ALMOST EVERYWHERE CONVERGENCE OF
RIESZ–RAIKOV SERIES

BY

AI HUA FAN (CERGY-PONTOISE)

Let T be a $d \times d$ matrix with integer entries and with eigenvalues > 1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $\sum_{n=1}^{\infty} c_n f(T^n x)$ converges almost everywhere with respect to Lebesgue measure provided that $\sum_{n=1}^{\infty} |c_n|^2 \log^2 n < \infty$.

1. Introduction. Given an arbitrary nonatomic dynamical system (X, T, μ). Suppose

$$0 \leq c_n \downarrow, \quad c_n = O(n^{-1}), \quad \sum_{n=1}^{\infty} c_n = \infty.$$

Then there exists a function $f \in L^\infty(X)$ with $\int f \, d\mu = 0$ such that

$$(1) \quad \sum_{n=1}^{\infty} c_n f(T^n x)$$

diverges μ-a.e. ([3], [4], [8]). On the other hand, it is easy to exhibit some specific functions like $f = g - T g$ with $g \in L^\infty(X)$ for which the series (1) converges μ-a.e. It is then natural to ask whether there are other classes of functions such that the series (1) converges μ-a.e.

In this paper, we consider a special system (\mathbb{T}^d, T, dx) where T is an endomorphism of \mathbb{T}^d and dx is Haar measure on \mathbb{T}^d. We prove that (1) converges a.e. for any lipschitzian continuous function.

In reality, more can be proved. For $f \in C(\mathbb{T}^d)$, we denote by $\omega_f(\cdot)$ the modulus of continuity of f. For $T \in M_d(\mathbb{Z})$, we denote by $\|T\|$ the operator norm of T corresponding to a given norm on \mathbb{R}^d. Our main result is

Theorem 1. Let $T_n \in M_d(\mathbb{Z})$ with $\det T_n \neq 0$ and $f_n \in C(\mathbb{T}^d)$ with zero
mean value and \(\int |f_n| \, dx = O(1) \) \((n \geq 1)\). Suppose
\[
\sup_n \omega_{f_n}(\tau_{n,p}) = O(p^{-\sigma}) \quad (\sigma > 0),
\]
where
\[
\tau_{n,p} = \sum_{k=0}^{\infty} \| T_{n+1}^{-1} \cdots T_{n+p+k}^{-1} \| \quad (n \geq 1, \ p \geq 1).
\]
Then the series
\[
\sum_{n=1}^{\infty} c_n f_n(T_n T_{n-1} \cdots T_1 x)
\]
converges a.e. if one of the following conditions is satisfied:
\(\sigma > 1\),
\[
\sum_{n=1}^{\infty} |c_n|^2 \log^2 n < \infty,
\]
\(\sigma = 1\),
\[
\sum_{n=1}^{\infty} |c_n|^2 n^\varepsilon \log^2 n < \infty \quad (\text{for some } \varepsilon > 0),
\]
\(\sigma < 1\),
\[
\sum_{n=1}^{\infty} |c_n|^2 n^{1-\sigma} \log^2 n < \infty.
\]

Corollary 1. Let \(T \in M_d(\mathbb{Z}) \) with all eigenvalues > 1 in modulus. For any continuous function \(f \) such that \(\omega_f(r) = O((\log(1/r))^{-\sigma}) \) \((\text{for some } \sigma > 0)\), the series (1) converges a.e. provided one of the conditions (4)–(6) is satisfied.

The proof of Theorem 1 is based on the following Theorem 2. For \(n \geq 1 \), let \(X_n \) be a finite group equipped with the discrete topology and let \(\mu_n \) be a probability measure on \(X_n \). Consider then the infinite space \(X = \prod X_n \) and the infinite product measure \(\mu = \bigotimes \mu_n \). The topology of \(X \) can be defined by the usual ultrametric. We denote by \(I_n(x) \) the \(n \)-cylinder containing \(x \).
For \(f \in C(X) \), define
\[
\omega_n(f) = \sup_{I_n(x) \neq I_n(y)} |f(x) - f(y)|.
\]

Theorem 2. Let \(\{f_n\}_{n \geq 1} \) be a sequence of continuous functions. Suppose that \(f_n \) does not depend upon the \(n-1 \) first coordinates and \(E_{\mu} f_n = 0 \). Then
\[
|E_{\mu} f_n f_{n+p}| \leq \omega_{n+p-1}(f_n) E_{\mu} |f_{n+p}|
\]
for \(n \geq 1 \) and \(p \geq 1 \).

