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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A MODEL
OF GRAVITATIONAL INTERACTION OF PARTICLES, III

BY

PIOTR B I L E R (WROC LAW)

This is the third part of the study [7, 9]. We consider here local-in-time
solutions of the parabolic-elliptic system from [9, (1)–(5)], which cannot be
extended for all t ≥ 0. We recall the system of partial differential equations
defined in a bounded domain Ω of Rn:

ut = ∆u+∇ · (u∇ϕ),(1)
∆ϕ = u(2)

with the nonlinear no-flux condition

(3)
∂u

∂ν
+ u

∂ϕ

∂ν
= 0,

where ν denotes the outward unit normal vector to ∂Ω. For the potential
ϕ we assume either

(4.1) ϕ = 0 on ∂Ω,

or instead of the Dirichlet boundary condition above

(4.2) ϕ = En ∗ u
with En the fundamental solution of the n-dimensional Laplacian. For the
initial-boundary problem we add the condition

(5) u(x, 0) = u0(x) ≥ 0.

For the interpretation of (1)–(5) we refer the reader to the introduction of
[9].

In the one-dimensional case solutions are global in time (see the reasoning
in [7, Sec. 3] based on an idea from [14], and [18]).

The first proof of nonexistence of solutions to (1)–(4) defined globally
in time has been discovered for the radial problem in an n-dimensional
ball, n ≥ 2, in [7, Theorem 3]. The critical value of mass of the initial
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condition u0 given in this theorem is 2nσnR
n−2 for the ball of radius R,

i.e. if M =
∫

Ω
u0 > 2nσnR

n−2 then any weak solution (in the sense of
definitions in [4], [6], [8] or [9] in the radial case and the integrated densities
formulation (6)–(7) in [7]) cannot exist globally in time. A more general
result for star-shaped domains Ω has been proved later (but appeared in the
first part of our study of the system (1)–(4.2)) in [9, Theorem 2(v)]. There a
sufficient condition for nonexistence in the large of solutions is also expressed
as a large mass condition M > 2nσn(diamΩ)n−2. The idea of the proof is
basically the same as in [7, Theorem 3]: we consider the evolution of the
moment w(t) =

∫
Ω
u(x, t)|x|2 dx of a solution with

∫
Ω
u0 = M sufficiently

large.
We prove in this note a refinement of the above result. Namely, we show

that if the concentration of u0 is large enough, then no solution with the
initial condition u0 can be extended globally in time. The concentration is
meant in a related but slightly different sense than in [9] where stationary
solutions of moderate concentration appeared to be regular (and they do
exist!). The approach used here is again the virial method, but now the
moment w is compared with the energy integral I. Note that if n ≥ 3, then
this phenomenon of blow-up can occur for arbitrarily small massM =

∫
Ω
u0.

A related result to that in [9, Theorem 2(v)], [7, Theorem 3] for the
problem (1)–(4.1) in balls of Rn is proved here for arbitrary (not necessarily
radial) large initial data. Replacing the condition (4.2) by the boundary
condition (4.1) leads to a serious difficulty in the proof of blow-up of solu-
tions.

We stress the fact that conditions ensuring blow-up of solutions (e.g.
(6)) are nonlocal (even if they express a large concentration of mass in the
vicinity of a point) according to the fact that the system (1)–(4) is nonlocal.

The phenomenon of nonexistence of global solutions to (1)–(4) has a dif-
ferent character than for semilinear parabolic equations with sources stud-
ied e.g. in [11–12], where the blow-up is asymptotically self-similar and local
criteria for excluding blow-up can be given. For our system there are thresh-
old values of the concentration of initial densities leading to a finite time
blow-up (compare also [1] dealing with some quasilinear parabolic equations
with transport terms). These size conditions on u0 appear as a result of the
competition between the diffusion modeled in (1) by the linear term ∆u
and the nonlinear source term u∆ϕ = u2 with spreading effects described
by ∇u · ∇ϕ.

We expect that understanding the mechanism of formation of large con-
centration clusters leading to gravitational collapse phenomena would help
in determining sharp conditions for the existence of local solutions for ini-
tial data less regular than u0 ∈ Lp(Ω) with p > n/2. We recall that the
construction of weak solutions with such u0’s applies for the system (1)–(4)
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like for the Debye system in [6]. In [9] we conjectured that existence of even
weaker solutions (e.g. in the spirit of [15]) is possible only for u0 not far
from Lp(Ω), p > n/2. In particular, singularities of u0 exceeding |x− x0|−2

should be excluded when we expect to obtain not too wild solutions of the
evolution problem (i.e. with locally bounded potential ϕ), similarly to the
case of stationary solutions studied in [8, Theorem 2(i)–(iii)] and [9, Theo-
rem 1(ii)].

