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The aim of this paper is to demonstrate how a fairly simple nilpotent
Lie algebra can be used as a tool to study differential operators on Rn with
polynomial coefficients, especially when the property studied depends only
on the degree of the polynomials involved and/or the number of variables.

The general idea of this algebra already appears in our paper [HJ] where
we study operators of the form

− d2

dx2
+ |P |,

where P is a polynomial on the real line. In this case the algebra considered
has a basis

{X, Y0, Y1, . . . , Yd}
and relations

[X, Yk] = Yk+1, Yd+1 = 0 .

In the present paper we consider a Lie algebra Fα (described in Section 1)
which is generated by elements

X1, . . . , Xn, Y1, . . . , Ym

and such that if P1, . . . , Pm are polynomials on Rn of degree ≤ d, then

Xk 7→ Dk, Yj 7→ multiplication by iPj

extends to a representation π of Fα by skew symmetric operators on
C∞

c (Rn). Thus every element in the enveloping algebra of Fα is mapped
by the representation π onto a differential operator with polynomial coeffi-
cients on Rn. In a similar fashion the infinitesimal generators of convolution
semigroups on the Lie group exp Fα are mapped by π onto other operators
of interest on Rn.
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This enables us to prove various generalizations of C. Fefferman’s [Fe] es-
timates of the smallest eigenvalue of Schrödinger operators with nonnegative
polynomial potentials.

The proofs obtained in this way may certainly not be the simplest possi-
ble because they make use of very nontrivial results by Helffer and Nourrigat
[HN], and by G lowacki [G l]. However, we do believe that the point of view
presented here is illuminating and might be useful in other investigations.

1. The Lie algebra. Given α = (αj) where αj = (αi
j) ∈ (Z+)n for

j = 1, . . . ,m we define the Lie algebra Fα as follows: As a vector space, Fα

has basis {X1, . . . , Xn, Y
βj

j | 0 ≤ βj ≤ αj}, where βj ≤ αj iff βi
j ≤ αi

j for
i = 1, . . . , n. (For later purposes we assume that Fα is a Euclidean space
for which this basis is orthonormal.) Let X ,Y denote the spans of the Xi’s
and the Y

βj

j ’s respectively. The nontrivial commutators are all determined
by

(1.1) [Xk, Y
βj

j ] =
{

Y
βj−ek

j if βj − ek ≥ 0,
0 otherwise,

where ek is the n-tuple consisting of zeros except for a 1 in the kth position.
For 1 ≤ i ≤ n, let Di = ∂xi

, and for βj ∈ (Z+ ∪ {0})n and x ∈ Rn set

Dβ = D
β1

j

1 . . . D
βn

j
n and Dx =

∑
i xiDi. Let P(Rn) denote the ring of real

polynomials on Rn, and given α = (αi
j) as above, define

Pαj =
{

P ∈ P(Rn)
∣∣∣ P (x) =

∑
β≤αj

aβxβ
}

.

Let Ω = {(P1, . . . , Pm) | Pj ∈ Pαj for each j}. For ω = (P1, . . . , Pm) ∈
Ω, set Vω = {x ∈ Rn | DxPj ≡ 0 for all 1 ≤ j ≤ m}. Let C∞

c (Rn/Vω)
denote the smooth functions on Rn that are invariant under translation by
elements of Vω and compactly supported on any subspace complementary
to Vω. Denote by Fω(Rn/Vω) (respectively Fω(Rn)) the Lie algebra of
operators on C∞

c (Rn/Vω) (respectively C∞
c (Rn)) generated by the Di’s and

multiplication by iP , denoted MiP , as P ranges over ω. Define the mappings
πω : Fα → Fω(Rn/Vω) and Πω : Fα → Fω(Rn) by

(1.2) πω,Πω :


Xi 7→ Di,
Y

αj

j 7→ MiPj ,

and, inductively, if Y β
j 7→ MiP (Y β

j
), then

[Xk, Y β
j ] 7→ MiDkP (Y β

j
),

and extend linearly to Fα.
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Lemma 1.3. πω and Πω are Lie algebra homomorphisms.

P r o o f. The only point to check is that the maps are well defined. For
this, it suffices to note that if [Xk,

∑
j,β aj,βY β

j ] = 0 then the images are
zero, but this is clear from (1.1) and (1.2).

