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The aim of this paper is to demonstrate how a fairly simple nilpotent
Lie algebra can be used as a tool to study differential operators on R™ with
polynomial coeflicients, especially when the property studied depends only
on the degree of the polynomials involved and/or the number of variables.

The general idea of this algebra already appears in our paper [HJ] where
we study operators of the form

d2

da?

where P is a polynomial on the real line. In this case the algebra considered
has a basis

+ [P,

{va(h}/lv"-vyd}
and relations
[X, Yk] - Yk.ﬁ’_l, Yd+1 - 0 .

In the present paper we consider a Lie algebra F,, (described in Section 1)
which is generated by elements

X, X0, Y
and such that if Py,..., P, are polynomials on R" of degree < d, then
Xy +— Dy, Y; — multiplication by iP;
extends to a representation m of F, by skew symmetric operators on
C°(R™). Thus every element in the enveloping algebra of F, is mapped
by the representation 7w onto a differential operator with polynomial coeffi-
cients on R™. In a similar fashion the infinitesimal generators of convolution

semigroups on the Lie group exp F, are mapped by 7 onto other operators
of interest on R”.
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This enables us to prove various generalizations of C. Fefferman’s [Fe| es-
timates of the smallest eigenvalue of Schrodinger operators with nonnegative
polynomial potentials.

The proofs obtained in this way may certainly not be the simplest possi-
ble because they make use of very nontrivial results by Helffer and Nourrigat
[HN], and by Glowacki [Gl]. However, we do believe that the point of view
presented here is illuminating and might be useful in other investigations.

1. The Lie algebra. Given a = (a;) where a; = (a}) € (ZT)" for

j=1,...,m we define the Lie algebra F, as follows: As a vector space, F,
has basis {X1,...,X,,,Y,” | 0 < f; < a;}, where §; < aj iff §i < o for
i =1,...,n. (For later purposes we assume that F, is a Euclidean space

for which this basis is orthonormal.) Let X', ) denote the spans of the X;’s

and the Yjﬁ 7’5 respectively. The nontrivial commutators are all determined
by

Bi—er .
(1.1) (X, Y] = {ij if fj —er 20,
J 0 otherwise,

where ey, is the n-tuple consisting of zeros except for a 1 in the kth position.
For 1 <i <mn,let D; = d,,, and for §; € (Z* U{0})" and = € R™ set

1 n
D = D’fj ...ng and D, = >, x;D;. Let P(R™) denote the ring of real

polynomials on R™, and given o = (aé) as above, define

P(x) = Z agmﬂ}.

B<a;

P, = {P € P(R")

Let 2 = {(P1,...,Pn) | Pj € Pq,; for each j}. For w= (P,...,Py) €
2,set V, ={z € R" | D,P; =0 for all 1 < j < m}. Let C&(R"/V,)
denote the smooth functions on R” that are invariant under translation by
elements of V,, and compactly supported on any subspace complementary
to V,,. Denote by F,(R"/V,) (respectively F,(R™)) the Lie algebra of
operators on C°(R™/V,,) (respectively C°(R™)) generated by the D;’s and
multiplication by ¢ P, denoted M;p, as P ranges over w. Define the mappings
™ Fo — Fu(R"/V,) and 1Y : F, — F,(R™) by

Xi = D,
W JTw Yja] — Mipy,
(1.2) 11" : § and, inductively, if ng — Mz‘P(Y@)’ then
B J
[XIW)G ] = Z‘ka(yjﬁ)v

and extend linearly to F,.
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LEMMA 1.3. ¥ and II¥ are Lie algebra homomorphisms.

Proof. The only point to check is that the maps are well defined. For
this, it suffices to note that if [Xy, >, 5 ajﬁYf] = 0 then the images are
zero, but this is clear from (1.1) and (1.2).

Given w, define the linear functional £, on F, by setting (£,, X;) =0
for each 1 < i < n, and <§W,Yjﬂ> = Q(0), where 7r“’(Yjﬁ) = M;g. Set
X, ={X e X | m¥([X, Yjaj]) =0 for each 1 < j < m}.

LEMMA 1.4. X, + Y is the mazrimal subalgebra subordinate to &, and
7 is the (infinitesimal) representation associated with &, via the Kirillov
correspondence. In particular, if V,, # {0}, then II¥ is reducible.