This conjecture was based on an analogous result in [2–3] for the semi-
linear parabolic equation ut = ∆u + u2 that resembles (1) written as ut =
∆u + u2 +∇u · ∇ϕ. The conditions for the existence of local solutions in-
volved quantities which can be identified as the norm in the Morrey space
Mn/2(Ω) more vast than Ln/2(Ω). However, methods pertinent to the semi-
linear case in [2–3] seem to be inapplicable to (1)–(2). We discuss questions
of the minimal regularity of initial data for the Cauchy problem in Rn for
(1), (2), (4.2) (converted into an integral equation) in the paper [5].

Theorem 1. If Ω ⊂ Rn, n ≥ 3, is a star-shaped domain (with respect to
the origin), then for u0 such that |u0|1 = M and

(6)
(
M−1
∫
Ω

u0(x)|x|2 dx
)n/2−1

< (2n/2nσn)−1M

there is no global solution to (1)–(3), (4.2), (5).

P r o o f. Define an auxiliary function

(7) w(t) =
∫
Ω

u(x, t)|x|2 dx,

the same as that considered in the proof of Theorem 2(v) in [9]. The function
w is the second moment of the density u, so it measures the concentration
of u at the origin. For any weak solution u of (1)–(4.2) we have

dw

dt
= −
∫
Ω

(∇u+ u∇ϕ) · ∇(|x|2) = −2
∫
Ω

∇u · x− 2
∫
Ω

u∇ϕ · x(8)

= − 2
∫

∂Ω

ux · ν + 2n
∫
Ω

u

− 2
∫∫

Ω×Ω

u(x, t)(∇xE(x− y)) · x)u(y, t) dy dx.

Since Ω is star-shaped with respect to x0 = 0 we have x · ν ≥ 0 on ∂Ω and
therefore

dw

dt
≤ 2nM − 2

σn

∫∫
Ω×Ω

u(x, t)u(y, t)|x− y|−n(|x|2 − y · x) dy dx(9)
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= 2nM − 1
σn

∫∫
Ω×Ω

u(x, t)u(y, t)

× |x− y|−n(|x|2 − y · x− x · y + |y|2) dy dx

= 2nM − 1
σn

∫∫
Ω×Ω

u(x, t)u(y, t)|x− y|−n+2 dy dx

≡ 2nM − σ−1
n I,

by symmetry properties of the integral

I =
∫∫

Ω×Ω

u(x, t)u(y, t)|x− y|−n+2 dx dy.

Now we estimate I in a more careful manner than in [9]. Namely, using
the Hölder inequality we can write

M2 =
∫∫

Ω×Ω

u(x, t)u(y, t) dx dy

≤
( ∫∫
Ω×Ω

u(x, t)u(y, t)|x− y|2 dx dy
)1−2/n

×
( ∫∫
Ω×Ω

u(x, t)u(y, t)|x− y|−n+2 dx dy
)2/n

≤
( ∫∫
Ω×Ω

u(x, t)u(y, t)(|x|2 + |y|2 − 2x · y) dx dy
)1−2/n

I2/n

=
(
2Mw − 2

∣∣∣ ∫
Ω

xu(x, t) dx
∣∣∣2)1−2/n

I2/n ≤ (2Mw(t))1−2/nI2/n.

This leads to

(10) 21−n/2Mn/2+1w(t)1−n/2 ≤ I,

and together with (9) we obtain

dw

dt
≤ 2nM − 21−n/2σ−1

n M1+n/2w1−n/2.

The assumption (6) on the concentration of u0 in Theorem 1 and mono-
tonicity of the function on the right hand side of the above inequality allow
us to write

2
n

d(wn/2)
dt

≤ 2nMwn/2−1 − 21−n/2σ−1
n M1+n/2

= 2nMn/2((w/M)n/2−1 − (2n/2nσn)−1M

≤ 2nMn/2((w(0)/M)n/2−1 − (2n/2nσn)−1M) < 0



GRAVITATIONAL INTERACTION OF PARTICLES, III 233

(observe that dw
dt (0) is strictly negative). After an integration this gives

w(t)n/2 ≤ w(0)n/2 − n2Mn/2((2n/2nσn)−1M − (w(0)/M)n/2−1)t,

which implies that

t ≤ T = w(0)n/2(n2Mn/2((2n/2nσn)−1M − (w(0)/M)n/2−1))−1,

unless w(t) < 0 which is absurd.

