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GEODESIC SPHERES AND ISOMETRIC FLOWS

BY

J. C. GONZ ÁLEZ -D ÁV ILA (LA LAGUNA) AND

L. VANHECKE (LEUVEN)

1. Introduction. Locally Killing-transversally symmetric spaces (brief-
ly, locally KTS-spaces) are Riemannian manifolds (M, g) equipped with an
isometric flow generated by a unit Killing vector field ξ such that the local
reflections with respect to the flow lines are isometries. These spaces have
been introduced and studied in [5], [6] where several characterizations and
a lot of examples are provided.

On the one hand, these spaces form a subclass of the class of transversally
symmetric Riemannian foliations studied in [13], [14] but on the other hand,
they extend the class of ϕ-symmetric Sasakian spaces introduced in [11].
These last spaces are the analogues of Hermitian symmetric spaces in con-
tact geometry. (See [2] for more details and further references.) Several
characterizations for these spaces have been given by using the geometry,
extrinsic and intrinsic, of small geodesic spheres [4], [13], in particular by
focussing on the shape operator and the Ricci operator of these spheres.

Although the class of locally KTS-spaces is much broader than that of
ϕ-symmetric spaces, their geometries are reasonably similar and this leads
to a list of analogous characteristic properties. The main purpose of this
paper is to derive these properties.

In Section 2 we collect a series of definitions and results which will be
needed to derive our theorems. We refer to [5], [6] for more details. Sec-
tion 3 is devoted to the proof of a new characterization which will show to
be very useful in Sections 4 and 5 where we derive the characteristic prop-
erties which use the extrinsic and intrinsic geometry of geodesic spheres,
respectively.
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2. Preliminaries. Let (M, g) be a smooth, n-dimensional Riemannian
manifold with n ≥ 2 which is supposed to be connected where necessary.
Further, let ∇ denote the Levi Civita connection of (M, g) and R the cor-
responding Riemannian curvature tensor given by

RUV = ∇[U,V ] − [∇U ,∇V ]

for U, V ∈ X(M), the Lie algebra of smooth vector fields on M . % denotes
the Ricci tensor of type (0,2) and Q the corresponding Ricci endomorphism
field. The scalar curvature will be denoted by τ.

A tangentially oriented foliation of dimension one on (M, g) is called a
flow . The leaves of this foliation are the integral curves of a non-singular
vector field on M and hence, by normalizing length, a flow is also given by
a unit vector field with respect to g. In particular, a non-singular Killing
vector field defines a Riemannian flow and such a flow is said to be an
isometric flow. We refer to [12] for more information.

In the rest of this paper we shall denote by Fξ an isometric flow generated
by a unit Killing vector field ξ. Then the flow lines of Fξ are geodesics and a
geodesic which is orthogonal to ξ at one of its points is orthogonal to it at all
of its points. Such geodesics are called transversal geodesics. Moreover, the
Riemannian foliation determined by Fξ is locally a Riemannian submersion
π : U → Ũ = U/ξ. Here U is a small neighborhood of a point on which
ξ is regular [9]. The (n − 1)-dimensional horizontal distribution on U is
determined by η = 0 where η is the 1-form on M given by η(U) = g(U, ξ)
for all U ∈ X(M). Further, the induced metric g̃ on Ũ is determined by

(2.1) g̃(X̃, Ỹ ) = g(X̃∗, Ỹ ∗)

for X̃, Ỹ ∈ X(Ũ) and where X̃∗, Ỹ ∗ are the horizontal lifts of X̃, Ỹ . Its Levi
Civita connection ∇̃ is related to ∇ by

∇̃
X̃

Ỹ = π∗(∇X̃∗ Ỹ
∗)

for all X̃, Ỹ ∈ X(Ũ).
Vector fields which are orthogonal to ξ are called horizontal and the

transversal geodesics are also said to be horizontal geodesics.
Since we have locally Riemannian submersions, we may use the O’Neill

tensors A and T [8], [1, Chapter 9] which are in fact globally defined for
the Riemannian foliation [10], [12]. In our case, T = 0 since the leaves are
geodesics. Further, for the integrability tensor A we have

(2.2)
{

AUξ = ∇Uξ, AξU = 0,
AXY = (∇XY )V = −AY X, g(AXY, ξ) = −g(AXξ, Y ),

where U ∈ X(M), X, Y are horizontal vector fields and V denotes the vertical
component. Note that A = 0 if and only if the horizontal distribution is
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integrable. In that case, since T = 0, (M, g) is locally a Riemannian product
of an (n− 1)-dimensional space and a line.

