1. Introduction. In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.

G. Nöbeling [8] has proved that the family of all rim-finite spaces does not contain a universal element. The same is true even for the family of planar rim-finite spaces. This fact is included in a wider result (see [1] and [4]) concerning some families of planar rim-scattered spaces.

S. Iliadis [3] (see also [7]) proved that there exists a universal rational space. Therefore there exists a rational space which contains topologically all rational compacta.

In [6] J. Mayer and E. Tymchatyn constructed a planar continuum of rim-type $\alpha + 1$ which is a containing space for all planar compacta of rim-type $\leq \alpha$, where α is a countable ordinal.

In this paper we give a simple, direct and visualized example of a planar rational connected and locally connected space which is a containing space for all planar rational compacta. This provides an affirmative answer to Problem 5(2) of [2].

2. Definitions and notations. Let E^2 be the plane with a system Oxy of orthogonal coordinates. By a simple closed curve we mean a subset of E^2 which is homeomorphic to the set $\{(x, y) : x^2 + y^2 = 1\}$, and by a disk a subset of E^2 homeomorphic to $\{(x, y) : x^2 + y^2 \leq 1\}$. An arc is a subset A of E^2 for which there exists a homeomorphism h of $I \equiv [0, 1]$ onto A. The points $h(0)$ and $h(1)$ are the endpoints of the arc and the set $A \setminus h(\{0, 1\})$ is its interior.

Let $G \subseteq D \subseteq E^2$. By $\text{Cl}_D(G)$, $\text{Int}_D(G)$ and $\text{Bd}_D(G)$ we denote the closure, interior, and boundary of G, respectively, in D. We omit the subscript “D” if $D = E^2$. For each $\varepsilon > 0$ we denote by $N(G, \varepsilon)$ the set of all points of E^2 whose distance from G is less than ε. By ω we denote the set $\{0, 1, 2, \ldots\}$ of all non-negative integers.

1991 Mathematics Subject Classification: 54C25, 54F50.
A space Y is called a containing space for a family \mathcal{F} of spaces if for every $X \in \mathcal{F}$, there exists a homeomorphism of X onto a subset of Y. If in addition $Y \in \mathcal{F}$, then Y is called a universal space for the family \mathcal{F}.

We denote by L_n, $n = 1, 2, \ldots$, the set of all ordered n-tuples $i_1 \ldots i_n$ where $i_t = 0$ or 1, for every $t = 1, \ldots, n$, and by L_0 the set $\{0\}$. By I_i, where $i = i_1 \ldots i_n \in L_n$, $n \geq 1$, we denote the set of all points of $I \equiv [0, 1]$ for which the kth digit of the dyadic expansion, $k = 1, \ldots, n$, coincides with i_k. Also we set $I_\emptyset = I$.

Let $W_n = \{I_i \times I_j : i, j \in L_n\}$, $n \in \omega$. Obviously for every $n \in \omega$ the family W_n is a finite closed covering of I^2. If a is an endpoint of I_i and b is an endpoint of I_j, then the sets $\{a\} \times I_j$ and $I_i \times \{b\}$ are called edges and the point $(a, b) \in E^2$ is called a vertex of W_n. The sets of all edges and of all vertices of W_n are denoted by $E(W_n)$ and $V(W_n)$, respectively. We set $\text{Bd}(W_n) = \bigcup \{\text{Bd}(F) : F \in W_n\} = \bigcup \{e : e \in E(W_n)\}$.