Note that the condition (6) sufficient for the finite time blow-up is satis-
fied for many initial densities u0. For instance, if u0(x) = Mnσ−1

n R−n when
|x| ≤ R and u0(x) = 0 elsewhere, then

∫
Ω
u0 = M and (6) becomes

(6′)
(

n

n+ 2

)n/2−1

Rn−2 < (2n/2nσn)−1M,

which is true for any fixed M > 0 and sufficiently small R > 0. The above
condition (6′) is a quantitative expression of the wording “u0 is of large
concentration”. Using the notion of the Morrey spaces considered in [9] for
a description of regular stationary solutions to (1)–(4), we may interpret
(6′) by saying that the Mn/2(Ω) norm of u0 is large.

Similarly, for the Gaussian initial densities u0(x) = Mpε(x)(
∫

Ω
pε)−1

in Ω, where pε(x) = (2πε)−n/2 exp(−|x|2/(2ε)), ε > 0, and M > 0 is
fixed, w(0) is of order ε and I(0) ∼ ε2−n. Hence the blow-up occurs before
T ∼ εn/2 ∼ |u0|−1

∞ .
Given arbitrary u0 6≡ 0 the sufficient blow-up condition (6) can be easily

satisfied for the rescaled u0, i.e. by taking u0,λ(x) = λnu0(λx) with λ ≥ 1
large enough. Indeed, under this scaling the mass M is conserved, the
moments are wλ = λ−2w, so (6) becomes λ2−n < cnM with some constant
cn > 0.

Let us remark that this reasoning applies even to less regular solutions
than those considered in [8], [9], e.g. to (suitably modified) L1 solutions
considered in [15].

We recover qualitatively the condition from [9, Theorem 2(v)]: M >
2nσnd

n−2, d = diamΩ, by estimating (w/M)n/2−1 crudely by dn−2.
Evidently, for M so large there are no (regular) stationary solutions to

(1)–(3), (4.2)—otherwise they could be considered as global solutions to the
evolution problem.

It is clear that if (6) holds then its modification with
∫

Ω
u0(x)|x−x|2 dx

and x = M−1
∫

Ω
xu0(x) dx (the center of mass of u0) is also true. Moreover,

if Ω is star-shaped with respect to x, then the above proof is valid for the
modified moment w(t) =

∫
Ω
u(x, t)|x− x|2 dx.

R e m a r k. The nonexistence result in Theorem 1 can be generalized to a
larger class of domains including some non-star-shaped dumbbell-like ones.
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The idea (reminiscent of [13, Prop. 1.7]) is to consider domains Ω ⊂ Rn

such that x̃ · ν̃ ≥ 0 on ∂Ω, where ∼: x 7→ x̃ is a nonisotropic dilation defined
by x̃ = (a1x1, . . . , anxn) for x = (x1, . . . , xn) and some fixed a1, . . . , an >
0. In the proof a modified moment function w̃(t) =

∫
Ω
u(x, t)|x̃|2 dx ≥

(min1≤k≤n a
2
k)w(t) is considered. The counterpart of the integral I is

Ĩ =
∫∫

Ω×Ω

u(x, t)u(y, t)|x− y|−n|x̃− ỹ|2 dx dy ≥ ( min
1≤k≤n

a2
k)I,

and the sufficient blow-up condition (6) becomes

(w̃(0)/M)n/2−1 < ( min
1≤k≤n

ak)n
(
2n/2

( n∑
k=1

a2
k

)
σn

)−1

M.

Recall that the system (1)–(3), (4.2) has an approximate Lyapunov func-
tion (see [9, (23), (24.2)]), which (for n ≥ 3) can be written in the form

(11) W (t) = −h(u)− (2σn)−1I.

Here h(u) = −
∫

Ω
u log u is the (differential) entropy of the density u, and

the energy integral I is defined in (9). More precisely, if for some u0, h(u0)
and I are finite, then W provides us with a kind of a priori estimate

(12) W (t) ≤W (0) + C(Ω,M), M =
∫
Ω

u0.

The proof of (12) is similar to that of (24.2) for n = 2 given in [9]. In
general, the information contained in (12) is meaningless since both terms
−h and I may grow in time, but for n = 2 and small M the function W was
useful in proving the global existence of solutions (cf. [9, Th. 2(iv)]).

