COLLOQUIUM MATHEMATICUM

VOL. LXIX

1995

MULTIPLIER THEOREM ON GENERALIZED HEISENBERG GROUPS II

BY

WALDEMAR HEBISCH and JACEK ZIENKIEWICZ (WROCŁAW)

We prove that on a product of generalized Heisenberg groups, a Hörmander type multiplier theorem for Rockland operators is true with the critical index $n/2 + \varepsilon$, $\varepsilon > 0$, where n is the euclidean (topological) dimension of the group.

1. Introduction. Let L be a positive Rockland operator on a homogeneous group G (cf. [4]) and let d be the homogeneous degree of L (cf. Section 2). Let

$$Lf = \int_{0}^{\infty} \lambda \, dE(\lambda) f$$

be its spectral resolution (on $L^2(G)$), and for $m \in L^{\infty}(\mathbb{R}_+)$ let

$$m(L)f = \int_{0}^{\infty} m(\lambda) \, dE(\lambda) f$$

Conditions on the function m which guarantee boundedness of m(L) on $L^p(G)$, 1 , have a long history. In 1960 L. Hörmander proved that if <math>G is abelian and if for a nonzero $\phi \in C_c^{\infty}(\mathbb{R}_+)$,

$$\sup_{t>0} \|\phi m(t\cdot)\|_{H(s)} < \infty$$

for an s greater than half the (topological) dimension of G, then m(L) is of weak type 1-1 and bounded on L^p , 1 .

For sublaplaceans on general stratified groups M. Christ [1] and G. Mauceri and S. Meda [15] showed that the Hörmander theorem holds if the topological dimension is replaced by the homogeneous dimension. Recently D. Müller and E. M. Stein [16] showed that if L is the canonical sublaplacean and G is a cartesian product of copies of Heisenberg groups and abelian groups then, in fact, in the Hörmander theorem s greater than half the

[29]

¹⁹⁹¹ Mathematics Subject Classification: Primary 43A80.

topological dimension suffices. A bit earlier J. Randall [17] obtained estimates for the heat kernel on generalized Heisenberg groups which imply a multiplier theorem with s greater than half the euclidean dimension plus a constant, so if the dimension of the center is large this is less than half the homogeneous dimension.

The present paper should be considered a companion paper to [9]. We extend the result of [9] to Rockland operators and the proof is somewhat simpler.

2. Preliminaries. Let G be a graded nilpotent Lie algebra, that is,

$$G = \bigoplus_{\alpha \ge 1} V_{\alpha},$$

and $[V_{\alpha}, V_{\beta}] \subset V_{\alpha+\beta}$ for all $\alpha, \beta \geq 1$. We assume that $V_1 \neq \{0\}$.

A dilation structure on a graded Lie algebra G is a one-parameter group $\{\delta_t\}_{t>0}$ of automorphisms of G determined by

$$\delta_t X = t^{\alpha} X \quad \text{for } X \in V_{\alpha}.$$

If we consider G as a nilpotent Lie group with multiplication given by the Campbell–Hausdorff formula

$$xy = x + y + \frac{1}{2}[x, y] + \dots$$

then $\{\delta_t\}_{t>0}$ forms a group of automorphisms of the group G, and the nilpotent Lie group G equipped with the dilations $\{\delta_t\}_{t>0}$ is said to be a graded homogeneous group.

The homogeneous dimension of G is the number Q determined by

$$\int_{G} f(\delta_t x) \, dx = t^{-Q} \int_{G} f(x) \, dx,$$

where dx is a Haar measure on G. It is evident that

$$Q = \sum_{\alpha} \alpha \dim V_{\alpha}.$$

We fix a basis \mathbf{e}_k in G consisting of homogeneous vectors, that is,

$$\delta_t \mathbf{e}_k = t^{\alpha_k} \mathbf{e}_k.$$

Then we define right-invariant vector fields X_k by

$$X_k f(x) = \frac{d}{dt} \Big|_{t=0} f(\exp(t\mathbf{e}_k)x)$$

If $I = (i_1, \ldots, i_{\dim(G)})$ is a multi-index, then we put

$$X^I = X_1^{i_1} \dots X_{\dim(G)}^{i_{\dim(G)}}.$$

The number $|I| = \sum_{k=1}^{\dim(G)} \alpha_k i_k$ is called the *homogeneous length* of I and determines the homogeneous degree of the operator X^I .

