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ON HILBERT SETS AND
CΛ(G)-SPACES WITH NO SUBSPACE ISOMORPHIC TO c0

BY

DANIEL L I (ORSAY)

Introduction. Arithmetical properties of lacunary sets, in particular
Sidon sets, in discrete abelian groups received a great attention during the
sixties and seventies (see [9] and [30]). We are interested here in Hilbert
subsets of Z, and give a new proof of the fact that a subset of Z whose
uniform density is strictly positive must contain a Hilbert set Λ; since then
CΛ(T) has a subspace isomorphic to c0 (Th. 2), we recover a result of
F. Lust-Piquard saying that the uniform density of Λ is null if CΛ has no
subspace isomorphic to c0.

In the second part, we consider, for a subset Λ of a discrete abelian
group Γ = Ĝ, the property that CΛ(G) does not contain an isomorphic
copy of c0. This property appears in the study of Rosenthal sets. Let us
recall that a Rosenthal set Λ is a subset of Γ for which every element of
L∞Λ (G) has a continuous representative. This name was given by R. Dressler
and L. Pigno after H. P. Rosenthal had constructed such sets which are
not Sidon sets ([47]), and they showed that Rosenthal sets are Riesz sets
([13], [14]). By the Bessaga–Pe lczyński Theorem, if Λ is a Rosenthal set,
then CΛ(G) does not have any subspace isomorphic to c0; moreover, this
latter property implies that Λ is a Riesz set ([29], [31]), but not conversely.
F. Lust-Piquard conjectured that Λ is a Rosenthal set as soon as CΛ has no
subspace isomorphic to c0. We give in the second part of this paper some
partial answers, and ask some other connected questions.

The notations will be classical and can be found for instance in [9], [11]
or [29].

Hilbert sets. In this section, we give some Banach space and arith-
metical properties of Hilbert sets. Let us first recall the definition.

Definition 1 ([25], Def. 7 and Rem. 8.2.1, p. 242). Λ ⊆ Z is said to
be a Hilbert set if there are two sequences (pn)n≥1 and (qn)n≥1 in Z such
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that pn 6= 0 for all n ≥ 1 and

Λ =
⋃
n≥1

Λn

with Λn = {qn +
∑n

k=1 εkpk : εk = 0 or 1}.
Theorem 2. If CΛ(T) has no subspace isomorphic to c0, then Λ ⊆ Z

does not contain any Hilbert set.

P r o o f. Substituting, if necessary, Λ by −Λ, and making blocks (pkn +
. . . + pkn+1)n≥1, we may and do suppose that

(∀n ≥ 1) pn ≥ 2, pn+1 ≥ 2pn

and ∏
k≥1

(
1− 2π

pk

pk+1

)
≥ 9

10
.

Setting

fn(x) = e2πiq2nx
2n−2∏
k=1

(
1 + e2πipkx

2

)
1− e2πip2n−1x

2
· 1− e2πip2nx

2
,

we have fn ∈ CΛ, ‖fn‖∞ ≤ 1 and ‖fn‖∞ ≥ 9/10, by virtue of

Lemma 3 ([39], lemme 2). Let (pk)k≥1 be a sequence of real positive
numbers such that pk+1 ≥ 2pk for all k. On every interval of length 2/p1,
we can find , for each sequence (rk)k≥1 of real numbers, an x ∈ R such that

|e2πirk − e2πipkx| ≤ 4π
pk

pk+1
, ∀k ≥ 1.

On the other hand, since

|sin a1 sin a2|+ |cos a1 cos a2 sin a3 sin a4|+ . . .

+ |cos a1 cos a2 . . . cos a2n−2 sin a2n−1 sin a2n| ≤ 1,

as remarked in [22], lemme 2, and [40], p. 250, we have
∞∑

n=1

|fn(x)| ≤ 1, ∀x ∈ T.

The Bessaga–Pe lczyński Theorem ([1], Th. 5; see also [11], Th. V.8, or [29],
Prop. 2.e.4) ensures then that CΛ has a subspace isomorphic to c0.