Next, put

(2.3) HU = −AUξ

for U ∈ X(M), and define the (0, 2)-tensor h by

h(U, V ) = g(HU, V )

for U, V ∈ X(M). Since ξ is a Killing field, we have

(2.4) h(U, V ) + h(V,U) = 0,

that is, H is a skew-symmetric endomorphism. Further, for all horizontal
X, Y ∈ X(M), we obtain easily

(2.5) AXY = h(X, Y )ξ = 1
2η([X, Y ])ξ

and hence

(2.6) h = −dη.

All this leads to

Lemma 2.1. Let X, Y, Z be horizontal vector fields on (M, g,Fξ). Then

(∇ξh)(X, Y ) = g((∇ξA)XY, ξ) = 0,(2.7)
R(X, Y, Z, ξ) = (∇Zh)(X, Y ),(2.8)
R(X, ξ, Y, ξ) = g(HX,HY ) = g(−H2X, Y ).(2.9)

This lemma yields

Theorem 2.1. Let (M, g) be a Riemannian manifold equipped with a
unit Killing vector field ξ. Then the following holds:

(i) the sectional curvature K(X, ξ) is non-negative for all (horizon-
tal) X ;

(ii) K(X, ξ) = 0 for all X ∈ X(M) if and only if h = 0 or equivalently ,
A = 0;

(iii) K(X, ξ) > 0 for all X ∈ X(M) if and only if the endomorphism H is
of maximal rank n− 1. (In this case n is necessarily odd and η is a contact
form on M.)

This result leads to

Definition 2.1. An isometric flow on (M, g) is said to be a contact
flow if η is a contact form or equivalently, if H is of maximal rank.

Further, on (Ũ , g̃) we have

(2.10) ∇
X̃∗ Ỹ

∗ = (∇̃
X̃

Ỹ )∗ + h(X̃∗, Ỹ ∗)ξ
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for all X̃, Ỹ ∈ X(Ũ) and the corresponding Riemannian curvature tensor R̃
is given by

(R̃
X̃Ỹ

Z̃)∗ = R
X̃∗Ỹ ∗Z̃

∗ + 2h(X̃∗, Ỹ ∗)HZ̃∗(2.11)

+ {(∇
X̃∗h)(Ỹ ∗, Z̃∗)− (∇

Ỹ ∗h)(X̃∗, Z̃∗)}ξ

+ h(X̃∗, Z̃∗)HỸ ∗ − h(Ỹ ∗, Z̃∗)HX̃∗

for all X̃, Ỹ , Z̃ ∈ X(Ũ). Hence, this yields

(%̃(X̃, Ỹ ))∗ = %(X̃∗, Ỹ ∗) + 2g(HX̃∗,HỸ ∗),(2.12)
τ̃∗ = τ + %(ξ, ξ),(2.13)

and for the corresponding sectional curvatures we get

(2.14) (K̃p̃(ũ, w̃))∗ = Kp(ũ∗, w̃∗) + 3(hp(ũ∗, w̃∗))2

where {ũ, w̃} is an orthonormal pair of Tp̃Ũ , p̃ = π(p). So,

(%̃(X̃, X̃))∗ ≥ %(X̃∗, X̃∗), τ̃∗ ≥ τ, (K̃p̃(ũ, w̃))∗ ≥ Kp(ũ∗, w̃∗),

where the equalities hold if and only if the horizontal distribution is inte-
grable.

In the rest of this paper an important role will be played by a special
type of isometric flow introduced in [6].

Definition 2. An isometric flow Fξ on (M, g) is said to be normal if
the curvature tensor R satisfies

(2.15) R(X, Y,X, ξ) = 0

for all horizontal vectors X, Y. (This is equivalent to R(X, Y, Z, ξ) = 0 for
all horizontal X, Y, Z.)

From Lemma 2.1 we then get

Proposition 2.1. Let (M, g) be a Riemannian manifold and Fξ an iso-
metric flow on it. Then Fξ is normal if and only if

(2.16) (∇UH)V = g(HU, HV )ξ + η(V )H2U

for all U, V ∈ X(M).

Moreover, for a normal flow we have

(2.17)
{

RUV ξ = η(V )H2U − η(U)H2V,
RUξV = g(HU, HV )ξ + η(V )H2U.

