂ G∧.

Next, we turn to the study of the Wiener property of L1(G,B, T ) in the
sense of [16]. Recall that an involutive Banach algebra has this property if
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each proper two-sided ideal is annihilated by an involutive nondegenerate
(irreducible) representation. For commutative symmetric regular Banach
∗-algebras A this is equivalent to saying that the ideal A0 of all elements in
A with compactly supported Gelfand transform is dense in A or that the
empty subset of A∧ is a set of synthesis (compare [19, Chap. 2]).

Theorem 3.6. If in addition to our general assumptions B has the
Wiener property then L1(G,B, T ) has the Wiener property as well.

P r o o f. The algebra L1(G) has the Wiener property (see for instance
[19, Chap. 6]). Hence the algebraic tensor product L1(G)0⊗B0 (in the above
terminology) is dense in the projective tensor product L1(G)⊗B = L1(G,B),
which shows that the commutative algebra L1(G,B) has the Wiener prop-
erty. Let a proper two-sided ideal I in L1(G,B, T ) be given. Then the hull
h(Ic) ⊂ G∧ × B∧ of the corresponding ideal Ic in L1(G,B) is not empty,
say (γ0, β0) ∈ h(Ic). By Lemma 3.1 the whole equivalence class [γ0, β0] is
contained in h(Ic), from which we conclude by means of Lemma 3.2 that
kerL1(G,B,T ) πγ0,β0 contains I.

Finally, we consider semidirect products M = GnB of second countable
locally compact abelian groups. Their L1-algebras L1(M) with respect to
the left invariant measure obtained as the tensor product of invariant mea-
sures on G and B may be written as L1(G,B, T ), where B = L1(B) and
the action T is given by (Txϕ)(b) = δ(x)ϕ(x−1bx) for ϕ ∈ L1(B), x ∈ G
and b ∈ B; here δ is the modular function of the action of G on B, which
coincides with the modular function ∆ of M in the sense that ∆(xb) = δ(x).

Hence all our previous results apply to L1(M) because L1(B) is a sym-
metric regular Banach ∗-algebra satisfying the Wiener property. Note that
the ∗-regularity of L1(M) was proved in [1] without separability conditions
(by reducing to this case). Identifying the structure space B∧ = L1(B)∧

with the Pontryagin dual B∧ gives a parametrization of the homeomorphic
spaces PrivC∗(M) and Priv∗ L1(M) by G∧×B∧. The G-action on L1(B)∧

corresponds to the action of G on B∧ given by (xβ)(b) = β(x−1bx) for
β ∈ B∧, b ∈ B and x ∈ G. The above equivalence relation can be inter-
preted as follows. Each pair (γ, β) ∈ G∧ ×B∧ defines a character χ = χγ,β
on GβB by χ(xb) = γ(x)β(b). Two pairs (γ, β) and (γ′, β′) are equivalent iff
the corresponding characters χ and χ′ have the same domain and lie on the
same G-quasi-orbit. The above considered representations πγ,β correspond
to unitary representations of M , denoted by the same letters. Explicitly,
one has

(πγ,β(xb)ξ)(t) = γ(x)β(t−1xbx−1t)ξ(x−1t)
for ξ ∈ L2(G/Gβ), x ∈ G, b ∈ B and t ∈ G/Gβ .

In our next theorem we determine the support of the tensor product of
two such representations in PrivC∗(M) = Priv∗ L1(M).
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Theorem 3.7. For (γ, β), (γ′, β′) ∈ G∧×B∧ the support of πγ,β⊗πγ′,β′ in
PrivC∗(M) (or in Priv∗ L1(M)), i.e., the set of all ideals P in PrivC∗(M)
(or in Priv∗ L1(M)) with P ⊃ kerC∗(M) πγ,β⊗πγ′,β′ (or P ⊃ kerL1(M) πγ,β⊗
πγ′,β′) is parametrized by the subset

γγ′(Gβ ∩Gβ′)⊥ × [(Gβ)(Gβ′)]−

of G∧ ×B∧.

P r o o f. In view of the ∗-regularity of L1(M) it suffices to prove the
L1-version of this theorem. The C∗-version was only formulated in order to
exhibit the relation to the more common notion of weak containment.

To compute the L1-kernel of πγ,β⊗πγ′,β′ we apply the usual trick, namely
we consider first the outer tensor product πγ,β×πγ′,β′ , which is an irreducible
representation ofM×M . SinceM×M is also a semidirect product of abelian
groups, Lemma 3.2 applies, and we conclude that the kernel of πγ,β × πγ′,β′
consists of all g ∈ L1(M ×M) such that∫