R e m a r k. The proof is taken from arguments Y. Meyer used for ultra-
thin symmetric sets ([40], pp. 245–250).

The next result is an arithmetical property of Hilbert sets:

Theorem 4. If Λ ⊆ Z does not contain any Hilbert set , the uniform
density d∗(Λ) of Λ is null.
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We found two proofs of this theorem. We are only going to detail the
second one since we learned afterwards that N. Hindman had already pub-
lished the first one (see [23], Th. 11.11); let us only mention that one iterates
the following result of D. Kazhdan ([43], p. 152; [24], Th. 3.1): if Λ ⊆ N and
d∗(Λ) > 0, then for each n ∈ N there is m ≥ n such that d∗(Λ∩(Λ−m)) > 0.
The second proof uses the following notion:

Definition 5 (Bourgain–Mikheev classes; [2], p. 40; [4], Def. 4.23; [41],
Def. 2). Let S0 be the class of one-element subsets of Z. For each ordinal
α ≥ 1, Sα is defined by transfinite induction:

Sα = {Λ ⊆ Z : ∀N ≥ 1, ∃Λ1, . . . , Λn ∈ Sβ , β < α, such that
λ, λ′ ∈ Λ\(Λ1, . . . , Λn), λ 6= λ′ ⇒ |λ− λ′| ≥ N}.

Let S = Sω1 =
⋃

α<ω1
Sα.

ω0 and ω1 are respectively the first infinite ordinal and the first uncount-
able ordinal. The class S1 is the class of subsets of Z whose pace tends to
infinity ([9], Def. 8, p. 16, and [7], Def. 5.1). Every Sidon set is in S2 ([7],
p. 72, Corol.).

The proof of Theorem 4 follows immediately from the next two results:

Theorem 6 (J. Bourgain, [4], Prop. 4.26). If Λ contains no Hilbert set ,
then Λ ∈ S.

Theorem 7. d∗(Λ) = 0 for every Λ ∈ S.

Let us recall that

d∗(Λ) = lim
h→∞

[
sup
a∈Z

card(Λ ∩ [a, a + h])
h

]
.

Actually, I. M. Mikheev shows ([41], Th. 2) that d∗(Λ) = 0 for Λ ∈ S<ω0 =⋃
α<ω0

Sα; his argument can be pursued transfinitely: of course d∗(Λ) = 0
for Λ ∈ S0 and we assume that d∗(Λ) = 0 for all Λ ∈ Sβ with β < α; then
if Λ ∈ Sα and N ≥ 1, we can write

Λ = Λ1 ∪ . . . ∪ ΛK ∪ Λ∗

with Λ1, . . . , ΛK ∈ Sβ , β < α and π(Λ∗) = inf{|λ − λ′| : λ, λ′ ∈ Λ∗,
λ 6= λ′} ≥ N ; then

d∗(Λ) ≤ d∗(Λ1) + . . . + d∗(ΛK) + d∗(Λ∗) ≤ 1/N,

so that d∗(Λ) = 0.

R e m a r k s. 1. By Theorem 4 every Λ ⊆ Z such that d∗(Λ) > 0 contains
a Hilbert set. An example of Strauss shows that Λ does not need to contain
a translate of an IP-set (i.e. a Hilbert set with qn = q for all n) ([43], p. 151;
[23], Th. 11.6).
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2. In [42], Th. 3, I. M. Mikheev showed that if Λ 6∈ S<ω0 , then Λ contains
parallelepipeds of arbitrarily large dimensions, i.e.⋃

n≥1

{
qn +

n∑
k=1

εkpn,k : εk = 0 or 1
}

([15], Def., p. 129). The converse is not true: there are easy examples of sets
whose pace tends to infinity, i.e. in S1, but which contain parallelepipeds
of arbitrarily large dimensions. I. M. Mikheev also showed that Λ(p)-sets
(p > 0) cannot contain any parallelepiped of arbitrarily large dimensions
([42], Th. 3; see also [15], Th. 4 for p ≥ 1), hence belong to S<ω0 ; however,
the set of primes P contains parallelepipeds of arbitrarily large dimensions
([42], Corol. 3). It is not known if P 6∈ S<ω0 . It is worth pointing out that
CP(T) contains subspaces isomorphic to c0 ([36], Th. 2). Nevertheless, it is
not known whether P ∈ S or P 6∈ S. At first glance, P 6∈ S seems to be very
strong since it would imply the existence of an infinite sequence (qn)n≥1 of
prime numbers and an infinite sequence (pn)n≥1 of integers such that for
every n ≥ 1 and every (ε1, . . . , εn) ∈ {0, 1}n the numbers ql +

