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EMBEDDING INVERSE LIMITS

OF NEARLY MARKOV INTERVAL MAPS

AS ATTRACTING SETS OF PLANAR DIFFEOMORPHISMS

BY

SARAH HOLTE (ROLLA, MISSOURI)

In this paper we address the following question due to Marcy Barge: For
what f : I → I is it the case that the inverse limit of I with single bonding

map f can be embedded in the plane so that the shift homeomorphism f̂

extends to a diffeomorphism ([BB, Problem 1.5], [BK, Problem 3])? This
question could also be phrased as follows: Given a map f : I → I, find
a diffeomorphism F : R

2 → R
2 so that F restricted to its full attracting

set,
⋂

k≥0
F k(R2), is topologically conjugate to f̂ : (I, f) → (I, f). In this

situation, we say that the inverse limit space, (I, f), can be embedded as
the full attracting set of F .

The problem of realizing inverse limits of one-dimensional manifolds as
attracting sets of diffeomorphisms was first addressed by R. F. Williams
[W] and L. Block [Bl]. Williams constructed diffeomorphisms of S4 which,
when restricted to indecomposable subsets of their non-wandering sets, are
conjugate to shift maps on inverse limits of one-dimensional branched man-
ifolds [W, Theorem C]. Block generalized this construction to self-maps of
manifolds which satisfy the condition that all singularities lie in the stable
manifolds of orbits of sinks [Bl, Theorem A]. In this paper, we consider maps
of the interval which satisfy Block’s condition, and use a method similar to
the one used by Block in [Bl] to embed inverse limits of the interval with this
type of bonding map as attracting sets of diffeomorphisms of R

2. We obtain
a conjugacy on the entire attracting set rather than just an indecomposable
subset of the non-wandering set.

Other related work includes [BM], [Ba], [M], and [Sz]. In [BM], M. Barge
and J. Martin show that any inverse limit of the interval with a single bond-
ing map can be embedded as the full attracting set of a homeomorphism
of the plane. In [Ba], M. Barge gives conditions which guarantee that an
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inverse limit space can be embedded as the full attracting set of a diffeo-
morphism of the plane. Examples given in [Ba] include the “tent” map of
the unit interval. In [M], M. Misiurewicz shows that the inverse limit of I

with bonding map 4x(1−x) can be embedded as the full attracting set of a
diffeomorphism of any manifold of dimension greater than two, and as the
full attracting set of a homeomorphism of any manifold of dimension two.
In [Sz], W. Szczechla shows that if f is a piecewise monotonic transitive
interval map such that the orbit of every critical point is finite and does not
contain any critical points, then (I, f) can be embedded as the attractor of
a diffeomorphism of any two-dimensional manifold.

1. Inverse limits. Let I = [a, b] be an interval and {fn}
∞
n=0 a sequence

of maps, fn : I → I. The inverse limit of I with bonding maps {fn}
∞
n=0 is

defined by

(I, {fn}
∞
n=0) = {(x0, x1, . . .) : xn ∈ I and fn(xn+1) = xn, n = 0, 1, . . .}

and has topology induced by the metric

d((x0, x1, . . .), (y0, y1, . . .)) =
∞∑

n=0

|xn − yn|

2n
.

In this paper, we are interested in inverse limit spaces defined by a sin-
gle bonding map f , i.e. fn = f for n = 0, 1, . . . Let (I, f) denote such

an inverse limit space. In this case we may define f̂ : (I, f) → (I, f) by

f̂((x0, x1, . . .)) = (f(x0), f(x1), . . .) = (f(x0), x0, . . .). The map f̂ is a home-
omorphism and is often referred to as the shift homeomorphism on (I, f).

We say that a continuous interval map f : I → I is nearly Markov with

respect to A1, . . . , Am if A1, . . . , Am are disjoint nondegenerate subintervals
of I such that the following conditions hold:

(1) a ∈ A1 and b ∈ Am,

(2) f(
⋃m

i=1
Ai) ⊂

⋃m

i=1
int(Ai),

(3) diam fk(Ai) → 0 as k → ∞ for i = 1, . . . ,m,

(4) f is one-to-one on each component of I −
⋃m

i=1
Ai.

If f is nearly Markov with respect to A1, . . . , Am, let I1, . . . , Im−1 be the
components of I −

⋃m

i=1
Ai such that if i < j and x ∈ Ii and y ∈ Ij , then

x < y. In this situation, we use the notation I1 < . . . < Im−1.