Given ω, define the linear functional ξω on Fα by setting 〈ξω, Xi〉 = 0
for each 1 ≤ i ≤ n, and 〈ξω, Y β

j 〉 = Q(0), where πω(Y β
j ) = MiQ. Set

Xω = {X ∈ X | πω([X, Y
αj

j ]) = 0 for each 1 ≤ j ≤ m}.
Lemma 1.4. Xω + Y is the maximal subalgebra subordinate to ξω, and

πω is the (infinitesimal) representation associated with ξω via the Kirillov
correspondence. In particular , if Vω 6= {0}, then Πω is reducible.

P r o o f. It is clear that Xω + Y is a subalgebra. Since for X ∈ Xω and
Y ∈ Y, 〈ξω, [X, Y ]〉 = P ([X, Y ])(0) = 0, where πω([X, Y ]) = MiP ([X,Y ]), the
subalgebra Xω+Y is also subordinate. To see that it is maximal, suppose that
X ∈ X \Xω. Then there is a k ∈ Z+ and a 1 ≤ j ≤ m such that Dk+1

x Pj ≡ 0
but Dk

xPj 6≡ 0. Thus, Dk
xPj = Q, where Q is a nonzero polynomial which

depends only on coordinates orthogonal to x in Rn. If Q(0) 6= 0, then

〈ξω, [

k times︷ ︸︸ ︷
X, [X, . . . , [X,Y

αj

j ]] . . .]〉 = Q(0) 6= 0,

where X =
∑

i xiXi. If Q(0) = 0, then there are an integer l and a vector
x′ = (x′1, . . . , x

′
n) ∈ Rn such that Dl

x′Q(0) 6= 0. Then

〈ξω, [

k times︷ ︸︸ ︷
X, [X, . . . , [X,[

l times︷ ︸︸ ︷
X ′, . . . , [X ′, Y

αj

j ]] . . .]〉 = Dl
x′Q(0) 6= 0,

where X ′ =
∑

i x′iXi. Thus, Xω + Y is a maximal subalgebra subordinate
to ξω.

Let %ω denote the representation of Fω(Rn/Vω) corresponding to ξω.
Then %ω is obtained by composing the representation of Fω(Rn/Vω) corre-
sponding to “evaluation at 0”, %′ω, with πω, i.e. %ω = %′ω ◦ πω. The simply
connected group corresponding to Fω(Rn/Vω) is of the form T ·M , where
T ' V ⊥

ω consists of translations on C∞
c (Rn/Vω), and M consists of mul-

tiplications by eiQ, as Q ranges over the polynomials in Fω(Rn/Vω). We
know that %′ω(tm)f(u) = a(m,u)f(u + t), where |a(m,u)| = 1. Thus, if
m = eiQ, then %′ω(m)f(u) = a(m,u)f(u) and since πω(Y) is subordinate to
the functional, %′ω(m)f(u) = m(u)f(u), i.e. a(m,u) = m(u), which shows
the equivalence.

Set X⊥ = {ξ ∈ F∗α | ξ|X = 0}, and define Y⊥ similarly. Then clearly
X⊥ = {ξω | ω ∈ Ω}. Thus, given λ ∈ F∗α there is a unique ω ∈ Ω such
that λ agrees with ξω on Y. Let λω denote the restriction of λ to Xω. Then
Xω +Y is a maximal subalgebra subordinate to λω + ξω. We denote by πλ,ω
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the associated irreducible representation. Then πλ,ω(Z) = iλω(Z)I +πω(Z)
for all Z ∈ Fα.

For x ∈ Rn and Q ∈ Pαj , set Qx(y) = Q(x + y) for all y ∈ Rn, and set
ωx = ((P1)x, . . . , (Pm)x).

Lemma 1.5. Each co-adjoint orbit in F∗α contains some λω + ξω, and the
co-adjoint orbit of λω + ξω, O(λω + ξω), is given by

(1.6) O(λω + ξω) = λω + {ξ ∈ Y⊥ | ξ|Xω
= 0}+ {ξωx | x ∈ Rn}.

P r o o f. Let x = (xi) ∈ Rn and set X =
∑

i xiXi. If πω(Y ) = MiQ, then

〈Ad∗(exp X)ξω, Y 〉 = 〈ξω, Ad(exp X)Y 〉

=
∑

k

1
k!
〈ξω, [X, [X, . . . , [X, Y ]] . . .]〉

=
∑

k

1
k!

Dk
xQ(0) = Q(x).