∑n
k=1 εkpk

with l ≥ n are all prime; this is connected with the k-tuples conjecture
(see [10], p. 583). However, if aZ + b contains neither −1 nor +1, then
P∩ (aZ + b) cannot contain a translate of an IP-set, since all points of such
a set are accumulation points for the Bohr topology (after [16], Th. 2.19,
Lemma 9.4 and Prop. 9.6), whereas all points of P ∩ (aZ + b) are isolated
for this topology.

As a corollary of Theorems 2 and 4, we recover the following result of
F. Lust-Piquard ([33], second Th. 3.1; [35], Th. 3), which she showed by
using the notion of invariant mean on `∞(Z):

Corollary 8. If CΛ(T) has no subspace isomorphic to c0, then d∗(Λ)
= 0.

We finish this section by noting that Bourgain’s Theorem 6 has a con-
verse; this converse, for the dual of the Cantor group instead of Z, is proved
in [4], Prop. 4.20, Prop. 4.25 and Corol. 4.24 (see the proof of Corol. 4.28),
but Proposition 4.20 is not true for T (see [4], Remark 2, p. 78).

Theorem 9. Λ ∈ S implies that Λ contains no Hilbert set.

P r o o f. The following version of the Hindman–Miliken Theorem is
needed:

Theorem 10 (J. Bourgain, [3], Prop. 2). If a finite union of sets Λ =
Λ1 ∪ . . . ∪ Λn contains a Hilbert set , then one of the Λk’s also contains a
Hilbert set.
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Assume then that Λ ∈ Sα is a Hilbert set:

Λ =
⋃
n≥1

{
qn +

n∑
k=1

εkpk : εk = 0 or 1
}

;

we may assume that 1 ≤ p1 ≤ p2 ≤ . . . For N > p1, we can write, since
Λ ∈ Sα,

Λ = Λ1 ∪ . . . ∪ ΛK ∪ Λ∗

with Λ1, . . . , ΛK ∈ Sβ , β < α and with the pace

π(Λ∗) = inf{|λ− λ′| : λ, λ′ ∈ Λ∗, λ 6= λ′} ≥ N.

There is an injective map j : Λ∗ → Λ1∪ . . .∪ΛK which associates with every
λ = qn +ε1p1 +

∑n
k=2 εkpk ∈ Λ∗ the number λ̃ = qn + ε̃1p1 +

∑n
k=2 εkpk ∈ Λ,

where ε̃1 = 1 if ε1 = 0 and ε̃1 = 0 if ε1 = 1; we have λ̃ ∈ Λ1∪. . .∪ΛK = Λ\Λ∗
since |λ− λ̃| = p1 < N.

By Theorem 10, either Λ∗ or one of the Λk’s contains a Hilbert set. If
Λ∗ contains a Hilbert set, then the image of this Hilbert set by j is also a
Hilbert set and is contained in Λ1 ∪ . . .∪ΛK ; hence from Theorem 10 again
it follows that one of the Λk’s, which is in Sβ , β < α, contains a Hilbert set.

Since S0 obviously does not contain any Hilbert set, an inductive argu-
ment leads us to a contradiction.
Questions. (a) Does Λ contain a Hilbert set if Λ ⊆ Z is not a Riesz

set? It would be sufficient to know if “Λ ∩ (Λ + n) is a Riesz set for every
n ∈ Z\{0}” implies that Λ itself is a Riesz set. By Theorem 9, a weaker
question is: Is every Λ whose pace tends to infinity a Riesz set?