Proof. It is clear that X,, + ) is a subalgebra. Since for X € X, and
Y e), (&, [X,Y]) = P([X,Y])(0) = 0, where 7*([X,Y]) = M;p(;x,y)), the
subalgebra X,+) is also subordinate. To see that it is maximal, suppose that
X € X\ X,. Then thereisa k € Z* and a 1 < j < m such that D¥*1P; =0
but D';Pj % 0. Thus, D';Pj = @, where @) is a nonzero polynomial which
depends only on coordinates orthogonal to z in R™. If Q(0) # 0, then

k times

! — .
(s [XL[X L [XL Y] ]) = Q(0) # 0,
where X =Y. 2, X;. If Q(0) = 0, then there are an integer [ and a vector

!

a' = (24,...,2!) € R" such that D!,Q(0) # 0. Then
k times ! times
(Cor [X1X, . XX, XYL ]) = DLQ(0) # 0,
where X’ = %" 2/ X;. Thus, &, + ) is a maximal subalgebra subordinate
to &,.

Let g, denote the representation of F,(R™/V,,) corresponding to &,.
Then g, is obtained by composing the representation of F,(R"/V,,) corre-
sponding to “evaluation at 0”7, o/, with 7, i.e. g, = ¢/, o . The simply
connected group corresponding to F,,(R"/V,,) is of the form T - M, where
T ~Vt consists of translations on C°(R"/V,,), and M consists of mul-
tiplications by €’?, as @) ranges over the polynomials in F,,(R"/V,,). We
know that of,(tm)f(u) = a(m,u)f(u + t), where |a(m,u)| = 1. Thus, if
m = e'?, then o (m)f(u) = a(m,u)f(u) and since 7%()) is subordinate to
the functional, o/ ,(m)f(u) = m(u)f(u), i.e. a(m,u) = m(u), which shows
the equivalence.

Set X+ = {¢ € Fi | {x = 0}, and define Y+ similarly. Then clearly
X+t = {¢, | w e 2}. Thus, given A € F there is a unique w € {2 such

that \ agrees with £, on ). Let A, denote the restriction of A to X,,. Then
X, +) is a maximal subalgebra subordinate to A, +&,,. We denote by 7
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the associated irreducible representation. Then 7% (Z) = i\, (Z)I +7*(Z)
for all Z € F,.

For z € R" and @ € Py, set Q.(y) = Q(z +y) for all y € R", and set
Wy = ((P)ay---s (Pn)z)-

LEMMA 1.5. Each co-adjoint orbit in F; contains some A\, + &, and the
co-adjoint orbit of Ay, + &, O(A\y + &), is given by

(1.6) O+ &) = Ao +H{EEVH | §a, =0} + {&, |z €R™}
Proof. Letz = (z;) € R" andset X =) .z, X;. If 7*(Y) = M,q, then
(Ad"(exp X)8u, V) = (§u, Ad(exp X)Y)

_ Z%@,[X, X, .. (X, Y] ])

= 3 2 DEQ(O) = Q).
k

Since (5%,1/]-%) = (P;)2(0) = Pj(x), one sees that Ad™(exp X)&, =&, -
Let Z1,...,Z, be an orthonormal basis for X’ such that Z1,..., Zy is the
orthogonal complement to X, in X. Then there exist Y7,...,Y, € ) such

that (&, Y5, Zi]) = 6i;. Let Z; denote the element of Y+ dual to Z;. Then
(Ad"™(expYi)&w, Z;) = (§w: Z; + [Yis Z5])
= (§w, Zj) + bij = (u + Z7, Z;),
which completes the proof, since clearly Ad*(exp Fo)Ay = Ao

The space of co-adjoint orbits in the dual of a nilpotent Lie algebra
can be topologized using the quotient topology, or it can be given the Fell
topology via the Kirillov correspondence. These topologies are equivalent
according to Brown [Br| and generally not Hausdorff. Let F,, be the simply
connected nilpotent Lie group with Lie algebra F,. For A € F let 7* be the
irreducible unitary representation of F,, corresponding to A\. The following
lemma of Riemann-Lebesgue type comes from Fell (cf. [Fell, Corollary 1});
however, for the group F, it has a direct simple proof.

LEMMA 1.7. For every K € L*(F,),

. A
(1.8) ol _lrkllop =0.

Proof. It is enough to prove (1.8) for K in the Schwartz space of
functions on F,. Since O(A) = O(A\,+£,) (cf. Lemma 1.5), we can certainly
assume that A = A\, +&,. We already know that W = &, + ) is a maximal
subalgebra subordinate to A. Obviously W is an ideal and F, /W is abelian.
Let Sy be the orthogonal complement to X, in R™. The representation 7*
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acts on L?(Sy). The kernel Ky (z, s) of the operator 77 has the form
(1.9) Ky(z,s) f K(w,s — z) exp(i{Ad; \, w)) dw

= K(Ad; A, 8 — ).