Since 〈ξωx , Y
αj

j 〉 = (Pj)x(0) = Pj(x), one sees that Ad∗(exp X)ξω = ξωx .
Let Z1, . . . , Zn be an orthonormal basis for X such that Z1, . . . , Zk is the

orthogonal complement to Xω in X . Then there exist Y1, . . . , Yk ∈ Y such
that 〈ξω, [Yj , Zi]〉 = δij . Let Z∗i denote the element of Y⊥ dual to Zi. Then

〈Ad∗(exp Yi)ξω, Zj〉 = 〈ξω, Zj + [Yi, Zj ]〉
= 〈ξω, Zj〉+ δij = 〈ξω + Z∗i , Zj〉,

which completes the proof, since clearly Ad∗(expFα)λω = λω.

The space of co-adjoint orbits in the dual of a nilpotent Lie algebra
can be topologized using the quotient topology, or it can be given the Fell
topology via the Kirillov correspondence. These topologies are equivalent
according to Brown [Br] and generally not Hausdorff. Let Fα be the simply
connected nilpotent Lie group with Lie algebra Fα. For λ ∈ F∗α let πλ be the
irreducible unitary representation of Fα corresponding to λ. The following
lemma of Riemann–Lebesgue type comes from Fell (cf. [Fell, Corollary 1]);
however, for the group Fα it has a direct simple proof.

Lemma 1.7. For every K ∈ L1(Fα),

(1.8) lim
O(λ)→∞

‖πλ
K‖op = 0.

P r o o f. It is enough to prove (1.8) for K in the Schwartz space of
functions on Fα. Since O(λ) = O(λω+ξω) (cf. Lemma 1.5), we can certainly
assume that λ = λω + ξω. We already know that W = Xω +Y is a maximal
subalgebra subordinate to λ. Obviously W is an ideal and Fα/W is abelian.
Let Sλ be the orthogonal complement to Xω in Rn. The representation πλ
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acts on L2(Sλ). The kernel Kλ(x, s) of the operator πλ
K has the form

Kλ(x, s) =
∫

W

K(w, s− x) exp(i〈Ad∗x λ, w〉) dw(1.9)

= K(Âd∗x λ, s− x).

Since ‖πλ
K‖op ≤ max{supx∈Sλ

∫
Sλ
|Kλ(x, s)| ds, sups∈Sλ

∫
Sλ
|Kλ(x, s)| dx}

and K is from the Schwartz class, (1.8) follows.

Let {a1, . . . , an, b1, . . . , bm} ⊂ R+, the positive reals. Define a one-
parameter group of automorphisms on Fα, {δt}t>0, by setting δtXi =
t1/aiXi, δtY

αj

j = t1/bj Y
αj

j , and inductively by δt[X, Y β
j ] = [δtX, δtY

β
j ],

where 0 ≤ β ≤ αj . We define δt on Fα, the simply connected group
with Lie algebra Fα, by setting δt(exp Z) = exp(δtZ), and we define δ∗t
on F∗α by duality, i.e. 〈δ∗t ξ, Z〉 = 〈ξ, δtZ〉. Since δt is an automorphism, the
representation associated with δ∗t ξω is πω ◦ δt. Thus it is easy to check that

δ∗t ξω = ξδtω,

where

δtω = (δtP1, . . . , δtPm),

and

δtPj(x1, . . . , xn) = t1/bj Pj(t1/a1x1, . . . , t
1/anxn).

A function P defined on Fα (or F∗α) is said to be homogeneous of degree r if
P (δtZ) = trP (Z) for Z ∈ Fα (or Z ∈ F∗α). A homogeneous gauge on Fα or
F∗α is a continuous function, homogeneous of degree one, that is positive on
nonzero elements. Examples that are of particular interest here are given
(on X⊥) by

(1.10) %B(ξω) = inf
γ1,...,γn>0

{ n∑
k=1

γ−ak

k + max
|xk|≤Bγk

m∑
j=1

|Pj(x)|bj

}
,

where B is any positive constant.

2. The estimates. Recall that Fα is the simply connected nilpotent
Lie group with Lie algebra Fα. Let L be a homogeneous distribution of
degree one on Fα such that L = L0 + µ, where µ is a bounded measure and
L0 is compactly supported. We define a left-invariant convolution operator
L on Fα,

L : C∞
c (Fα) → L1(Fα), f 7→ f ∗ L.