(b) Λ ⊆ Z is said to be of first kind ([9], p. 29) if there is a constant
C > 0 such that for every a > 0 there is Λ∗ ⊆ Λ such that Λ\Λ∗ is a finite
set and

‖P‖∞ ≤ C sup
0≤x≤a

|P (x)|

for every trigonometric polynomial P with spectrum in Λ∗. The interval
[0, a] is said to be C-associated with Λ∗. It is easy to see that the pace
of every set of first kind tends to infinity ([38], p. 31). Analogously to the
Bourgain–Mikheev classes, we define P0 = S0, and for every ordinal α ≥ 1,

Pα = {Λ ⊆ Z : ∃C > 0,∀a > 0,∃Λ∗ ⊆ Λ such that [0, a] is
C-associated with Λ∗ and Λ\Λ∗ is a finite
union of elements of Pβ , β < α},

and P=
⋃

α<ω1
Pα. Then P1 is the class of sets of first kind, and every Sidon

set is in P2 ([5], Corol. 3.5 and [6], Part 3, Corol. 2; see also [8], Corol. 3.10).
Since P1 ⊆ S1, it is easy to see by induction that Pα ⊂ Sα for every α. We
have the following question: If Λ 6∈P, does CΛ(T) have a subspace isomorphic
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to c0? It is worth pointing out that there exist sets Λ ⊆ Z whose pace tends
to infinity, that is, Λ ∈ S1, but for which CΛ(T) ⊇ c0. For instance, the set
of squares is such a set ([36], Th. 7(b)); another unpublished example is due
to J.-P. Kahane; it was communicated to me by M. Déchamps-Gondim.

CΛ(G)-spaces with no subspace isomorphic to c0. In this section,
we recall some questions about these spaces, ask some new ones and give
some partial answers. The main question is: Is Λ a Rosenthal set if CΛ(G)
does not contain a subspace isomorphic to c0? Weaker questions are: Is Λ
a Rosenthal set if:

(a) CΛ(G) is weakly sequentially complete? A partial answer was given by
F. Lust-Piquard: it is “yes” if moreover L1/L1

Λ′ has no subspace isomorphic
to `1 ([32], Ch. 4, Th. 6a, p. 67);

(b) CΛ(G) has the Schur property? ([9], p. 30, question 9);
(c) L∞Λ (G) has no subspace isomorphic to c0?

A partial answer was given by F. Lust-Piquard again who showed that
Λ is a Rosenthal set if L∞Λ has the Schur property ([34], Prop. 3.b; [32],
Chap. IV, Th. 6b, p. 67; see also [9], p. 30, (v)). Other partial answers are
given by the following two propositions:

Proposition 11. If L∞Λ (G) has Property (V∗), then Λ is a Rosenthal
set.

The hypothesis is satisfied by every Sidon set Λ. The definition of Prop-
erty (V∗) was given in [45], and [21], Prop. III.1, gives equivalent definitions;
for instance: every non-relatively weakly compact bounded set contains a
basic sequence whose span is isomorphic to `1 and is complemented in the
whole space. Banach spaces with Property (V∗) are weakly sequentially
complete ([45], [21]); in particular, CΛ(G) is weakly sequentially complete if
L∞Λ (G) has Property (V∗).

P r o o f o f P r o p o s i t i o n 11. Let f ∈ L∞Λ . By [19], Prop. I.1, the
operator Čf : L1/L1

Λ′ → CΛ ⊆ L∞Λ defined by Čf (g) = f ∗ ǧ is weakly
compact; hence Čf ◦ π : L1 → CΛ is also weakly compact, and so is
representable ([12], Th. III.2.12). Therefore f is represented by a continuous
function ([37], Prop. II.2) or ([32], Chap. IV, lemme 1, p. 71).

Proposition 12. If Λ′ = Γ\(−Λ) is nicely placed , then L∞Λ (G) does
have subspaces isomorphic to c0.

Let us recall ([18], Def. 1.4) that Λ′ is nicely placed if the unit ball of
L1

Λ′ is closed in measure.