Given a unitary representation ρ of G and a right-invariant differential operator L on G we define the image $\rho(L)$ of L under ρ by the formula

$$(\varrho(L)f,g) = L(\phi_{f,g})(e), \text{ where } \phi_{f,g}(x) = (\varrho(x)f,g)$$

Then $\varrho(L)$ is well defined for $f \in C^{\infty}(\varrho)$.

A right-invariant differential operator L on G is called a *Rockland oper*ator if L is homogeneous of some degree d > 0, that is,

$$L(f \circ \delta_t) = t^d(Lf) \circ \delta_t \quad \text{ for } f \in C^\infty(G)$$

and for every nontrivial irreducible unitary representation π of G the operator $\pi(L)$ is injective on C^{∞} vectors.

The operator L satisfies the following subelliptic estimates proved by B. Helffer and J. Nourrigat [11]: for every multi-index I there is a constant C such that

$$||X^I f||_{L^2(G)} \le C ||L^{|I|/d} f||_{L^2(G)}, \quad f \in C^{\infty}_{c}(G).$$

The estimate above remains true in any (unitary) representation of G.

For a positive-definite Rockland operator L, Theorem (4.25) of [4] asserts that the closure $-\overline{L}$ of the essentially selfadjoint operator -L is the infinitesimal generator of a semigroup of linear operators on $L^2(G)$ which has the form

$$T_t f = p_t * f, \quad t > 0,$$

where the p_t belong to the Schwartz space S(G).

We fix a homogeneous norm on G, that is, a continuous, nonnegative, symmetric function $x \mapsto |x|$ smooth away from 0 which vanishes only for x = 0, and satisfies $|\delta_t x| = t|x|$. Henceforth we will assume that our homogeneous norm is subadditive, that is, $|xy| \leq |x| + |y|$ (cf. e.g. [10]).

We have

$$Lf = D * f$$

where D is a distribution on G. We write

$$Rf = f * D$$
 and $A = \frac{1}{2}(R + L)$.

The one-parameter semigroups generated by -L and -R are given by

$$e^{-tL}f = p_t * f$$
 and $e^{-tR}f = f * p_t$.

In other words, $e^{-tL}\delta_0 = e^{-tR}\delta_0$ and, since L and R commute,

$$e^{-tA}\delta_0 = e^{-tL/2}e^{-tR/2}\delta_0 = e^{-tL}\delta_0.$$

Let $\chi(x) = x^{-1}$ and $L^{\mathrm{T}}f = (L(f \circ \chi)) \circ \chi$. We put

$$\widetilde{G} = G \times G, \quad \widetilde{A}f(x_1, x_2) = \frac{1}{2}((Lf(\cdot, x_2))(x_1) + (L^{\mathrm{T}}f(x_1, \cdot))(x_2)).$$

It is easy to see that if L is a Rockland operator on G, then \widetilde{A} is a Rockland operator on \widetilde{G} . We define the action of \widetilde{G} on G by

$$(x_1, x_2)g = x_1gx_2^{-1}.$$

Then A is the image of \tilde{A} under this action. Let \tilde{X}_j be the left invariant vector field such that $\tilde{X}_j(e) = X_j(e)$. By the Helffer–Nourrigat theorem, we get the following subelliptic inequalities for A:

 $\|X^{I_1}\check{X}^{I_2}f\|_{L^2(G)} \le C_{I_1,I_2}\|A^{(|I_1|+|I_2|)/d}f\|_{L^2(G)} \quad \text{for } f \in C^{\infty}_{\rm c}(G).$

We say that a step two nilpotent Lie algebra G is a generalized Heisenberg Lie algebra if there is a scalar product $\langle \cdot, \cdot \rangle$ on G and an orthogonal decomposition

$$G = W \oplus [G, G]$$

such that for each $x \in W$ of length 1 the mapping ad_x^* is an isometry from $[G,G]^*$ into W^* . We call W the generating subspace of G. We identify Lie algebras with Lie groups (using the exponential map), and we say that G is a generalized Heisenberg group if, as a Lie algebra, it is a generalized Heisenberg Lie algebra. With this identification 0 is the neutral element in our groups.

As a matter of fact, we use only two properties of a generalized Heisenberg group, one that the dimension of its center is at most half the topological dimension of G, second that

$$\sum \langle s, [x, \mathbf{e}_i] \rangle^2 \ge c |s|^2 |\pi_W(x)|^2$$

where π_W is the projection on W, and $s \in [G, G]^*$. In fact, the inequality above becomes an equality if the norms are chosen properly.