We give below another proof of the nonexistence of global solutions to
(1)–(3), (4.2) satisfying (12), still based on virial calculations, but this time
a sufficient condition for blow-up is expressed in terms of W (0) and its
ingredients h, I.

First we formulate a version of the Shannon inequality for the entropy
h and the second moment w of a finite measure with density u ≥ 0.

Lemma 1. If Ω is a subset of Rn, u ≥ 0,
∫

Ω
u = M , h(u) = −

∫
Ω
u log u,

x = M−1
∫

Ω
xu(x) dx is the center of mass of u and w =

∫
Ω
u(x)|x−x|2 dx,

then

−h(u) ≥ c1 − c2 logw

with some constants cj = cj(Ω,M), j = 1, 2, c2 > 0, independent of u.

P r o o f. The classical Shannon inequality for Ω = Rn and M = 1 reads

h(u) ≤ n

2
(1 + log(2πw)),
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with equality if and only if u is a Gaussian density (see [10, p. 249], [16,
Ch. 9.1] and [17, Th. 1.11, Prob. 1.34]). Its demonstration follows by maxi-
mizing the entropy under the constraint that w is fixed. Rescaling u we ob-
tain Lemma 1 with C1 = M((n/2+1) logM−(n/2)(1+log 2π)), C2 = Mn/2,
which are optimal constants in the case Ω = Rn. Explicit values of the opti-
mal cj(Ω,M) are known only for particular Ω’s. Since w ≥ w, the inequality

(13) h(u) + c1 ≤ c2 logw

is a consequence of Lemma 1.

Proposition 1. If Ω ⊂ Rn, n ≥ 3, is a star-shaped domain,

W (0) =
∫
Ω

u0 log u0 − (2σn)−1
∫∫

Ω×Ω

u0(x)u0(y)|x− y|−n+2 dx dy

is (negative and) small enough, then there is no global solution to (1)–(3),
(4.2), (5).

P r o o f. From (9), (11) and (12) we get

dw

dt
≤ 2nM − σ−1

n I = 2nM + 2(W + h(u))(14)

≤ 2nM + 2W (0) + c3(Ω,M) + 2c2 logw.

If the right hand side of this inequality is strictly negative for t = 0, then we
will arrive at a contradiction in the same way as in the proof of Theorem 1.
Of course, there exist u0’s which satisfy the above condition (i.e. I large
compared with −h(u0)), e.g. the Gaussian ones (for small ε > 0) considered
for an illustration of Theorem 1.

For n = 2, (14) is much simpler: dw/dt ≤M(8π−M)/(2π). This shows
that for M > 8π solutions cease to exist because w(t) tends to 0, so by the
Shannon inequality h(u) tends to −∞.

R e m a r k. The proof of Theorem 1, although indirectly, sheds some
light on the question: How do the nonglobal solutions explode? (cf. the last
remark in [9]).

The relation w(t) → 0 as t → T implies h(u) → −∞ for the entropy of
u(t), hence I = −2σn(W + h) →∞ for solutions that admit the Lyapunov
function (11).

Moreover, if

‖u;Mp(Ω)‖ ≡ sup
x∈Ω,R>0

Rn(1/p−1)
∫

BR(x)∩Ω

|u|

is the Morrey norm with exponent 1 < p <∞, then ‖u;Mp(Ω)‖ also tends
to ∞ as t→ T . Indeed, for u ≥ 0 with

∫
Ω
u = M , the inequality

(15) ‖u;Mp(Ω)‖ ≥ Cn,pM(M/w)(1−1/p)n/2
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holds with some constant Cn,p > 0. This follows from an obvious inequality
w ≥ R2

∫
Ω\BR

u so

Rn(1/p−1)
∫

BR

u ≥ R−n(Rn/pM −Rn/p−2w)

after the optimization (i.e. when R = (n+ 2− n/p)(n− n/p)−1wM−1).
Of course, all this does not give full information on when the solutions

cease to exist, because the true existence time is strictly less than the blow-
up time estimated by the indirect argument in the proof of Theorem 1.
Nevertheless, together with [9, Th. 2(iv)] and some partial results concerning
the continuation of solutions for n ≥ 3 (e.g. a locally uniform estimate of type
sup[0,T ](|h(u)|+‖u;Mn/2(Ω)‖) <∞ is sufficient for the continuation beyond
t = T ), this helps in the understanding of high concentration phenomena
leading to a collapse of solutions.

Now we turn to the problem (1)–(3), (4.1) in a ball with (not necessarily
radial) data (5).