Let D be a disk of the plane. A finite closed covering \mathcal{V} of D is said to be an n-subdivision (or subdivision) of D, where $n \in \omega$, if there exists a homeomorphism h of D onto I^2 such that $\mathcal{V} = \{h^{-1}(F) : F \in W_n\}$. Every such homeomorphism is called a \mathcal{V}-homeomorphism. The sets $h^{-1}(e)$, where $e \in E(W_n)$, are called edges of \mathcal{V} and the points $h^{-1}(v)$, where $v \in V(W_n)$, are called vertices of \mathcal{V}. We denote by $E(\mathcal{V})$ and $V(\mathcal{V})$ the sets of all edges and of all vertices of \mathcal{V}, respectively. We set $\text{Bd}(\mathcal{V}) = \bigcup \{\text{Bd}(F) : F \in \mathcal{V}\} = \bigcup \{e : e \in E(\mathcal{V})\}$ and $\text{mesh}(\mathcal{V}) = \max\{\text{diam}(F) : F \in \mathcal{V}\}$. Obviously $\text{Bd}(\mathcal{V}) = h^{-1}(\text{Bd}(D))$. Also, for $G \subseteq D$ we set $\text{st}(G, \mathcal{V}) = \bigcup \{F \in \mathcal{V} : F \cap G \neq \emptyset\}$.

We say that a subdivision \mathcal{V} of D is rational with respect to a set $X \subseteq D$ if for every edge e of \mathcal{V} the set $e \cap X$ is a countable subset of the interior of e. Note that in this case no point of X is a vertex of \mathcal{V}.

Let $n_1, n_2 \in \omega$, $n_1 \leq n_2$. We say that an n_2-subdivision \mathcal{V}_2 of D is inscribed in an n_1-subdivision \mathcal{V}_1 of D if: (α) each element of \mathcal{V}_2 is contained in some element of \mathcal{V}_1 and (β) for every $F \in \mathcal{V}_1$ the set of all elements of \mathcal{V}_2 which are contained in F is an $(n_2 - n_1)$-subdivision of the disk F. We observe that in this case $\text{Bd}(\mathcal{V}_1) \subseteq \text{Bd}(\mathcal{V}_2)$.

3. Containing space. Let $Q_\Delta = \{p/2^n \in I : \{0, 1\} : p, n \in \omega\}$, $Q_T = \{p/3^n \in I : p, n \in \omega\}$

and

$$Y = I^2 \setminus ((I \setminus Q_T) \times Q_\Delta) \cup (Q_\Delta \times (I \setminus Q_T)).$$

We shall prove that Y is a containing space for the family of all planar rational compacta. It is easy to verify that $I^2 \setminus \bigcup \{\text{Bd}(W_n) : n \in \omega\} \subseteq Y$.
We observe that this remains true if Q_{Δ} and Q_T are replaced by any pair of disjoint countable dense subsets of I.

4. Lemma. The space Y is rational, connected and locally connected.

Proof. We observe that the set $K \equiv (Q_T \times I) \cup (I \times Q_T)$ is connected and $K \subseteq Y \subseteq I^2 = \text{Cl}(K)$. So Y is connected.

For $y \in Y$ and $i \in \omega$ we set

$$U_i(y) \equiv Y \cap \text{Int}_I(st(y, W_i)).$$

It is easy to verify (as for the space Y) that $U_i(y)$ is connected. Moreover, $\text{Bd}_Y(U_i(y))$ is countable. Also it is easy to see that $\{U_i(y) : i \in \omega\}$ is a basis of open neighbourhoods of y in Y. Thus Y is a planar rational connected and locally connected space.

5. Lemma. Let D be a disk of the plane, $a, b \in \text{Bd}(D)$, $a \neq b$, and $X \subseteq D \setminus \{a, b\}$ be a rational compact space. Then there exists an arc $A \subseteq D$ with endpoints a, b such that $A \cap X$ is countable.

Proof. Let A_1, A_2 be the arcs of D with endpoints a, b such that $A_1 \cup A_2 = \text{Bd}(D)$. It is clear that $X \cap A_1$ and $X \cap A_2$ are closed disjoint subsets of $X \cap D$. Thus there exists a closed countable subset F of $X \cap D$ which separates (in $X \cap D$) the sets $X \cap A_1$ and $X \cap A_2$ (see [5], §51, IV, Th. 9).

Let G_1, G_2 be disjoint open subsets of $X \cap D$ such that $(X \cap D) \setminus F = G_1 \cup G_2$, $X \cap A_1 \subseteq G_1$ and $X \cap A_2 \subseteq G_2$.