P r o o f o f P r o p o s i t i o n 12. From [17], Th. 3, or [26], Prop. 4,
L1/L1

Λ′ is an L-summand in its bidual, and so has Property (V∗) ([46],
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Th. 3); therefore it contains complemented subspaces isomorphic to `1 ([21],
Prop. III.1); hence L∞Λ contains subspaces isomorphic to c0.

Proposition 12 strengthens Remark 4, p. 327 in [27], where it was noticed
that Λ is not a Rosenthal set if Λ′ is nicely placed.

Another weaker question is:
Is Λ an ergodic set if CΛ or L∞Λ has no subspace isomorphic to c0?
Let us recall ([28]) that Λ is an ergodic set if every f ∈ L∞(G) whose

spectrum is contained in a translate of Λ has a unique invariant mean; every
Rosenthal set is ergodic, but not conversely ([36], Th. 4).

Recently, G. Godefroy and F. Lust-Piquard introduced the following
extension Property (ρ) for the Dirac measure δ0:

Definition 13 ([20], Def. V.1). Λ ⊂ Γ has Property (%) if there exists
a linear functional % ∈ [L∞Λ (G)]∗ such that

(i) % : L∞Λ (G) → C is a Borel map for the w∗-topology σ(L∞, L1);
(ii) %(f) = f(0) for every f ∈ CΛ(G).

They pointed out that if the predual L1/L1
Λ′ of L∞Λ contains no subspace

isomorphic to `1 (in other words: if L∞Λ has the weak Radon–Nikodym prop-
erty [48], 7.3.8), then, by the Odell–Rosenthal Theorem ([44]; [11], p. 215;
[29], Th. 2.e.7) each cluster point % of an approximate identity (Kn)n≥1 in
L1(G) gives a functional such that

(i) % : L∞Λ → C is w∗-first Baire class,
(ii) %(f) = f(0) for every f ∈ CΛ,

so that Λ has Property (%). Since they also showed ([20], Prop. V.2) that Λ
having Property (%) implies Λ is a Riesz set and since we have the following
implications ([31], Th. 3; [33], first Th. 3.1):

L1/L1
Λ′ 6⊇ `1 ⇒ L∞Λ 6⊇ c0 ⇒ CΛ 6⊇ c0 ⇒ Λ is a Riesz set,

the following question is natural:
If Λ has Property (%), does that imply that CΛ 6⊇ c0? What about the

converse?
We now give a more explicit construction for proving, in this translation-

invariant setting, a theorem of Bessaga and Pe lczyński ([1], Th. 4). We
shall denote by J : L1/L1

Λ′ → M/MΛ′ the canonical isometry, and by
J∗ : C∗∗Λ → L∞Λ its adjoint mapping.

Proposition 14. Let (fn)n≥1 be a basic sequence in CΛ which is equiv-
alent to the canonical basis of c0. There is a subsequence (gl)l≥1 = (fnl

)l≥1

such that J∗ is an isomorphism between Y ⊥⊥ ∼= `∞ and J∗(Y ⊥⊥), where
Y = [gl, l ≥ 1].
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P r o o f. We may suppose that the sequence (fn)n≥1 is normalized and
that

1
M

sup
n≥1

|an| ≤
∥∥∥ ∞∑∗

n=1

anfn

∥∥∥
C∗∗

Λ

≤ M sup
n≥1

|an|

for every (an)n≥1 ∈ `∞. The ∗ means that the series converges in the w∗-
topology. We have:

Lemma 15. Let (fn)n≥1 be a shrinking basic sequence, with constant
M , of normalized continuous functions on G. For each ε > 0, there are
a subsequence (gl)l≥1 = (fnl

)l≥1 and a sequence (ϕl)l≥1 of elements with
norm ≤ 2M in L1(G) such that :

(a) |〈ϕl, gl〉| ≥ 1− ε/2l,
(b) ‖ϕl|[gl+1,gl+2,...]‖ ≤ ε/(2l+1 ·M),
(c) |〈ϕk, gl〉| ≤ ε/2l, k ≥ l + 1.