Our first theorem describes a situation where two continuous maps of
a metric space yield inverse limits of that metric space with topologically
conjugate shift homeomorphisms. In the case when the metric space is an
interval, and the maps are nearly Markov, we obtain a corollary which is
useful in this work.
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Theorem 1.1. Suppose that f and g are continuous maps of a metric

space X and A1, . . . , Am are closed disjoint subsets of X such that

(1) f(x) = g(x) for all x ∈ X −
⋃m

i=1
Ai,

(2) diam(fk(Ai)) → 0 and diam(gk(Ai)) → 0 as k → ∞ for i = 1, . . . ,m,
(3) for each i = 1, . . . ,m, there exists j such that f(Ai) ∪ g(Ai) ⊂ Aj.

Then f̂ : (X, f) → (X, f) is topologically conjugate to ĝ : (X, g) → (X, g).

P r o o f. Let P = {p1, . . . , pr} be the periodic points of f contained in⋃m

i=1
Ai and Q = {q1, . . . , qr} be the corresponding periodic points of g con-

tained in
⋃m

i=1
Ai. Conditions (2) and (3) guarantee a one-to-one correspon-

dence between P and Q. Let (x0, x1, . . .) ∈ (X, f). To define φ : (X, f) →
(X, g) we need to consider two cases. First, consider (x0, x1, . . .) ∈ (X, f)
such that xn ∈

⋃m

i=1
Ai for all n. In this case, (x0, x1, . . .) = (pi1 , pi2 , . . . , pis

,

pi1 , . . .) where {pi1 , pi2 , . . . , pis
} is a subset of P . Let φ((x0, x1, . . .)) =

(qi1 , qi2 , . . . , qis
, qi1 , . . .) where {qi1 , qi2 , . . . , qis

} is the corresponding peri-
odic orbit for g. Note that

φ(f̂(pi1 , pi2 , . . . , pis
, pi1 , . . .)) = φ((pis

, pi1 , . . . , pis
, pi1 , . . .))

= (qis
, qi1 , . . . , qis

, qi1 , . . .)

= ĝ((qi1 , qi2 , . . . , qis
, qi1 , . . .))

= ĝ(φ((pi1 , pi2 , . . . , pis
, pi1 , . . .))).

In the second case, let xn be the first coordinate of (x0, x1, . . .) such that
xn 6∈

⋃m

i=1
Ai. Let φ((x0, x1, . . .)) = (gn(xn), gn−1(xn), . . . , g(xn), xn, . . .).

Note that

φ(f̂((x0, x1, . . .))) = φ((f(x0), x0, . . .))

= (gn+1(xn), gn(xn), . . . , g(xn), xn, . . .)

= ĝ((gn(xn), . . . , g(xn), xn, . . .)) = ĝ(φ((x0, x1, . . .))).

It follows that φ ◦ f̂ = ĝ ◦ φ.
The map φ is one-to-one and onto since we may define φ−1 by inter-

changing the roles of f and g and (I, f) and (I, g) in the above proof. This
completes the proof of Theorem 1.1.

We obtain the following useful corollary.

Corollary 1.2. Suppose that f and g are nearly Markov interval maps

with respect to A1, . . . , Am, and f(x) = g(x) for all x ∈ I −
⋃m

i=1
Ai. Then

f̂ : (I, f) → (I, f) is topologically conjugate to ĝ : (I, g) → (I, g).

2. Embedding inverse limits of nearly Markov maps. In this
section we state and prove the main result of the paper, which answers
Barge’s question for nearly Markov interval maps. We use the following



294 S. HOLTE

definition and notation: If F is a self-homeomorphism of a manifold M , we
call the intersection of the forward images of F the full attracting set of F

and write ΛF =
⋂

k≥0
F k(M).

Theorem 2.1. If f : I → I is nearly Markov with respect to A1, . . . , Am

and f |I −
⋃m

i=1
Ai is differentiable of class Ck (k = 1, . . . ,∞), then there

exists a Ck-diffeomorphism F : R
2 → R

2 such that F |ΛF is topologically

conjugate to f̂ : (I, f) → (I, f).