Since ||} lop < maxfsup,es, [y [Ka(z, )l ds, sup,cs, fy [Ka(z,9)] du}
and K is from the Schwartz class, (1.8) follows.

Let {ai,...,an,b1,...,bp} C R, the positive reals. Define a one-
parameter group of automorphisms on F,,{dt}+~0, by setting §,;X; =
t/9 X, 6,Y = Y%y and inductively by &[X,Y/] = [6,X,6,Y/],
where 0 < 8 < ;. We define §; on F,, the simply connected group
with Lie algebra F,, by setting d;(exp Z) = exp(0:Z), and we define &;
on F} by duality, i.e. (6;¢,Z) = (£,0,Z). Since ¢; is an automorphism, the
representation associated with ;¢ is 7 od,. Thus it is easy to check that

(5; gw = §5tw7
where
(5tw = (5tP17 e 75t-Pm)7
and
0ePj(x1,...,2p) = tl/bﬂ'Pj(tl/alxl, . ,tl/a”xn).

A function P defined on F,, (or F}) is said to be homogeneous of degree r if
P(6:Z) =t"P(Z) for Z € F, (or Z € F}). A homogeneous gauge on F, or
Fr is a continuous function, homogeneous of degree one, that is positive on

nonzero elements. Examples that are of particular interest here are given
(on X*) by

po o= e (S e S

-----

where B is any positive constant.

2. The estimates. Recall that F|, is the simply connected nilpotent
Lie group with Lie algebra F,. Let £ be a homogeneous distribution of
degree one on F, such that £ = Ly + u, where p is a bounded measure and
Ly is compactly supported. We define a left-invariant convolution operator
L on F,,

L:CP(Fy) = L'(Fa), [ fxL.

We assume that

(L, f*xf)=(f=xL,f)>0 for f e C>*(F,), where f*(z) = f(z1),
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and that —L is the infinitesimal generator of a convolution semigroup f +—
f#py such that p, € L'(F,). We denote by w5 the operator [}, pi(x)n§ dz,

and by —TI'E the generator of the semigroup {Wgt}t>0~

Let o be a homogeneous gauge on F} with respect to the dilations
{0t }+>0. We define

0(0(§)) = inf{o(n) | n € O(&)}.
Let
A(m%) = inf{(n% £, ) | [|fllz2 = 1}.
THEOREM 2.1. There is a constant ¢ > 0 such that
(2.2) Ax$) > co(O(€)).

Proof. Obviously both sides of (2.2) are constant on orbits. Also, since
L is homogeneous of degree one,

A(ry ) =rA(x) and  o(O(57€) = re(O()).
Therefore to prove (2.2) it suffices to show that there exists an R > 0 such
that if o(O(€)) = R, then A(r%) > 1.
Note that

(2.3) Art) = —log(||m, llop)-

By Lemma 1.7 there is an R such that |[7§ ||lop < 1/e for o(O(€)) > R. This
combined with (2.3) ends the proof.

3. Applications. For an element X in the Lie algebra of a Lie group
G and 0 < a < 2, the operator |X|? is defined on C°(G) into L(G) by

[e.e]

—|X[*f =c [t fxpy dt,
0

where {1 }¢~0 is the semigroup generated by X2. For a unitary representa-

tion 7™ of G we have

7T|X|a = ’ﬂ—X’a .
If the operator 7x f(x) = iP(x)f(x), then m x|« f(x) = |P(x)| f(x). The fol-
lowing is an example of possible application of the theorem of the preceding
section.

THEOREM 3.1. Let w = (P1,...,Py,) be polynomials on R™ such that
P; € Py, and let

n m
H=Hw)=> [D* +> [P,
p} =1
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where ap, <2 and b; < 1, be an operator defined on C°(R™). Let

AMw) = inf { T4 4 max Pi(x bj}.
@) y€ER" Z:’Y lyr—2r | <y <= 15 ()
Y1, '7'Yn>0 k=1 ‘7_1
Then there is a constant ¢ = ¢(by,...,bm,a1,...,ay), otherwise independent
of P1,..., Py, such that
(3.2) A H(w)) = inf Spectrum H(w) > cA(w).

