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We prove that on a product of generalized Heisenberg groups, a Horman-
der type multiplier theorem for Rockland operators is true with the critical
index n/2 + ¢, € > 0, where n is the euclidean (topological) dimension of
the group.

1. Introduction. Let L be a positive Rockland operator on a homo-
geneous group G (cf. [4]) and let d be the homogeneous degree of L (cf.
Section 2). Let

Lf= [ XdE(\f
0
be its spectral resolution (on L?*(G)), and for m € L= (R,) let
m(L)f = [ m(\)dEO)f.
0

Conditions on the function m which guarantee boundedness of m(L) on
L?(G), 1 < p < o0, have a long history. In 1960 L. Hérmander proved that
if G is abelian and if for a nonzero ¢ € C(R,),

sup ||¢m(t-)[| sy < o0
>0

for an s greater than half the (topological) dimension of G, then m(L) is of
weak type 1-1 and bounded on L?, 1 < p < oo.

For sublaplaceans on general stratified groups M. Christ [1] and G. Mau-
ceri and S. Meda [15] showed that the Hormander theorem holds if the topo-
logical dimension is replaced by the homogeneous dimension. Recently D.
Miiller and E. M. Stein [16] showed that if L is the canonical sublaplacean
and G is a cartesian product of copies of Heisenberg groups and abelian
groups then, in fact, in the Hormander theorem s greater than half the
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topological dimension suffices. A bit earlier J. Randall [17] obtained esti-
mates for the heat kernel on generalized Heisenberg groups which imply a
multiplier theorem with s greater than half the euclidean dimension plus a
constant, so if the dimension of the center is large this is less than half the
homogeneous dimension.

The present paper should be considered a companion paper to [9]. We
extend the result of [9] to Rockland operators and the proof is somewhat
simpler.

2. Preliminaries. Let G be a graded nilpotent Lie algebra, that is,
G =P Va:
a>1

and [V, V3] C V4 for all o, 8 > 1. We assume that V; # {0}.
A dilation structure on a graded Lie algebra G is a one-parameter group
{6¢}+>0 of automorphisms of G determined by

X =t*X  for X € V,.
If we consider G as a nilpotent Lie group with multiplication given by the

Campbell-Hausdorff formula

1
zy=a+y+gleyl+...,

then {d;}¢~o forms a group of automorphisms of the group G, and the
nilpotent Lie group G equipped with the dilations {d;}+~0 is said to be a
graded homogeneous group.

The homogeneous dimension of G is the number () determined by

J F6w)dz =19 [ fz)dz,
G G

where dx is a Haar measure on G. It is evident that

Q=> admV,.

We fix a basis ej in GG consisting of homogeneous vectors, that is,
5tek = t“’“ek.
Then we define right-invariant vector fields X, by
Xif() f(exp(tey)x).

t=0

T dt

If I = (i1,...,%dim(c)) is a multi-index, then we put

I _ vi1 1dim(G)
X' =X ...Xdim(G).
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The number |I| = 21:1(@ oyt is called the homogeneous length of I and
determines the homogeneous degree of the operator X .

Given a unitary representation ¢ of G and a right-invariant differential
operator L on G we define the image o(L) of L under g by the formula

(o(L)f;9) = L(¢yq)(e), where ¢y ,4(z) = (o(2)f, 9)-

Then o(L) is well defined for f € C*(p).
A right-invariant differential operator L on G is called a Rockland oper-
ator if L is homogeneous of some degree d > 0, that is,

L(fod) =tl(Lf)od, for feC®(Q),

and for every nontrivial irreducible unitary representation m of G the oper-
ator m(L) is injective on C'*° vectors.

The operator L satisfies the following subelliptic estimates proved by
B. Helffer and J. Nourrigat [11]: for every multi-index I there is a constant
C such that

IXT fllrz) < CILMVAf |2y, f € CR(G).

The estimate above remains true in any (unitary) representation of G.

For a positive-definite Rockland operator L, Theorem (4.25) of [4] as-
serts that the closure —L of the essentially selfadjoint operator —L is the
infinitesimal generator of a semigroup of linear operators on L?(G) which
has the form

th:pt*f7 t>07
where the p; belong to the Schwartz space S(G).

We fix a homogeneous norm on G, that is, a continuous, nonnegative,
symmetric function x — |z| smooth away from 0 which vanishes only for
x = 0, and satisfies |6;z| = t|x|. Henceforth we will assume that our homo-
geneous norm is subadditive, that is, |zy| < |z| + |y| (cf. e.g. [10]).

We have

Lf=Dxf
where D is a distribution on GG. We write
1

Rf=f*D and A= §(R+L).

The one-parameter semigroups generated by —L and —R are given by
e f=pexf and e Ff=fup,.

In other words, e~ *6y = e %6y and, since L and R commute,

e—tA50 — e—tL/2e—tR/250 — e_tL(S(].

Let x(z) =2 ' and LTf = (L(f o x)) o x. We put

G=GxC,  Af(wnm) = G(LIm) ) + (L7, ) @),
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It is easy to see that if L is a Rockland operator on G, then A is a Rockland
operator on (G. We define the action of G on G by

(x1,22)9 = xlg:rgl.

Then A is the image of A under this action. Let X'j be the left invariant
vector field such that X;(e) = X;(e). By the Helffer-Nourrigat theorem, we
get the following subelliptic inequalities for A:

IX5 X5 fll 2y < Cron JAVIHED/Af] oy for £ € C2(G).