Condition (c) does not appear in the classical proof of Bessaga–Pe lczyń-
ski’s Theorem.

P r o o f. Let (µn)n≥1 be a biorthogonal sequence associated with (fn)n≥1

in M(G):

‖µn‖1 ≤ 2M ; 〈µn, fn〉 = 1; 〈µk, fn〉 = 0, k 6= n.

Let (Kj)j≥1 be an approximate identity in L1(G).
Since f1 is a continuous function,

(∃j1) j ≥ j1 ⇒ ‖f1 ∗Kj − f1‖∞ ≤ ε/2;

then

|〈µ1 ∗ Ǩj1 , f1〉| ≥ |〈µ1, f1〉| − |〈µ1, f1 ∗Kj1 − f1〉| ≥ 1− ε/2.

We set ϕ1 = µ1 ∗ Ǩj1 .
Since the basic sequence (fn)n≥1 is shrinking, we have

‖ϕ1|[fn,fn+1,...]‖ → 0 as n →∞
([29], Prop. 1.b.1); hence

(∃n2 > n1 = 1) ‖ϕ1|[fn2 ,fn2+1,...]‖∞ ≤ ε/(4M).

Now, since fn2 is a continuous function,

(∃j2 ≥ j1) j ≥ j2 ⇒ ‖fn2 ∗Kj − fn2‖∞ ≤ ε/4.

Then, setting ϕ2 = µn2 ∗ Ǩj2 , we have

|〈ϕ2, fn2〉| ≥ |〈µn2 , fn2〉| − |〈µn2 , fn2 ∗Kj2 − fn2〉| ≥ 1− ε/4,

and also
|〈ϕ2, fn1〉| = |〈µn2 , f1 ∗Kj2 − f1〉| ≤ ε/2.

Moreover, since ‖ϕ2|[fn,fn+1,...]‖ → 0 as n →∞, we have
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(∃n3 > n2) ‖ϕ2|[fn3 ,fn3+1,...]‖ ≤ ε/(8M).

The construction will go on by induction.

Now we have

Y ⊥⊥ =
{ ∞∑∗

l=1

algl : (al)l≥1 ∈ `∞

}
and ∥∥∥J∗

( ∞∑∗

l=1

algl

)∥∥∥
L∞

Λ

≤
∥∥∥ ∞∑∗

l=1

algl

∥∥∥
C∗∗

Λ

≤ M sup
l≥1

|al|.

Conversely, let ε > 0 and let j be such that

|aj | ≥ (1− ε) sup
k≥1

|ak|.

With the notations of Lemma 15, we have

2M
∥∥∥J∗

( ∞∑∗

l=1

algl

)∥∥∥
L∞

Λ

≥
∣∣∣〈ϕj ,

∞∑∗

l=1

algl

〉∣∣∣
≥ |aj〈ϕj , gj〉| −

j−1∑
l=1

|al〈ϕj , gl〉| −
∣∣∣〈ϕj ,

∞∑∗

l=j+1

algl

〉∣∣∣
≥ |aj |

(
1− ε

2j

)
− sup

l≥1
|al| ·

j−1∑
l=1

ε

2l
−M sup

l≥j+1
|al| · ‖ϕj|[gj+1,gj+2,...]‖

≥ sup
k≥1

|ak| ·
[
(1− ε)

(
1− ε

2j

)
−

j−1∑
l=1

ε

2l
− ε

2j+1

]
≥ sup

k≥1
|ak| · (1− 2ε).

R e m a r k. By dominated convergence, if g =
∑∗

j≥1 ajgj ∈ C∗∗Λ , a rep-
resentative of J∗(g) ∈ L∞Λ is given by the function g̃ : x 7→ 〈g, δx〉 =∑

j≥1 ajgj(x) where the series is pointwise absolutely convergent.
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[7] M. Déchamps-Gondim, Ensembles de Sidon topologiques, ibid. 22 (1972), 51–79.
[8] —, Analyse harmonique, analyse complexe et géométrie des espaces de Banach
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