Proof. We proceed by induction with respect to m. Assume first
that the family w is irreducible. We consider the algebra F, and we note
that if

L= X"+ Iy,
k=1 j=1

then 7¢¥ = H and 7* is irreducible. If we put 6, Xy = /% X, 5TYij =
r1/b; on‘j , we see that L is homogeneous of degree one. To see that L satisfies
the conditions of Theorem 2.1 we use a theorem by P. Glowacki [Gl], which
states that if —L is the infinitesimal generator of a semigroup of probability
measures, {p}i>0, which satisfies the Rockland condition, as —L clearly
does, then p; is absolutely continuous. So (3.2) in that case is a consequence
of (1.10) and Theorem 1.2.

Now assume that w is reducible, that is, V,, # {0}. Let eq,...,e, be the
canonical basis of R”. For v > 0 and k = 1,...,n define [—v,v]x = {tex :
t| <~} CR™

The following lemma is very easy to prove.

LEMMA 3.3. There exists a constant B > 1, B = B(n), such that for
every linear subspace W C R™ and for every rectangle Q = [—v1,71]1 +
coo + [V, Ynln C R™ there are vectors e, ..., e,, from the canonical
basis such that lin{e,,,...,e,} ®W = R" [ +dimW = n, and Q C
[=BYn1, Bynylny + -+ [=BYn,, BYnyn, + W

Let S, be the set of all linear subspaces S such that S @ V,, = R" and
S has a basis e,,,...,e,, consisting of vectors from the canonical basis.
For S € S, with the basis {e,,,...,ey, } denote by PjS the polynomial P;
considered on S. Clearly the family {PJS }7_1 isirreducible. By the induction
hypothesis,

l m
A(H(w)) > )\S(Z PREESY \Pf!”f‘) > cs0s(O(PF, ..., Pp)),

i=1 j=1
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where

S S ng Sb;
os((PY.....Pg)) = gnfpo{zm + max S|P,

[Zn, |<vi =

and cg > 0 does not depend on w € (2. Since the number of elements of S,
is bounded by 2", it suffices to show that there is a constant ¢ > 0 such that

S 0s(O(PF..... P2) = co(O(Pr..... P)).
SeS.,

Fix ¢ > 0 and set g9 = ¢/2". For S as above let 25 € S C R" and
’yfl, e ,'yfl > 0 be such that

l
o+ 05 (OPF,... . Py) > > (75)™™ + max Z\PS )s |

Pt \mn \<B’yn

Let v = ming{’y;fi :n; = k}. If e, € V,, for some k, we put vy, = co. Let

Q=I[-v,ml1+ -+ [V, Yn)Jn € R". By Lemma 3.3 there is Sy € S,
such that Sy has a basis e;fﬁl), . eSo consisting of vectors from the canonical
basis, and Q C [—BYn,, BYny]n, + - -+ [=B¥n,, BYn|n, + V. Then
m
max |(P£0) 50 |%
|;1cnl.|<B»yf?jZ1 j Jxo0

m
max Z\ PSO 250 % > maxz )0 |2

‘xnl|<B'Ynl =1
This gives
e+ Y 0g(O(PF,....Py))
Ses.,
!
, bj
> 3 (oare w3 R))
Ses, izt |<Bml
> A7 4 440 % 4 max b > o(O(Py,...,Py)).
>, " W%Z\ oo 2 0(O(Pr,-... Po)

Finally, since the homogeneous norm QS is comparable with pg, there is a
constant ¢ > 0 such that

Z QS(O(Plsvapn‘S;))

SeS,
>c Y 0§(O(PF,....,Py)) = co(O(Py, ..., Pp)).
SESw
This establishes the theorem.
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Remarks. If we put ay, = 2,m =1 and by =1, then H = —A + |V|,
where V' is a polynomial. Inequality (3.2) then becomes the content of
Fefferman’s Theorem 2, p. 144 of [Fe].

Another type of operator whose smallest eigenvalue can be estimated in
a similar manner is

n m
2
H=> (-1)*Dp™ +> P,
k=1 j=1
where Py, ..., Py, are polynomials such that P; € P, and aj, are positive
integers. Then there is a constant ¢ = c¢(ay,...,an,a1,...,qy,), indepen-

dent of w = (Py,..., Py,), such that

n m

inf Spectrum H(w) > ¢ inf { E v 2%+ max P; (:1:)2}
IS — |5 —yr| <vi <=
Y15--Yn >0 k=1 J=1

This follows in the same way from a theorem of Folland—Stein [F'S] that the
operator

n

L=y e Y
k=1

J=1

is the infinitesimal generator of a semigroup of convolution operators f +—
f * ps, where p; € LY(Fy,).
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