We assume that

(L, f∗ ∗ f) = (f ∗ L, f) ≥ 0 for f ∈ C∞
c (Fα), where f∗(x) = f(x−1),
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and that −L is the infinitesimal generator of a convolution semigroup f 7→
f ∗pt such that pt ∈ L1(Fα). We denote by πξ

pt
the operator

∫
Fα

pt(x)πξ
x dx,

and by −πξ
L the generator of the semigroup {πξ

pt
}t>0.

Let % be a homogeneous gauge on F∗α with respect to the dilations
{δt}t>0. We define

%(O(ξ)) = inf{%(η) | η ∈ O(ξ)}.
Let

λ(πξ
L) = inf{(πξ

Lf, f) | ‖f‖L2 = 1}.
Theorem 2.1. There is a constant c > 0 such that

(2.2) λ(πξ
L) ≥ c%(O(ξ)).

P r o o f. Obviously both sides of (2.2) are constant on orbits. Also, since
L is homogeneous of degree one,

λ(πδ∗r ξ
L ) = rλ(πξ

L) and %(O(δ∗rξ)) = r%(O(ξ)).

Therefore to prove (2.2) it suffices to show that there exists an R > 0 such
that if %(O(ξ)) = R, then λ(πξ

L) ≥ 1.
Note that

(2.3) λ(πξ
L) = − log(‖πξ

p1
‖op).

By Lemma 1.7 there is an R such that ‖πξ
p1
‖op ≤ 1/e for %(O(ξ)) ≥ R. This

combined with (2.3) ends the proof.

3. Applications. For an element X in the Lie algebra of a Lie group
G and 0 < a < 2, the operator |X|a is defined on C∞

c (G) into L1(G) by

−|X|af = c
∞∫

0

t−1−a/2f ∗ µt dt,

where {µt}t>0 is the semigroup generated by X2. For a unitary representa-
tion π of G we have

π|X|a = |πX |a .

If the operator πXf(x) = iP (x)f(x), then π|X|af(x) = |P (x)|f(x). The fol-
lowing is an example of possible application of the theorem of the preceding
section.

Theorem 3.1. Let ω = (P1, . . . , Pm) be polynomials on Rn such that
Pj ∈ Pαj , and let

H = H(ω) =
n∑

k=1

|Dk|ak +
m∑

j=1

|Pj |bj ,
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where ak ≤ 2 and bj ≤ 1, be an operator defined on C∞
c (Rn). Let

λ(ω) = inf
y∈Rn

γ1,...,γn>0

{ n∑
k=1

γ−ak + max
|yk−xk|≤γk

m∑
j=1

|Pj(x)|bj

}
.

Then there is a constant c = c(b1, . . . , bm, a1, . . . , an), otherwise independent
of P1, . . . , Pm, such that

(3.2) λ(H(ω)) = inf Spectrum H(ω) ≥ cλ(ω).

P r o o f. We proceed by induction with respect to n. Assume first
that the family ω is irreducible. We consider the algebra Fα and we note
that if

L =
n∑

k=1

|Xk|ak +
m∑

j=1

|Y αj

j |bj ,

then πω
L = H and πω is irreducible. If we put δrXk = r1/akXk, δrY

αj

j =
r1/bj Y

αj

j , we see that L is homogeneous of degree one. To see that L satisfies
the conditions of Theorem 2.1 we use a theorem by P. G lowacki [G l], which
states that if −L is the infinitesimal generator of a semigroup of probability
measures, {µt}t>0, which satisfies the Rockland condition, as −L clearly
does, then µt is absolutely continuous. So (3.2) in that case is a consequence
of (1.10) and Theorem 1.2.

Now assume that ω is reducible, that is, Vω 6= {0}. Let e1, . . . , en be the
canonical basis of Rn. For γ > 0 and k = 1, . . . , n define [−γ, γ]k = {tek :
|t| ≤ γ} ⊂ Rn.

The following lemma is very easy to prove.

Lemma 3.3. There exists a constant B > 1, B = B(n), such that for
every linear subspace W ⊂ Rn and for every rectangle Q = [−γ1, γ1]1 +
. . . + [−γn, γn]n ⊂ Rn there are vectors en1 , . . . , enl

from the canonical
basis such that lin{en1 , . . . , enl

} ⊕ W = Rn, l + dim W = n, and Q ⊂
[−Bγn1 , Bγn1 ]n1 + . . . + [−Bγnl

, Bγnl
]nl

+ W .