In the sequel we assume that $G = \prod G_i$, each G_i being a generalized Heisenberg group with the generating subspace W_i . Let $|x|_i$ be the length of x in W_i (we fix a scalar product). We write $W = \bigoplus W_i$. We may consider G as the direct sum of W_i and $[G_i, G_i]$, so the projection $\pi_i : G \to W_i$ is well defined. Put

$$w_i(x) = |\pi_i(x)|_i.$$

G also has a natural structure of a homogeneous group: elements in W are of degree 1 and elements in [G, G] are of degree 2.

3. Results

(3.1) THEOREM. If G is a product of generalized Heisenberg groups, L a positive-definite Rockland operator on G, $n = \dim(G)$, s > n/2, $\phi \in C_{c}^{\infty}(\mathbb{R}_{+}), \phi \neq 0$, and

$$\sup_{t>0} \|\phi m(t)\|_{H(s)} < \infty$$

then m(L) is of weak type 1-1 and bounded on L^p , 1 .

(3.2) THEOREM. For every $0 < \alpha_i < \dim([G_i, G_i])$ there exists C such that if $f \in C_c^{\infty}(\mathbb{R}_+)$ and $\operatorname{supp} f \subset [1/2, 2]$, then

$$\int \prod w_i^{\alpha_i} |f(L)|^2(x) \, dx \le C \|f\|_{L^2}^2.$$

R e m a r k. From [12] and [14] we know that f(L) is a well-defined rapidly decaying (Schwartz class) function, so all we have to do is to get the estimate.

First note that since $e^{-tA}\delta_0 = e^{-tL}\delta_0$, also $f(L) = f(L)\delta_0 = f(A)\delta_0$, so we may replace L by A.

Let $\tilde{\pi}$ be the representation of \tilde{G} on $L^2(G)$ corresponding to the action of \tilde{G} on G. Of course, for any $x \in \tilde{G}$ central translations on G commute with $\tilde{\pi}(x)$. Hence spectral decomposition of translations from [G, G] (given by the Fourier transform on [G, G]) also decomposes $\tilde{\pi}$. By the Plancherel formula on [G, G], we have

$$\int_{G} w^{2} |f(L)|^{2}(x) \, dx = C \int_{[G,G]^{*}} \|wf(A_{s})\delta_{0}\|_{L^{2}(W)}^{2} \, ds,$$

where A_s is the Fourier transform of A in [G, G] directions (note that coefficients of A are independent of the central coordinates).

(3.3) LEMMA. There exists C such that for all $s \in [G,G]^*$ and all $f \in C_c^{\infty}(\mathbb{R}_+)$ with supp $f \subset [1/2,2]$ we have

$$\int_{1}^{2} \|f(A_{ts})\delta_{0}\|_{L^{2}(W)}^{2} dt \leq C \|f\|_{L^{2}(W)}^{2}.$$

We define D_t , for t > 0, by

$$(D_t\phi)(x) = t^{-\dim(W)}\phi(t^{-1}x) \quad \text{for } \phi \in L^1(W)$$

and extend it by continuity to measures. One easily checks that

$$D_{t^{-1/2}}(f(A_{ts})\delta_0) = f(D_{t^{-1/2}}A_sD_{t^{1/2}})D_{t^{-1/2}}\delta_0 = f(tA_s)\delta_0.$$

We have $\|D_t\phi\|_{L^2(W)} = t^{-\dim(W)/2}\|\phi\|_{L^2(W)}$, so

$$\int_{1}^{2} \|f(A_{ts})\delta_{0}\|_{L^{2}(W)}^{2} dt \leq \int_{1}^{2} \|D_{t^{-1/2}}(f(A_{ts})\delta_{0})\|_{L^{2}(W)}^{2} dt$$
$$= \int_{1}^{2} \|f(tA_{s})\delta_{0}\|_{L^{2}(W)}^{2} dt.$$

For $E_s(\lambda)$ being the spectral measure of A_s we write $d\mu(\lambda) = d(E_s(\lambda)e^{-A_s}\delta_0, e^{-A_s}\delta_0)$. Note that

$$\|e^{-A_s}\delta_0\|_{L^2(W)} \le \|e^{-A_s}\|_{L^1(W), L^2(W)} = \|e^{-A_s}\|_{L^2(W), L^\infty(W)} \le C.$$

The last inequality follows from a subelliptic estimate (uniform in s) and the Sobolev embedding. We have

$$\int_{1}^{2} \|f(tA_{s})\delta_{0}\|_{L^{2}(W)}^{2} dt \leq \int_{1}^{2} \int |f(t\lambda)|^{2} e^{2\lambda} d\mu(\lambda) dt$$
$$\leq C \|f\|_{L^{2}(W)}^{2} \int d\mu \leq C \|f\|_{L^{2}(W)}^{2}$$

which gives (3.3).