G

∫
B

∫
G

∫
B

g(x1b1, x2b2)γ1(x1)β1(b1)γ2(x2)β2(b2) dx1 db1 dx2 db2 = 0

for all γ1 ∈ γ(Gβ)⊥, γ2 ∈ γ′(Gβ′)⊥, β1 ∈ (Gβ)− and β2 ∈ (Gβ′)−.
Embedding M diagonally in M ×M one sees that f ∈ L1(M) belongs

to kerL1(M) πγ,β ⊗ πγ′,β′ iff f ∗ h ∈ L1(M ×M), given by

(f ∗ h)(x1b1, x2b2) =
∫
G

∫
B

f(xb)h(b−1x−1x1b1, b
−1x−1x2b2) dx db,

belongs to kerπγ,β × πγ′,β′ for all, say, h ∈ Cc(M ×M).
Combining these two equations yields that f ∈ L1(M) belongs to

kerL1(M) πγ,β ⊗ πγ′,β′ iff

0 =
∫
G

∫
B

∫
G

∫
B

∫
G

∫
B

f(xb)h(b−1x−1x1b1, b
−1x−1x2b2)

γ1(x1)β1(b1)γ2(x2)β2(b2) dx db dx1 db1 dx2 db2

=
∫
G

∫
B

∫
G

∫
B

h(x1b1, x2b2)
( ∫
G

∫
B

f(xb)γ1(xx1)β1(x−1
1 bx1b1)

γ2(xx2)β2(x−1
2 bx2b2) dx db

)
dx1 db1 dx2 db2

for all h ∈ Cc(M ×M) and all γ1, γ2, β1, β2 as above.
Since h is arbitrary this means that the inner integral has to be identically

zero, in other words,

0 =
∫
G

∫
B

f(xb)α(x)ζ(b) dx db
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for all α ∈ γγ′(Gβ)⊥(Gβ′)⊥ and ζ ∈ (Gβ)−(Gβ′)−. But as Fourier trans-
forms are continuous and (Gβ)⊥(Gβ′)⊥ is dense in (Gβ ∩Gβ′)⊥, in view of
Lemma 3.2 this is precisely what we wanted to show.

Theorem 3.7 can be used to determine the support of the so-called con-
jugation representation κM in L2(M) given by

(κM (m)ξ)(t) = ∆(m)1/2ξ(m−1tm)

for t,m ∈ M and ξ ∈ L2(M) (compare [11, 12]). To this end we introduce
some notation. Denote by

[ , ] : G×B → B

the commutator, i.e., [x, b] = xbx−1b−1. This map is multiplicative in the
second variable. For x ∈ G and β ∈ B∧ define βx ∈ B∧ by xβ = ββx, i.e.,
βx(b) = β([x−1, b]). One easily verifies that

(i) (ββ′)x = βxβ
′
x,

(ii) βxβ−1
y = (yβ)xy−1 , and

(iii) y(βx) = (yβ)x

hold for all x, y ∈ G and β, β′ ∈ B∧. Moreover, put

Xβ = {(γ, βx) ∈ G∧ ×B∧ | x ∈ G, γ ∈ G⊥β } and

X ′
β = {(γ, β′x) ∈ G∧ ×B∧ | γ ∈ G⊥β , x ∈ G, β′ ∈ (Gβ)−}.

Corollary 3.8. The support of κM , M = G n B, in Priv∗ L1(M) =
PrivC∗(M) is parametrized by the subset (

⋃
β∈B∧ Xβ)− = (

⋃
β∈B∧ X

′
β)
− of

G∧ ×B∧.

R e m a r k 3.9. Everything in this description rests on the map [ , ]
(and its dual version (x, β) 7→ βx), because x ∈ Gβ iff βx = 1. A more
explicit description of (

⋃
β∈B∧ Xβ)− in special cases requires a more concrete

knowledge of this map [ , ].

P r o o f o f C o r o l l a r y 3.8. It is easily verified that X ′
β is contained in

(
⋃
β∈B∧ Xβ)− from which one concludes that the latter set coincides with

(
⋃
β∈B∧ X

′
β)
−. Obviously, each individual X ′

β is saturated with respect
to the equivalence relation ∼, whence (

⋃
β∈B∧ X

′
β)
− is saturated. By [11,

Corollary 1] the support of κM is the smallest closed subset of PrivC∗(M)
containing the supports of all the π ⊗ π, π ∈ M∧, where π denotes the
conjugate representation. Since each π is weakly equivalent to one of the πγ,β
and since evidently πγ,β = πγ−1,β−1 one only has to consider the supports
of the various πγ,β⊗πγ−1,β−1 which are given in 3.7. Then one quickly finds
the claimed structure of the support of κM .
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We just remark that one can also compute directly, i.e., without using
[11], the kernel of κM in L1(M) by means of the Fourier transform of the
abelian group G×B.

Similarly, one can also treat the two-sided translation representation τ
of M ×M on L2(M), i.e., (τ(m,n)ξ)(t) = ∆(n)1/2ξ(m−1tn) for m,n, t ∈M
and ξ ∈ L2(M) (compare also [11]). If one parametrizes PrivC∗(M ×M) =
Priv∗ L1(M × M) in the obvious way by G∧ × B∧ × G∧ × B∧ then the
support of τ is the closure of the union of all the Yγ,β , (γ, β) ∈ G∧ × B∧,
where Yγ,β is defined as

Yγ,β = {(γ, β, αγ−1, (xβ)−1) | α ∈ G⊥β , x ∈ G}.
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