Let $F_1 = \text{Cl}(G_1) \cup A_1$, $F_2 = \text{Cl}(G_2) \cup A_2$, $x \in A_1 \setminus \{a, b\}$ and $y \in A_2 \setminus \{a, b\}$. Since F_1 and F_2 are compact and $F_1 \cap F_2 \subseteq F \cup \{a, b\}$ is totally disconnected, there exists (see [9], p. 108, Th. (3.1)) a simple closed curve J which separates the points x and y in the plane such that $J \cap (F_1 \cup F_2) \subseteq F \cup \{a, b\}$.

From the above it follows that $J \cap (A_1 \cup A_2) = \{a, b\}$. Since J separates x and y, the simple closed curve J intersects the disk D in an arc A with endpoints a, b. We have $A \cap X \subseteq (J \cap D) \cap X \subseteq J \cap (F_1 \cup F_2 \cup F) \subseteq F \cup \{a, b\}$.

Hence $A \cap X$ is countable. Thus A is the required arc.

6. Theorem. The space Y is a containing space for all planar rational compacta.

Proof. Let X be a planar rational compact space and D be a disk of the plane such that $X \subseteq \text{Int}(D)$. We construct a homeomorphism $h : D \rightarrow I^2$ such that $h(X) \subseteq Y$. For every $i \in \omega$ we shall define by induction a natural number n_i, an n_i-subdivision Y_i of D, rational with respect to X, and a Y_i-homeomorphism h_i such that:

1. Y_{i+1} is inscribed in Y_i,
2. $\text{mesh}(Y_{i+1}) < 1/2^{i+1}$,
3. $h_{i+1}|_{\text{bd}(Y_i)} = h_i|_{\text{bd}(Y_i)}$,
Let \(i = 0 \). We set \(n_0 = 0 \) and \(V_0 = \{ D \} \). Let \(h_0 \) be a homeomorphism of \(D \) onto \(I^2 \). Obviously \(h_0 \) is a \(V_0 \)-homeomorphism and (4) is satisfied for \(i = 0 \) because \(\text{Bd}(V_0) \cap X = \emptyset \). The other properties concern the case \(i > 0 \).

Suppose that for every \(i \leq k \) we have defined a natural number \(n_i \), an \(n_i \)-subdivision \(V_i \) of \(D \), rational with respect to \(X \), and a \(V_i \)-homeomorphism \(h_i \) such that (1)–(3) are satisfied if \(i + 1 \leq k \), and (4) is satisfied if \(i \leq k \).

We define a natural number \(n_{k+1} \), an \(n_{k+1} \)-subdivision \(V_{k+1} \) of \(D \), rational with respect to \(X \), and a \(V_{k+1} \)-homeomorphism \(h_{k+1} \) such that (1)–(3) are satisfied if \(i + 1 \leq k + 1 \), and (4) is satisfied if \(i \leq k + 1 \).

There exists an integer \(j \in \omega \) such that \(\text{diam}(h_k^{-1}(F)) < 1/2^{k+1} \) for every \(F \in \mathcal{W}_{n_k+j} \). Since \(I^2 \setminus h_k(X) \) is a dense subset of \(I^2 \), \(V_k \) is rational with respect to \(X \) and since \(V(V_{n_k+j}) \cap Y = \emptyset \) there exists a \(V_k \)-homeomorphism \(h_k' \) such that \(h_k'|_{\text{Bd}(V_k)} = h_k|_{\text{Bd}(V_k)} \), \(h_k'(X) \cap V(V_{n_k+j}) = \emptyset \) and \(\text{diam}(h_k'^{-1}(F)) < 1/2^{k+1} \) for every \(F \in \mathcal{W}_{n_k+j} \). Let \(n_{k+1} = n_k + j \) and

\[
V'_{k+1} = \{(h_k')^{-1}(F) : F \in \mathcal{W}_{n_k+j}\}.
\]

Then \(V'_{k+1} \) is an \(n_{k+1} \)-subdivision of \(D \) with mesh\((V_{k+1}'_k) < 1/2^{k+1} \), which is inscribed in \(V_k \). However, this subdivision is not, in general, rational with respect to \(X \). The \(n_{k+1} \)-subdivision \(V_{k+1} \) of \(D \) will be obtained by some modification of \(V'_{k+1} \).