Further, %(X, ξ) = 0 for each horizontal X, and from Lemma 2.1 and Propo-
sition 2.1 we see that %(ξ, ξ) is a non-negative constant.
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Next, for a normal flow Fξ, (2.11) reduces to

(R̃
X̃Ỹ

Z̃)∗ = R
X̃∗Ỹ ∗Z̃

∗ − g(HỸ ∗, Z̃∗)HX̃∗(2.18)

+ g(HX̃∗, Z̃∗)HỸ ∗ + 2g(HX̃∗, Ỹ ∗)HZ̃∗

for all X̃, Ỹ , Z̃ ∈ X(Ũ). Hence, using (2.10), (2.16) and (2.17) we obtain

(2.19) ((∇̃
Ṽ

R̃)
X̃Ỹ

Z̃)∗ = ((∇
Ṽ ∗R)

X̃∗Ỹ ∗Z̃
∗)H

where ( )H denotes the horizontal part, and from (2.12) we get

(2.20) ((∇̃
X̃

%̃)(Ỹ , Z̃))∗ = (∇
X̃∗%)(Ỹ ∗, Z̃∗).

Finally, let H̃ be the (1, 1)-tensor field on Ũ defined by

(2.21) H̃X̃ = π∗HX̃∗.

Then H̃ is skew-symmetric with respect to g̃, and moreover,

(2.22) (∇
X̃∗H)Ỹ ∗ = ((∇̃

X̃
H̃)Ỹ )∗ + g(HX̃∗,HỸ ∗)ξ.

So, making use of (2.8), we have

Proposition 2.2. An isometric flow Fξ on (M, g) is normal if and
only if

(2.23) ∇̃H̃ = 0

for each (Ũ , g̃).

Finally, we introduce the spaces we want to study in more detail. So,
let Fξ be an isometric flow on (M, g). Let m ∈ M and denote by σ the
geodesic flow line through m. A local diffeomorphism sm of M defined in
a neighborhood U of m is said to be a (local) reflection with respect to σ if
for every transversal geodesic γ(s), where γ(0) lies in the intersection of U
with σ, we have

(sm · γ)(s) = γ(−s)

for all s with γ(±s) ∈ U , s being the arc length. Note that in this case

(sm∗)(m) = (−I + 2η ⊗ ξ)(m).

Definition 2.3. A locally Killing-transversally symmetric space (briefly,
a locally KTS-space) is a Riemannian manifold equipped with an isometric
flow such that the reflection sm with respect to the flow line through m is
an isometry for all m ∈ M.

These spaces may be characterized as follows:
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Theorem 2.2 [6]. Let Fξ be an isometric flow on (M, g). Then (M, g,Fξ)
= (M, g, ξ) is a locally KTS-space if and only if Fξ is normal and

(∇XR)(X, Y,X, Y ) = 0

for all horizontal vector fields X, Y .

Using (2.19) we then get

Theorem 2.3. Let Fξ be a normal flow on (M, g). Then (M, g, ξ) is a
locally KTS-space if and only if each base space Ũ of a local Riemannian
submersion π : U → Ũ = U/ξ is a locally symmetric space.

3. A new characterization of locally KTS-spaces. The main
purpose of this section is to give a useful characterization for a class of
locally KTS-spaces by using contact normal flows and a property for ∇R.
Specifically, we shall prove

Theorem 3.1. Let Fξ be a contact flow on (M, g). Then (M, g, ξ) is a
locally KTS-space if and only if Fξ is normal and

(∇XR)(X, HX,X,HX) = 0

for all horizontal X.

The proof will be given by using a series of lemmas which we consider
first. We start with a well-known result from linear algebra.

Lemma 3.1. Let V be an n-dimensional vector space with a positive def-
inite inner product and let A : V → V be a skew-symmetric endomorphism.
Then the rank of A is an even number 2k ≤ n, and there is an orthonormal
basis {X1, . . . , Xn} and real non-vanishing numbers λ1, . . . , λk such that

(3.1)


AX1 = λ1X2, AX2 = −λ1X1, . . . ,

AX2k−1 = λkX2k, AX2k = −λkX2k−1,

AX2k+1 = . . . = AXn = 0.