We shall follow the idea of [2], showing quasi-orthogonality. But our techniques are different from those of [2]. In our case, we observe that the general term of (3) is invariant under the action of some finite group which becomes more and more dense when \(n \) increases and the group \(T^d \) can be
riesz–raikov series

represented by a suitable infinite product of finite groups (see §3). The problem then becomes one on an infinite product space which is treated in §2. The deduction of Theorem 1 from Theorem 2 is given in §4.

We call (1) and (3) Riesz–Raikov series because of the first works of D. A. Raikov ([5]) and of F. Riesz ([6]) in the case of one dimension. A similar one-dimensional result is contained in [7].

2. Proof of Theorem 2. We will consider the infinite product measure \(\mu \) as a \(G \)-measure in the sense of [1]. Here is the description.

Let \(n \geq 1 \). Define, for \(x = (x_1, x_2, \ldots) \in X \),

\[
F_n(x) = \prod_{j=1}^{n} \mu_j(x_j).
\]

We then have

\[
\sum_{\gamma \in \Gamma_n} F_n(\gamma) = 1 \quad (\forall x \in X),
\]

where \(\Gamma_n = \prod_{j=1}^{n} X_n \). \(\Gamma_n \) will be viewed as a subgroup of \(X \). So, for \(x \in X \) and \(\gamma \in \Gamma_n \), the group product \(\gamma x \) will mean \((x_1 + \gamma_1, \ldots, x_n + \gamma_n, x_{n+1}, \ldots) \).

Denote by \(\mathcal{F}^n \) the \(\sigma \)-field generated by all but the first \(n \) coordinates of \(X \).

We have the following three facts:

Fact 1. The measure \(\mu \) is actually the unique measure such that for any \(n \geq 1 \),

\[
\frac{d\mu}{d\mu_n} = F_n \quad \mu\text{-a.e. where } \mu_n = \sum_{\gamma \in \Gamma_n} \mu \circ \gamma,
\]

\(\mu \circ \gamma \) being the image of \(\mu \) under the action of \(\gamma \).

Fact 2. For \(f \in L^1(\mu) \) we have

\[
\mathbb{E}_\mu(f \mid \mathcal{F}^n) = \sum_{\gamma \in \Gamma_n} f(\gamma x)F_n(\gamma x).
\]

Fact 3. For \(f \in C(X) \), the reverse martingale \(\mathbb{E}_\mu(f \mid \mathcal{F}^n) \) converges everywhere (even uniformly) to \(\mathbb{E}_\mu f \).

Facts 1 and 2 are easily verified and Fact 3 is a consequence of Fact 1 ([1]).

Let us now prove the estimate in Theorem 2. By Facts 3 and 2, we have

\[
\mathbb{E}_\mu f_n f_{n+p} = \lim_{N \to \infty} \mathbb{E}_\mu(f_n f_{n+p} \mid \mathcal{F}^N) = \lim_{N \to \infty} \sum_{\gamma \in \Gamma_N} f_n(\gamma x) f_{n+p}(\gamma x) F_N(\gamma x).
\]

Let \(\tilde{f}_n(x) = f_n(x_1, \ldots, x_{n+p-1}, 0, \ldots) \). As \(f_n = f_n - \tilde{f}_n + \tilde{f}_n \), the sum under the limit is bounded by

\[
\omega_{n+p-1}(f_n) \sum_{\gamma \in \Gamma_n} |f_{n+p}(\gamma x)| F_N(\gamma x) + \left| \sum_{\gamma \in \Gamma_N} \tilde{f}_n(\gamma x) f_{n+p}(\gamma x) F_N(\gamma x) \right|.
\]
Again by Facts 2 and 3, the first sum in the preceding expression has the limit
\[
\lim_{N \to \infty} \sum_{\gamma \in \Gamma_N} |f_{n+p}(\gamma x)| F_N(\gamma x) = E_{\mu} |f_{n+p}|
\]
Since the function \(\tilde{f}_n(x) \) depends only upon the first \(n + p - 1 \) coordinates and the function \(f_{n+p} \) does not depend upon the first \(n + p - 1 \) coordinates, the second sum can be written as
\[
\left(\sum_{\gamma' \in \Gamma_{n+p-1}} \tilde{f}_n(\gamma' x) F_{n+p-1}(\gamma' x) \right) \left(\sum_{\gamma'' \in X_{n+p} \times \cdots \times X_N} f_{n+p}(\gamma'' x) \prod_{j=n+p}^{N} \mu_j(\gamma'' x) \right).
\]
The first factor in the preceding product is independent of \(N \) and the second one equals \(E_{\mu} (f_{n+p} | F_N) \) and thus tends to \(E_{\mu} f_{n+p} = 0 \) as \(N \to \infty \). This completes the proof of Theorem 2.