For every edge \(e \in E(V'_{k+1} \setminus \text{Bd}(V_k)) \) we denote by \(D_e \) a disk such that:

(a) \(e \subseteq D_e \),
(b) \(D_e \cap \text{Bd}(V_k) \subseteq e \cap \text{Bd}(V_k) \),
(c) \(D_{e_1} \cap D_{e_2} \subseteq e_1 \cap e_2 \) if \(e_1 \neq e_2 \),
(d) \(\forall F \in \mathcal{V}_{k+1} \), \(\text{diam}(F \cup \bigcup \{D_e : e \subseteq F\}) < 1/2^{k+1} \).

For every \(e \in E(V'_{k+1}) \) we define an arc \(\tilde{e} \) as follows:
(a) if \(e \subseteq \text{Bd}(V_k) \), then \(\tilde{e} = e \),
(b) if \(e \not\subseteq \text{Bd}(V_k) \), then \(\tilde{e} \) is the arc \(A \) of Lemma 5, where \(D \) is the disk \(D_e \) and \(\tilde{e} \) is the union of arcs \(\tilde{e} \), where \(e \subseteq \text{Bd}(D) \).

Let \(\tilde{F} \) be the disk having as boundary the simple closed curve \(J_F \). We set

\[
V_{k+1} = \{\tilde{F} : F \in \mathcal{V}_{k+1}'\}.
\]

For every \(e \in E(V'_{k+1}) \) we define a homeomorphism \(h_{k+1}^e \) of \(\tilde{e} \) into \(\text{Bd}(\mathcal{W}_{n_{k+1}}) \) as follows:
(a) if \(\tilde{e} = e \subseteq \text{Bd}(V_k) \), then \(h_{k+1}^e = h_k|_e \),
(b) if \(e \not\subseteq \text{Bd}(V_k) \), then \(h_{k+1}^e \) is a homeomorphism of \(\tilde{e} \) onto \(h_k(e) \) such that

\[
\begin{align*}
\text{h}_{k+1}^e|_{(a,b)} &= h_k^e|_{(a,b)}, \\
\text{h}_{k+1}^e(\tilde{e} \cap X) &= Y \cap h_k(e),
\end{align*}
\]

where \(a, b \) are the endpoints of \(\tilde{e} \), and \(h_{k+1}^e \) is countable, and \(h_k^e(e) \cap Y \) is countable and dense in \(h_k(e) \). For every
\(\tilde{F} \in \mathcal{V}_{k+1} \) we denote by \(h_{k+1}^\tilde{F} \) a homeomorphism of \(\tilde{F} \) onto \(h'_k(F) \) such that \(h_{k+1}^\tilde{F}|_\tilde{F} = h_{k+1}^\tilde{F} \) for every \(\tilde{F} \subset \tilde{F} \). Let \(h_{k+1} \) be a homeomorphism of \(D \) onto \(I^2 \) for which \(h_{k+1}|_\tilde{F} = h_{k+1}^\tilde{F} \) for every \(\tilde{F} \in \mathcal{V}_{k+1} \).

It is easy to verify that \(\mathcal{V}_{k+1} \) is an \(n_{k+1} \)-subdivision of \(D \), rational with respect to \(X \), and \(h_{k+1} \) is a \(\mathcal{V}_{k+1} \)-homeomorphism with properties (1)–(4).