We say that a step two nilpotent Lie algebra G is a generalized Heisen-
berg Lie algebra if there is a scalar product (-,-) on G and an orthogonal
decomposition

G=Wa|G,{]
such that for each z € W of length 1 the mapping ad], is an isometry from
[G,G]* into W*. We call W the generating subspace of G. We identify
Lie algebras with Lie groups (using the exponential map), and we say that
G is a generalized Heisenberg group if, as a Lie algebra, it is a generalized
Heisenberg Lie algebra. With this identification 0 is the neutral element in
our groups.

As a matter of fact, we use only two properties of a generalized Heisen-
berg group, one that the dimension of its center is at most half the topolog-
ical dimension of GG, second that

D (s wed)? > el lmw ()%,

where my is the projection on W, and s € [G,G]*. In fact, the inequality
above becomes an equality if the norms are chosen properly.

In the sequel we assume that G = [[G;, each G; being a generalized
Heisenberg group with the generating subspace W;. Let |z|; be the length
of z in W; (we fix a scalar product). We write W = @ W;. We may consider
G as the direct sum of W; and [G;, G;], so the projection m; : G — W; is
well defined. Put

wi(z) = |mi(x) ;-
G also has a natural structure of a homogeneous group: elements in W are
of degree 1 and elements in [G, G| are of degree 2.

3. Results

(3.1) THEOREM. If G is a product of generalized Heisenberg groups,
L a positive-definite Rockland operator on G, n = dim(G), s > n/2, ¢ €
CSO(R-F)’ ¢ 7& 0, and

sup [|¢m(t) | (s < oo
>0

then m(L) is of weak type 1-1 and bounded on LP, 1 < p < occ.
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(3.2) THEOREM. For every 0 < a; < dim([G;, G;]) there exists C' such
that if f € C°(Ry) and supp f C [1/2,2], then
[ T 1) @) da < C| £]]7-

Remark. From [12] and [14] we know that f(L) is a well-defined rapidly
decaying (Schwartz class) function, so all we have to do is to get the estimate.

First note that since e #4685 = e *£6g, also f(L) = f(L)dg = f(A)dg, so
we may replace L by A.

Let 7 be the representation of G on L?(G) corresponding to the action
of G on G. Of course, for any x € G central translations on G commute
with 7(x). Hence spectral decomposition of translations from [G, G| (given
by the Fourier transform on [G, G]) also decomposes 7. By the Plancherel
formula on [G, G], we have

[ fDP@de=C [ [wf(A)dol3s ) ds,
G [G,G]*

where A; is the Fourier transform of A in [G, G] directions (note that coef-
ficients of A are independent of the central coordinates).

(3.3) LEMMA. There exists C such that for all s € [G,G]* and all
f e Ce(Ry) with supp f C [1/2,2] we have

2
J 17 (Aw)S0ll22 ) dt < CLFIIZ 2w
1

We define Dy, for ¢ > 0, by
(Di)(z) =t~ Wg(t~1z)  for ¢ € LY (W)
and extend it by continuity to measures. One easily checks that
D2 (f(A1s)0) = F(Dyr/2 Ay Dyaj2) Dyry205 = F(EAL)o.
We have || D¢l 2wy =t~ W72 ¢ L2y, s0

2 2
JIF(A) 8ol 72wy dt < [ 1Dp=2r2(F (Ars)0) 172y dt
1 1

2
= [ 11£(tA)dol32 ) dt.
1

For F,(\) being the spectral measure of A, we write du(\)=d(Es(\)e™ "4,
e~48y). Note that

lle™boll 2wy < [le™

LY(W),L2(W) = ”e_ASHL2(W),L°°(W) <C.
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The last inequality follows from a subelliptic estimate (uniform in s) and
the Sobolev embedding. We have

2 2
JIF@A)SlIZ2wy dt < [ [ 1FEN)Pe du(h) dt
1 1

< O flIZ2 0wy fdﬂ < C|flIZ 2w
which gives (3.3).

For step two nilpotent G, the Campbell-Hausdorff formula takes the
form

1
ry=x+y+ §[w,y]7
hence
1
Xi = 0o, + 5000, Xi=0e, ~

and

Z(Xz - XZ)Q = 123[2%64.

i
Since A is a Rockland operator and the Fourier transform on (G, G] decom-
poses the natural representation of G on L?(G) we obtain

(St o) 1],

Isll = max|s;l, s =] s

< AV e

Put

623

Consequently,
s wf(As)dl7 < CIIAL f(A)S0l 72 < Ol F(As)dollZ--

Also, if s is large enough, then A; > 2. Therefore if ||s|| > C, then f(As) =
0. We need a version of polar coordinates: there exist measures 7 such that
for all positive Borel measurable ¢ we have

2
[ e=cd 2k [ [eimUGCD g ts) dt dn(s).
[G.GI” keoplsg=2* 1
Using these observations and (3.3) we have

C [ lwf(As|Pds<C [ s f(As)do]|* ds
G.G]" Isl|<C

2
<oyt [ U F(A)d|[? dt dni(s)

k=ko |s|=27" 1
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o) 2
< C| 32 Z 27" f fs(_“) dt dny(s)
1

k=ko  ||s||=2""

<Clfl7. [ sTds <Clfll7a
slI<C

which ends the proof of (3.2).

From (3.2) we get (3.1) by a (by now) standard argument (see for exam-
ple [9]).

Remark. The method presented here allows us to improve the mul-
tiplier theorems of [1] and [15]. Namely, for a large class of homogeneous
G (for example all G with one-dimensional center) the multiplier theorem

holds if s > (Q —1)/2.

Remark. Using the methods of [3] together with our argument we can
prove an analog of (3.2) for regular nondifferential Rockland operators (cf.

[6])-
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