Theorem 2. If Ω is a ball in Rn, n ≥ 2, and |u0|1 = M is sufficiently
large, then there is no global solution to the problem (1)–(3), (4.1), (5).

P r o o f. We begin with some general computation valid for arbitrary
star-shaped domains Ω in Rn with C2 boundary ∂Ω. Given a function ψ
belonging to the Sobolev space H2(Ω) define the moment functional

(16) v(t) =
∫
Ω

u(x, t)ψ(x) dx.

Similarly to the proof of Theorem 1 we obtain a counterpart of (8),

dv

dt
= −
∫
Ω

(∇u+ u∇ϕ) · ∇ψ(17)

= −
∫

∂Ω

u
∂ψ

∂ν
+
∫
Ω

u∆ψ −
∫
Ω

u∇ϕ · ∇ψ.

Suppose that 0 6≡ ψ ≥ 0, ∂ψ/∂ν ≤ 0 and −∆ψ ≤ C for some C = C(Ω) > 0
(the idea is that ψ(x) ∼ dist(x, ∂Ω), and the assumption ∂Ω ∈ C2 is used
here). From (17) by symmetrization we arrive at an analogue of (9),

dv

dt
≥ − C

∫
Ω

u−
∫∫

Ω×Ω

u(x, t)u(y, t)∇xG(x, y) · ∇ψ(x) dy dx(18)

= − CM − 1
2

∫∫
Ω×Ω

u(x, t)u(y, t)

× (∇xG(x, y) · ∇ψ(x) +∇yG(y, x) · ∇ψ(y)) dy dx,
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where G = GΩ is the Green function of the domain Ω. Now if the condition

%(x, y) ≡ −(∇xG(x, y) · ∇ψ(x) +∇yG(y, x) · ∇ψ(y))(19) (
= − d

ds
G(x+ s∇ψ(x), y + s∇ψ(y))|s=0

)
≥ εψ(x)ψ(y)

is satisfied for some ε > 0 and all x, y ∈ Ω, then

(20)
dv

dt
≥ −CM +

ε

2

∫∫
Ω×Ω

u(x, t)ψ(x)u(y, t)ψ(y) dy dx ≥ −CM +
ε

2
v(t)2.

Integrating the differential inequality (20) we obtain

(21) v(t) ≥ β
1 + k exp(εβt)
1− k exp(εβt)

with k = (v(0) − β)/(v(0) + β) ∈ (0, 1) and β = (2CM/ε)1/2 whenever
v(0) > β. The inequality (21) means that v(t) blows up in a finite time,
contradicting the global existence of solutions.

Now we check the condition (19) for the ball Ω = BR(0) ⊂ Rn, n ≥ 2.
Formally the computation below is valid for n > 2 but the case n = 2 is
analogous. Take ψ(x) = R2 − |x|2 (so ∇ψ(x) = −2x, ∆ψ = −2n ≡ −C),
and consider

GBR
(x, y) = ((n− 2)σn)−1(−|x− y|2−n +Rn−2|R2x/|x| − y|x||2−n),

so
1
2
%(x, y) =

d

ds
GBR

(sx, sy)|s=1

= σ−1
n (|x− y|2−n − 2Rn−2(|x|2|y|2 −R2x · y)|R2x/|x| − y|x||−n).

By homogeneity it suffices to consider R = 1. First observe that %(x, y) ≥ 0
and %(x, y) = 0 if and only if |x| = |y| = 1. To see this we represent

(22) 1
2σn%(x, y)|x− y|n|x/|x| − y|x||n

= |x− y|2|x/|x| − y|x||n + (−2|x|2|y|2 + 2x · y)|x− y|n

= |x− y|2(|x/|x| − y|x||n − |x− y|n)

+ (|x|2 + |y|2 − 2|x|2|y|2)|x− y|n,

and note that for |x|, |y| ≤ 1,

|x/|x| − y|x||2 − |x− y|2 = (1− |x|2)(1− |y|2) ≥ 0

(therefore |x/|x| − y|x|| ≥ |x− y|), and

|x|2 + |y|2 − 2|x|2|y|2 = (|x| − |y|)2 + 2|x||y|(1− |x||y|) ≥ 0.

Using (22) we can easily check that inf %(x, y)(1−|x|2)−1(1−|y|2)−1 ≡ ε > 0.
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For n = 2 recall that GB1(x, y) = (2π)−1(log |x− y| − log |x/|x| − y|x||),
hence π%(x, y) = |x/|x| − y|x||−2(1− |x|2|y|2).

We do not know whether (19) holds for arbitrary star-shaped domains
in Rn.
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