For step two nilpotent G, the Campbell–Hausdorff formula takes the form

$$xy = x + y + \frac{1}{2}[x, y],$$

hence

$$X_i = \partial_{\mathbf{e}_i} + \frac{1}{2}\partial_{[x,\mathbf{e}_i]}, \quad \check{X}_i = \partial_{\mathbf{e}_i} - \frac{1}{2}\partial_{[x,\mathbf{e}_i]}$$

and

$$\sum_{i} (X_i - \check{X}_i)^2 = \frac{1}{4} \sum_{i} \partial_{[x,\mathbf{e}_i]}^2.$$

Since \widetilde{A} is a Rockland operator and the Fourier transform on [G, G] decomposes the natural representation of \widetilde{G} on $L^2(G)$ we obtain

$$\left\| \left(\sum \langle s, [\cdot, \mathbf{e}_i] \rangle^2 \right)^{\beta/2} f \right\|_{L^2} \le \|A_s^{1/d} f\|_{L^2}.$$

Put

$$||s|| = \max |s_i|, \quad s^{(\alpha)} = \prod |s_i|^{\alpha_i}.$$

Consequently,

$$s^{(\alpha)} \|wf(A_s)\delta_0\|_{L^2}^2 \le C \|A_s^{|\alpha|/d} f(A_s)\delta_0\|_{L^2}^2 \le C' \|f(A_s)\delta_0\|_{L^2}^2.$$

Also, if s is large enough, then $A_s \ge 2$. Therefore if $||s|| \ge C$, then $f(A_s) = 0$. We need a version of polar coordinates: there exist measures η_k such that for all positive Borel measurable ϕ we have

$$\int_{[G,G]^*} \phi = C \sum_k 2^k \int_{\|s\|=2^k} \int_1^2 t^{\dim([G,G])-1} \phi(ts) \, dt \, d\eta_k(s).$$

Using these observations and (3.3) we have

$$C \int_{[G,G]^*} \|wf(A_s)\delta_0\|^2 ds \le C \int_{\|s\| \le C} s^{(-\alpha)} \|f(A_s)\delta_0\|^2 ds$$
$$\le C \sum_{k=k_0}^{\infty} 2^{-k} \int_{\|s\| = 2^{-k}} \int_{1}^{2} s^{(-\alpha)} \|f(A_{ts})\delta_0\|^2 dt d\eta_k(s)$$

$$\leq C \|f\|_{L^{2}}^{2} \sum_{k=k_{0}}^{\infty} 2^{-k} \int_{\|s\|=2^{-k}}^{2} \int_{1}^{2} s^{(-\alpha)} dt \, d\eta_{k}(s)$$

$$\leq C \|f\|_{L^{2}}^{2} \int_{\|s\|\leq C}^{2} s^{(-\alpha)} \, ds \leq C \|f\|_{L^{2}}^{2},$$

which ends the proof of (3.2).

From (3.2) we get (3.1) by a (by now) standard argument (see for example [9]).

Remark. The method presented here allows us to improve the multiplier theorems of [1] and [15]. Namely, for a large class of homogeneous G (for example all G with one-dimensional center) the multiplier theorem holds if s > (Q - 1)/2.

R e m a r k. Using the methods of [3] together with our argument we can prove an analog of (3.2) for regular nondifferential Rockland operators (cf. [6]).

REFERENCES

- M. Christ, L^p bound for spectral multiplier on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73–81.
- J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Math. 64 (1979), 227– 238.
- [3] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77–83.
- [4] G. B. Folland and E. M. Stein, *Hardy Spaces on Homogeneous Groups*, Princeton Univ. Press, 1982.
- B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95–153.
- P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371–395.
- [7] W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math. 60/61 (1990), 659–664.
- [8] —, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263–275.
- [9] —, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993), 231–239.
- [10] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231–236.
- [11] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889–958.
- [12] A. Hulanicki, Subalgebra of L₁(G) associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259–287.

W.	HEBISCH	AND	J.	ZIENKIEWICZ	

- [13] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165–179.
- [14] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, ibid. 80 (1984), 235–244.
- [15] G. Mauceri and S. Meda, Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana 3-4 (6) (1990), 141–154.
- [16] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., to appear.
- [17] J. Randall, The heat kernel for generalized Heisenberg groups, to appear.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND

> Reçu par la Rédaction le 13.12.1993; en version modifiée le 16.5.1994

36