Further, we have from [6]:

Lemma 3.2. Let Fξ be a normal flow on (M, g).Then, for every U, V,W ∈
X(M), we have

RHUV W + RUHV W = g(HV, W )H2U − g(HU, W )H2V(3.2)
− g(H2U,W )HV + g(H2V,W )HU

+ η(V )RHUξW − η(U)RHV ξW.
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This leads to

Lemma 3.3. Let Fξ be a normal flow on (M, g). Then on each base space
(Ũ , g̃) we have

(3.3) R̃
H̃X̃Ỹ

= R̃
H̃Ỹ X̃

for all X̃, Ỹ ∈ X(Ũ).

P r o o f. (2.18) yields

R̃
H̃X̃Ỹ

Z̃ + R̃
X̃H̃Ỹ

Z̃ = π∗(R(H̃X̃)∗Ỹ ∗Z̃
∗ + R

X̃∗(H̃Ỹ )∗
Z̃∗)

− g̃(H̃Ỹ , Z̃)H̃2X̃ + g̃(H̃2X̃, Z̃)H̃Ỹ

− g̃(H̃2Ỹ , Z̃)H̃X̃ + g̃(H̃X̃, Z̃)H̃2Ỹ .

Now the result follows at once by using (3.2).

P r o o f o f T h e o r e m 3.1. First, let (M, g) be a locally KTS-space.
Then the result follows from Theorem 2.2.

Next, we prove that the condition is sufficient. Therefore we shall prove
that on each (Ũ , g̃),

(3.4) (∇̃
X̃

R̃)(X̃, H̃X̃, X̃, H̃X̃) = 0

and

(∇̃
X̃

R̃)(X̃, Ỹ , X̃, Ỹ ) = 0

are equivalent. Then the result follows from Theorem 2.2 and (2.19).
So, let p̃ ∈ Ũ and x̃ ∈ Tp̃Ũ . Put x̃ = αỹ + βz̃ for arbitrary α, β in (3.4).

From (3.3) and Proposition 2.2 we then conclude that the coefficient of αβ4

yields the following condition:

(3.5) (∇̃ỹR̃)(z̃, H̃z̃, z̃, H̃z̃) + 4(∇̃z̃R̃)(ỹ, H̃z̃, z̃, H̃z̃) = 0.

Applying the second Bianchi identity for the second term yields

(3.6) 5(∇̃ỹR̃)(z̃, H̃z̃, z̃, H̃z̃)− 4(∇̃
H̃z̃

R̃)(z̃, ỹ, z̃, H̃z̃) = 0.

Replacing z̃ by H̃z̃ in (3.6) then gives

(3.7) 5(∇̃ỹR̃)(H̃z̃, H̃2z̃, H̃z̃, H̃2z̃)− 4(∇̃
H̃2z̃

R̃)(H̃z̃, ỹ, H̃z̃, H̃2z̃) = 0.

Now, put z̃ = αũ + βṽ in (3.7) for arbitrary α, β. Then the coefficient of
α3β, again by (3.3), yields the condition

5(∇̃ỹR̃)(H̃ũ, H̃2ũ, H̃ũ, H̃2ṽ)− 3(∇̃
H̃2ũ

R̃)(H̃ũ, ỹ, H̃ũ, H̃2ṽ)

− (∇̃
H̃2ṽ

R̃)(H̃ũ, ỹ, H̃ũ, H̃2ũ) + (∇̃
H̃2ũ

R̃)(H̃2ṽ, ũ, ỹ, H̃2ũ) = 0.
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Since H̃ is skew-symmetric and of maximal rank n−1 there exists on Tp̃Ũ an
orthonormal basis Xi, i = 1, . . . , n− 1, such that (3.1) holds. Then setting
ṽ = Xi in the last expression yields, with ũ =

∑
xiXi,

(3.8) 5(∇̃ỹR̃)(H̃ũ, H̃2ũ, H̃ũ, ũ)

+ 3(∇̃
H̃2ũ

R̃)(ỹ, H̃ũ, H̃ũ, ũ)− (∇̃ũR̃)(H̃ũ, ỹ, H̃ũ, H̃2ũ) = 0.