3. Some lemmas. Suppose the conditions of Theorem 1 are satisfied. Before giving the proof of Theorem 1 in the next section, we give here some lemmas.

Recall that \(\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d \) is a quotient space. For simplicity, we introduce the following notation. Let \(\pi \) be the natural projection from \(\mathbb{R}^d \) onto \(\mathbb{R}^d / \mathbb{Z}^d \).

For \(x \in \mathbb{R}^d \), we write \(\dot{x} = \pi(x) \). By extension, if \(F \) is a map with values in \(\mathbb{R}^d \), we write \(\dot{F} = \pi \circ F \). Similarly, if \(t \) is a point of \(\mathbb{T}^d \) and \(G \) is a subgroup of \(\mathbb{T}^d \), we define \([t]_G = t + G\) which is the natural projection from \(\mathbb{T}^d \) into \(\mathbb{T}^d / G \).

Let \(\Phi \) be an endomorphism of \(\mathbb{R}^d \) defined by a nonsingular matrix with integer entries and \(\Psi \) be its inverse. We denote by \(\varphi \) the induced homomorphism of \(\Phi \) on \(\mathbb{T}^d \). Then the relation between \(\varphi \) and \(\Phi \) is \(\pi \circ \Phi = \varphi \circ \pi \), i.e.
\[
\hat{\Phi}(x) = \varphi(\dot{x}).
\]
The first lemma gives a correspondence between \(\mathbb{T}^d / \text{Ker} \varphi \) and \(\dot{\Psi}(D) \) where \(D \) is the hypercube \([0,1]^d\).

Lemma 1. The map \(\pi_\varphi : \dot{\Psi}(D) \to \mathbb{T}^d / \text{Ker} \varphi \) defined by \(\pi_\varphi(t) = [t]_{\text{Ker} \varphi} \) is one-to-one.

Proof. As \(D + \mathbb{Z}^d = \mathbb{R}^d \) and \(\Psi \) is nonsingular, we have the equality
\[
\Psi(D) + \mathbb{Z}^d = \mathbb{R}^d.
\]
Notice that \(\text{Ker} \varphi = \Psi(\mathbb{Z}^d) / \mathbb{Z}^d \). Thus the preceding equality implies that
\[
\dot{\Psi}(D) + \text{Ker} \varphi = \mathbb{T}^d.
\]
This equality implies the surjectivity of \(\pi_\varphi \). Suppose now we are given two
points s and t in $\hat{\Psi}(D)$. Suppose that $[s]_{\text{Ker } \varphi} = [t]_{\text{Ker } \varphi}$. We then have
\[\varphi(s) = \varphi(t). \]
But $s = \hat{\Psi}(x)$ for some $x \in D$ and $t = \hat{\Psi}(y)$ for some $y \in D$. These facts, together with (7) and the last equality, imply $\hat{\Psi}(x) = \hat{\Psi}(y)$, which means $x = y \pmod{\mathbb{Z}^d}$. Thus $s = t$, so we have proved the injectivity. \[\Box \]

For $n \geq 1$, we denote by Φ_n the endomorphism $T_n T_{n-1} \ldots T_1$ and by φ_n the induced homomorphism on \mathbb{T}^d. Let
\[G_n = \text{Ker } \varphi_n, \quad G^n = \mathbb{T}^d / G_n. \]
Obviously, $\{G_n\}_{n \geq 1}$ is an increasing sequence of finite subgroups of \mathbb{T}^d. By Lemma 1, G^n is identified with $\hat{\Psi}_n(D)$. Now we introduce
\[H_n = G_n / G_{n-1} \quad (N \geq 1) \]
($G_0 = \{0\}$).

Lemma 2. Given a point $h \in H_n$, there is one and only one point $t \in G_n \cap \hat{\Psi}_{n-1}(D)$ such that $h = [t]_{G_{n-1}}$.