Let Sω be the set of all linear subspaces S such that S ⊕ Vω = Rn and
S has a basis en1 , . . . , enl

consisting of vectors from the canonical basis.
For S ∈ Sω with the basis {en1 , . . . , enl

} denote by PS
j the polynomial Pj

considered on S. Clearly the family {PS
j }n

j=1 is irreducible. By the induction
hypothesis,

λ(H(ω)) ≥ λS

( l∑
i=1

|Dni
|ani +

m∑
j=1

|PS
j |bj

)
≥ cS%S(O(PS

1 , . . . , PS
m)),
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where

%S((PS
1 , . . . , PS

m)) = inf
γ1,...,γl>0

{ l∑
i=1

γ
−ani
i + max

|xni
|≤γi

m∑
j=1

|PS
j |bj

}
,

and cS > 0 does not depend on ω ∈ Ω. Since the number of elements of Sω

is bounded by 2n, it suffices to show that there is a constant c > 0 such that∑
S∈Sω

%S(O(PS
1 , . . . , PS

m)) ≥ c%(O(P1, . . . , Pm)).

Fix ε > 0 and set ε0 = ε/2n. For S as above let xS ∈ S ⊂ Rn and
γS

n1
, . . . , γS

nl
> 0 be such that

ε0 + %B
S (O(PS

1 , . . . , PS
m)) ≥

l∑
i=1

(γS
ni

)−ani + max
|xni

|≤BγS
ni

m∑
j=1

|(PS
j )xS |bj .

Let γk = minS{γS
ni

: ni = k}. If ek ∈ Vω for some k, we put γk = ∞. Let
Q = [−γ1, γ1]1 + . . . + [−γn, γn]n ⊂ Rn. By Lemma 3.3 there is S0 ∈ Sω

such that S0 has a basis eS0
n1

, . . . , eS0
nl

consisting of vectors from the canonical
basis, and Q ⊂ [−Bγn1 , Bγn1 ]n1 + . . . + [−Bγnl

, Bγnl
]nl

+ Vω. Then

max
|xni

|≤Bγ
S0
ni

m∑
j=1

|(PS0
j )xS0 |bj

≥ max
|xni

|≤Bγni

m∑
j=1

|(PS0
j )xS0 |bj ≥ max

x∈Q

m∑
j=1

|(Pj)xS0 |bj .

This gives

ε +
∑

S∈Sω

%B
S (O(PS

1 , . . . , PS
m))

≥
∑

S∈Sω

( l∑
i=1

(γS
ni

)−ani + max
|xni

|≤BγS
ni

m∑
j=1

|(Pj)xS |bj

)

≥ γ−a1
1 + . . . + γ−an

n + max
|xk|≤γk

m∑
j=1

|(Pj)xS0 |bj ≥ %(O(P1, . . . , Pm)).

Finally, since the homogeneous norm %B
S is comparable with %S , there is a

constant c > 0 such that∑
S∈Sω

%S(O(PS
1 , . . . , PS

m))

≥ c
∑

S∈Sω

%B
S (O(PS

1 , . . . , PS
m)) ≥ c%(O(P1, . . . , Pm)).

This establishes the theorem.
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R e m a r k s. If we put ak = 2,m = 1 and b1 = 1, then H = −∆ + |V |,
where V is a polynomial. Inequality (3.2) then becomes the content of
Fefferman’s Theorem 2, p. 144 of [Fe].

Another type of operator whose smallest eigenvalue can be estimated in
a similar manner is

H =
n∑

k=1

(−1)akD2ak

k +
m∑

j=1

P 2
j ,

where P1, . . . , Pm are polynomials such that Pj ∈ Pαj
, and ak are positive

integers. Then there is a constant c = c (a1, . . . , an, α1, . . . , αm), indepen-
dent of ω = (P1, . . . , Pm), such that

inf Spectrum H(ω) ≥ c inf
y∈Rn

γ1,...,γn>0

{ n∑
k=1

γ−2ak

k + max
|xk−yk|≤γk

m∑
j=1

Pj(x)2
}

.

This follows in the same way from a theorem of Folland–Stein [FS] that the
operator

−L =
n∑

k=1

(−1)akX2ak

k +
m∑

j=1

Y 2
j

is the infinitesimal generator of a semigroup of convolution operators f 7→
f ∗ pt, where pt ∈ L1(Fα).
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mogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential
Equations 4 (1978), 899–958.

[HJ] A. Hulan ick i and J. W. Jenkins, Nilpotent Lie groups and eigenfunction ex-
pansions of Schrödinger operators II , Studia Math. 87 (1987), 239–252.



16 J. DZIUBAŃSKI ET AL.
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