P r o o f. Suppose that f : I → I is nearly Markov with respect to A1 =
[a1, b1], . . . , Am = [am, bm]. Let I1 < . . . < Im−1 denote the components of
I −

⋃m

i=1
Ai. For each i = 1, . . . ,m, choose ri and si such that [ri, si] ⊂

int(Ai), and f(
⋃m

i=1
Ai) ⊂

⋃m

i=1
[ri, si]. Without loss of generality, we may

assume that f(ai) = f(bi) for i = 1, . . . ,m, for if this is not the case, let
A′

i = [ri, si], i = 1, . . . ,m, and define f ′ : I → I as follows: f ′(x) = f(ri)
for x ∈ A′

i, i = 1, . . . ,m, f ′(x) = f(x) for x ∈ I −
⋃m

i=1
Ai, and extend f ′

to
⋃m

i=1
(Ai − A′

i) so that f ′ is nearly Markov with respect to A′
1, . . . , A

′
m.

Note that f is also nearly Markov with respect to A′
1, . . . , A

′
m and so it

follows from Corollary 1.2 that f̂ : (I, f) → (I, f) is topologically conjugate

to f̂ ′ : (I, f ′) → (I, f ′) and so we replace f with f ′ and Ai with A′
i for

i = 1, . . . ,m. Then f ′ satisfies the condition that it is constant on the
endpoints of A′

i for each i = 1, . . . ,m.

Next let D = I×[0, 1], Di = Ai×[0, 1] for i = 1, . . . ,m, and Ei = Ii×[0, 1]
for i = 1, . . . ,m − 1. Define F : D → D as follows: Let δ = min{bi − ai}

m
i=1

and let {[p1, qi]}
m−1

i=1 be subintervals of [0, 1] such that 0 < p1 < q1 < p2 <

q2 < . . . < pm−1 < qm−1 < 1 and qi+1−pi < δ for i = 1, . . . ,m−2. This last
condition is necessary so that it will be possible to define F so that it is a
contraction on

⋃m

i=1
[ri, si]× [0, 1]. First we define F on

⋃m−1

i=1
Ei (Figure 1):

F (x, t) =

{
(f(x), (1 − t)pi + tqi) for x ∈ Ii and f ′(x) > 0,
(f(x), tpi + (1 − t)qi) for x ∈ Ii and f ′(x) < 0.

Fig. 1
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Note that F ({x} × [0, 1]) ⊂ {f(x)} × [0, 1] for all x ∈
⋃m−1

i=1
Ii and F :⋃m−1

i=1
Ei → D is a Ck-diffeomorphism. Now extend F to a Ck-diffeomor-

phism of all of D so that F (
⋃m

i=1
Di) ⊂

⋃m

i=1
(rj , sj) × [0, 1] and so that

F |
⋃m

i=1
[ri, si] × [0, 1] is a contraction (Figure 2).

Fig. 2

To prove that F is the desired diffeomorphism, let G : D → D be any
continuous map such that G(x, y) = (f(x), ·) for all (x, y) ∈ D, G(x, y) =
F (x, y) for all (x, y) ∈ D −

⋃m

i=1
Di, and G contracts in the y direction.

Note that G is not necessarily one-to-one on
⋃m

i=1
Di. In fact, if x is a

critical point of f , then G({x} × [0, 1]) is a single point. It is easy to
check that F , G, and D1, . . . ,Dm satisfy the conditions of Theorem 1.1
and so F̂ : (D,F ) → (D,F ) is topologically conjugate to Ĝ : (D,G) →

(D,G). Furthermore, F̂ : (D,F ) → (D,F ) is topologically conjugate to
F |ΛF [Sc, Theorem 37]. Therefore, to complete the proof we need to check

that Ĝ : (D,G) → (D,G) is topologically conjugate to f̂ : (I, f) → (I, f).
To this end, define φ : (D,G) → (I, f) as follows: If (z0, z1, . . .) ∈ (D,G)
let φ((z0, z1, . . .)) = (x0, x1, . . .) where xi is the first coordinate of zi. Since
G(x, y) = (f(x), ·) for all (x, y) in D, it follows that φ((z0, z1, . . .)) ∈ (I, f).
Furthermore, since G contracts in the y direction and diam(fk(Ai)) → 0 as
k → ∞ for i = 1, . . . ,m, it follows that φ is one-to-one. To see that φ is
onto, let (x0, x1, . . .) ∈ (I, f). Let πn : (D,G) → D be the projection onto
the nth coordinate of an element of (D,G). Since G(x, y) = (f(x), ·) for all
(x, y) in D, it follows that

⋂
n≥0

π−1

i (xi) is a nonempty subset of (D,G) and

that φ(
⋂

n≥0
π−1

n (xn)) = (x0, x1, . . .).

We have established that Ĝ : (D,G) → (D,G) is topologically conjugate

to f̂ : (I, f) → (I, f), which completes the proof of Theorem 2.1.
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