Proof. Let $t_0 \in G_n$ be a representative of h. As $\hat{\Psi}_{n-1}(D) + G_{n-1} = \mathbb{T}^d$, there exist a $g \in G_{n-1}$ and a $t \in \hat{\Psi}_{n-1}(D)$ such that $t_0 = t + g$. So $h = [t]_{G_{n-1}}$ and $t \in G_n \cap \hat{\Psi}_{n-1}(D)$ since $g \in G_{n-1} \subset G_n$. Such a t is unique since each point of $\hat{\Psi}_{n-1}(D)$ corresponds to a unique coset of G_n. \[\Box \]

Let $\| \cdot \|$ be a norm of \mathbb{R}^d. We introduce the associated quotient metric on \mathbb{T}^d defined by
\[d(x, y) = \inf_{z \in \mathbb{Z}^d} \| (x - y) - z \|. \]
This metric on \mathbb{T}^d is invariant under translations. We sometimes write $d(x, y) = \| x - y \|_{\mathbb{T}^d}$. For two subsets A and B of \mathbb{T}^d, we denote by $d(A, B)$ the distance from A to B. By the two preceding lemmas, G^n and H_n can be identified with subsets of \mathbb{T}^d. From now on G^n and H_n will denote their corresponding subsets on \mathbb{T}^d. The following fact is evident.

Lemma 3. $d(0, G^n) \leq \| \Psi_n \|$ and $d(0, H_n) \leq \| \Psi_{n-1} \|$.

We therefore construct the infinite product $X = \prod_{n=1}^{\infty} H_n$ equipped with the usual ultrametric, and the map $q : X \to \mathbb{T}^d$ defined by
\[q(h_1, h_2, \ldots) = \sum_{n=1}^{\infty} h_n. \]

Lemma 4. The map $q : X \to \mathbb{T}^d$ is continuous and surjective.

Proof. We have the continuity because of (2) which implies
\[\sum_{n} \| T_n^{-1} \ldots T_1^{-1} \| < \infty. \]
Let $\Gamma_n = \prod_{j=1}^n H_j$. Then Γ_n can be regarded as a subset of X. Consider the restriction of q to Γ_n. We claim that $q(\Gamma_n) = G_n$. In fact, first we observe that $q(\Gamma_n) \subset G_n$. Suppose $h_j' \in H_j (1 \leq j \leq n)$ and $h_1' + \cdots + h_n' = h_1'' + \cdots + h_n''$. Then $h_n'-h_n'' \in G_n-1$. According to Lemma 1, this is impossible unless $h_n' = h_n''$. By induction, it follows that $h_j' = h_j'' (1 \leq j \leq n)$. This proves the injectivity of the restriction of q to Γ_n. However, the cardinality of Γ_n is the same as that of G_n, so $q(\Gamma_n) = G_n$. By condition (2), the union of $G_n (n \geq 1)$ is dense in G. Thus the closure of the image of q is G. But X is compact and hence q is surjective.

Let $\{\mu_n\}$ be the sequence of probability measures defined by

$$\mu_n(h) = |H_n|^{-1} \quad (h \in H_n).$$

Let $\mu = \otimes_{n=1}^\infty \mu_n$ and let $q \mu$ be the image by q of μ. That is to say, $q \mu$ is the measure on T^d characterized by

$$(8) \quad \int_{T^d} f \, dq \mu = \int_X f \circ q \, d\mu \quad (f \in C(T^d)).$$

Lemma 5. If μ is defined as above, then $q \mu$ is Haar measure λ on T^d.

Proof. Let $G_n^\infty \gamma \in G_n$ being a partition of T^d, we have

$$\lambda(\gamma + G_n^\infty) = \frac{1}{|G_n|} \quad (\gamma \in G_n),$$

because

$$\sum_{\gamma \in G_n} \lambda(\gamma + G_n^\infty) = 1 \quad \text{and} \quad \lambda(\gamma + G_n^\infty) = \lambda(G_n^\infty).$$

Now given $f \in C(T^d)$, we have by Fact 2,

$$\int_X f \circ q d\mu = \lim_{n \to \infty} \mathbb{E}_\mu(f \circ q \mid F_n^u) = \lim_{n \to \infty} \sum_{h_1, \ldots, h_n} f \circ q(h_1, \ldots, h_n, x_{n+1}, \ldots).$$