Furthermore, for every \(x \in X \) and \(i, j \in \omega \), \(j \geq i \), by the definition of \(\mathcal{V}_i \) we have

\[
(5) \quad h_i(st(x, \mathcal{V}_i)) = st(h_i(x), \mathcal{W}_{n_i}),
\]

by (1) it follows that

\[
(6) \quad st(x, \mathcal{V}_j) \subseteq st(x, \mathcal{V}_i),
\]

and by (3) we have

\[
(7) \quad h_j(st(x, \mathcal{V}_i)) = h_i(st(x, \mathcal{V}_i)).
\]

Now we define a map \(h : D \to I^2 \) setting for every \(x \in D \),

\[
h(x) = \bigcap \{h_i(st(x, \mathcal{V}_i)) : i \in \omega \}
\]

and prove that \(h \) is a homeomorphism such that \(h(X) \subseteq Y \).

First note that by (6) and (7), \(h_{i+1}(st(x, \mathcal{V}_{i+1})) \subseteq h_i(st(x, \mathcal{V}_i)) \) for every \(x \in D \) and \(i \in \omega \). On the other hand, by (5), \(\lim_{i \to \infty} \text{diam}(h_i(st(x, \mathcal{V}_i))) = 0 \). Hence \(\bigcap h_i(st(x, \mathcal{V}_i)) \) is a singleton. Thus \(h \) is well defined.

Let \(x_1, x_2 \in D \) and \(x_1 \neq x_2 \). By (2) there exists \(i \in \omega \) such that \(st(x_1, \mathcal{V}_i) \cap st(x_2, \mathcal{V}_i) = \emptyset \). Hence \(h_i(st(x_1, \mathcal{V}_i)) \cap h_i(st(x_2, \mathcal{V}_i)) = \emptyset \) and therefore \(h(x_1) \neq h(x_2) \), that is, \(h \) is one-to-one.

We prove that \(h \) is continuous. Let \(h(x) = y \) and \(U \) be an open neighbourhood of \(y \) in \(I^2 \). There exists \(i \in \omega \) such that \(st(y, \mathcal{W}_{n_i}) \subseteq U \). By (5), \(h_i(st(x, \mathcal{V}_i)) \subseteq U \). For the continuity of \(h \) it is sufficient to prove that \(h(\text{Int}(st(x, \mathcal{V}_i))) \subseteq U \). Let \(z \in \text{Int}(st(x, \mathcal{V}_i)) \). It is easy to see that \(st(z, \mathcal{V}_i) \subseteq st(x, \mathcal{V}_i) \). Hence \(h(z) \in h_i(st(z, \mathcal{V}_i)) \subseteq h_i(st(x, \mathcal{V}_i)) \subseteq U \). Thus \(h \) is continuous and therefore \(h \) is a homeomorphism.

To prove that \(h(X) \subseteq Y \), we observe that if \(x \in \text{Bd}(\mathcal{V}_i) \), then \(h_j(x) = h_i(x) \in h_j(st(x, \mathcal{V}_j)) \) for every \(j \geq i \). Thus \(h(x) = h_i(x) \). Since \(h_i(\text{Bd}(\mathcal{V}_i)) = \text{Bd}(\mathcal{W}_{n_i}) \) we see that if \(x \notin \bigcup \{\text{Bd}(\mathcal{V}_i) : i \in \omega \} \), then \(h(x) \notin \bigcup \{\text{Bd}(\mathcal{W}_{n_i}) : i \in \omega \} \).

Let \(x \in X \). If \(x \notin \bigcup \text{Bd}(\mathcal{V}_i) \), then \(h(x) \notin \bigcup \text{Bd}(\mathcal{W}_j) \). Since \(I^2 \setminus \bigcup \text{Bd}(\mathcal{W}_j) \subseteq Y \), we have \(h(x) \in Y \). If \(x \in \bigcup \text{Bd}(\mathcal{V}_i) \), then \(h(x) = h_i(x) \) for some \(i \in \omega \). By (4) it follows that \(h(x) \in Y \). Thus \(h(X) \subseteq Y \).
REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PATRAS
261 10 PATRAS, GREECE

Reçu par la Rédaction le 6.4.1994