Given $\varepsilon > 0$, f being uniformly continuous, there is a $\delta > 0$ such that $|f(x) - f(y)| \leq \varepsilon$ if $||x-y||_T < \delta$. Choose an $N > 0$ such that $\sum_{n \geq N} d(0,G_n^u) < \delta$. Then for $n \geq N$ we have

$$\frac{1}{|G_n|} \sum_{h_1, \ldots, h_n} f \circ q(h_1, \ldots, h_n, x_{n+1}, \ldots) = \sum_{\gamma \in G_n} f(\gamma) \lambda(\gamma + G_n^u) + O(\varepsilon).$$

The last sum tends to $\int f d\lambda$ as $N \to \infty$. ■
4. **Proof of Theorem 1.** Recall that a sequence \(\{h_n\}_{n \geq 1} \) of elements in a Hilbert space is said to be quasi-orthogonal if the bilinear form
\[
\sum_{n,m} \langle h_n, h_m \rangle a_n b_m
\]
on \ell^2(\mathbb{N}^*) \times \ell^2(\mathbb{N}^*) is bounded. Suppose that the Hilbert space is \(L^2(X, \mu) \) for some measure space \((X, \mu)\). For a quasi-orthonormal sequence \(\{h_n\} \subset L^2(\mu) \), we may apply Men'shov’s theorem ([9]), which says that the series
\[
\sum c_n h_n(x)
\]
converges \(\mu \)-a.e. provided the numerical series \(\sum |c_n|^2 \log^2 n \) converges. So, in order to prove Theorem 1, it suffices ([2], p. 237) to show the following estimate, uniform in \(n \):
\[
(9) \quad \int_T f_n(T_n T_{n-1} \ldots T_1 x) f_{n+p}(T_{n+p} T_{n+p-1} \ldots T_1 x) dx = O(p^{-\sigma}).
\]
In fact, let \(h_n(x) = f_n(T_n T_{n-1} \ldots T_1 x) \). If \(\sigma > 1 \), the sequence \(\{h_n\} \) is quasi-orthogonal. If \(\sigma = 1 \), the sequence \(\{n^{-\varepsilon/2} h_n\} \) (\(\forall \varepsilon > 0 \)) is quasi-orthogonal. If \(\sigma < 1 \), the sequence \(\{n^{-(1-\sigma)/2} h_n\} \) is quasi-orthogonal.

Now we deduce (9) from Theorem 2.

According to Lemma 5, we consider the sequence \(f_n \circ \Phi_n \circ q \) (\(n \geq 1 \)) defined on \(X \) and apply Theorem 2 to it. Then to prove (9), it suffices to show
\[
(10) \quad \omega_{n+p-1}(f_n \circ \Phi_n \circ q) = O(p^{-\sigma}).
\]
Suppose \(x = (x_j) \) and \(y = (y_j) \) belong to \(X \) and satisfy \(x_j = y_j \) for \(1 \leq j \leq n + p - 1 \). We have
\[
q(x) - q(y) = \sum_{j=n+p}^\infty (x_j - y_j).
\]
As \(x_j, y_j \in H_j \subset G^{j-1} \), Lemma 2 implies that there exist \(\xi'_j, \xi''_j \in D \) such that
\[
x_j = \psi_{j-1} \xi'_j, \quad y_j = \psi_{j-1} \xi''_j \pmod{\mathbb{Z}^d}.
\]
Then
\[
\|\Phi_n \circ q(x) - \Phi_n \circ q(y)\|_{T^d} \leq \left\| \Phi_n \left(\sum_{j=n+p}^\infty \psi_j (\xi'_j - \xi''_j) \right) \right\|
\]
\[
= \left\| \sum_{j=n+p}^\infty \Phi_n \psi_j (\xi'_j - \xi''_j) \right\| = \sum_{j=n+p}^\infty \|T_{n+1}^{-1} \ldots T_j^{-1}\|.
\]
With this in mind, we can deduce (10) from (2). ■

Proof of Corollary. Let \(\varrho \) be the spectral radius of \(T^{-1} \). By the hypothesis, \(\varrho < 1 \). Let \(\varrho < \varrho_1 < 1 \). For \(n \) sufficiently large we have
\[\|T^{-n}\| < \varrho_1^n. \]
Consequently,
\[\tau_{n,p} = O\left(\sum_{k=0}^{\infty} \varrho_1^{p+k} \right) = O(\varrho_1^p). \]
This estimate and the hypothesis on \(f \) allow us to verify condition (2) of Theorem 1 with \(\sigma > 0 \).

REFERENCES