Next, we put ũ = αã + βb̃ in (3.8) and use (3.3) to obtain, from the
coefficient of α3β,

10{(∇̃ỹR̃)(H̃ã, H̃2ã, H̃ã, b̃) + (∇̃ỹR̃)(H̃ã, H̃2b̃, H̃ã, ã)}(3.9)

+ 6(∇̃
H̃2ã

R̃)(ỹ, H̃ã, H̃b̃, ã) + 3(∇̃
H̃2ã

R̃)(ỹ, H̃b̃, H̃ã, ã)

+ 3(∇̃
H̃2b̃

R̃)(ỹ, H̃ã, H̃ã, ã)− 2(∇̃ãR̃)(H̃ã, ỹ, H̃ã, H̃2b̃)

− (∇̃ãR̃)(H̃b̃, ỹ, H̃ã, H̃2ã)− (∇̃b̃R̃)(H̃ã, ỹ, H̃ã, H̃2ã) = 0.

Now, using the first and second Bianchi identity and (3.3) in (3.9) implies

10(∇̃ỹR̃)(H̃ã, H̃2b̃, H̃ã, ã) + 6(∇̃
H̃ã

R̃)(H̃ã, H̃2b̃, ỹ, ã)(3.10)

+ 4(∇̃ãR̃)(ã, H̃2b̃, H̃ỹ, H̃ã) + 4(∇̃
H̃ã

R̃)(H̃ã, ã, ỹ, H̃2b̃)

+ (∇̃
H̃ã

R̃)(ã, H̃2b̃, ỹ, H̃ã) + 3(∇̃
H̃2b̃

R̃)(ỹ, H̃ã, H̃ã, ã)

+ 3(∇̃ãR̃)(H̃2b̃, H̃ã, H̃ã, ỹ) = 0.

Again we put, as before, b̃ = Xi, i = 1, . . . , n − 1, in (3.10). Then with
z̃ =

∑
ziXi we obtain

(3.11) 5(∇̃ỹR̃)(z̃, H̃z̃, z̃, H̃z̃)− 4(∇̃z̃R̃)(H̃z̃, ỹ, H̃z̃, z̃) = 0.

This together with (3.5) yields

(3.12) (∇̃ỹR̃)(z̃, H̃z̃, z̃, H̃z̃) = 0.

Next, we use the same method for (3.12) to obtain

(3.13) (∇̃ỹR̃)(ũ, H̃z̃, z̃, H̃z̃) = 0.

Linearizing this once again we obtain

(3.14) (∇̃ỹR̃)(ũ, H̃w̃, z̃, H̃z̃)

+ (∇̃ỹR̃)(ũ, H̃z̃, w̃, H̃z̃) + (∇̃ỹR̃)(ũ, H̃z̃, z̃, H̃w̃) = 0.

Now, put ũ = w̃ in (3.14) to obtain

2(∇̃ỹR̃)(ũ, H̃z̃, ũ, H̃z̃) + (∇̃ỹR̃)(ũ, H̃ũ, z̃, H̃z̃) = 0.

Using the first Bianchi identity for the second term yields

(3.15) 3(∇̃ỹR̃)(ũ, H̃z̃, ũ, H̃z̃) + (∇̃ỹR̃)(ũ, z̃, H̃ũ, H̃z̃) = 0
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and with (3.3) we get

(3.16) 3(∇̃ỹR̃)(ũ, H̃z̃, ũ, H̃z̃)− (∇̃ỹR̃)(ũ, z̃, ũ, H̃2z̃) = 0.

Further, put z̃ = αã + βb̃ in (3.16). From the coefficient αβ we get

(3.17) 6(∇̃ỹR̃)(ũ, H̃ã, ũ, H̃b̃)

− (∇̃ỹR̃)(ũ, ã, ũ, H̃2b̃)− (∇̃ỹR̃)(ũ, b̃, ũ, H̃2ã) = 0.

Using (3.3) for the last term leads to

(3.18) 3(∇̃ỹR̃)(ũ, H̃ã, ũ, H̃b̃)− (∇̃ỹR̃)(ũ, ã, ũ, H̃2b̃) = 0.

Now we put b̃ = X2j , j = 1, . . . , (n− 1)/2 in (3.18) to obtain

(3.19) 3(∇̃ỹR̃)(ũ, H̃ã, ũ, H̃X2j) + (λj)2(∇̃ỹR̃)(ũ, ã, ũ, X2j) = 0.

For b̃ = X2j−1 we get

(3.20) 3(∇̃ỹR̃)(ũ, H̃ã, ũ, H̃X2j−1) + (λj)2(∇̃ỹR̃)(ũ, ã, ũ, X2j−1) = 0.

Next, we replace z̃ by H̃z̃ in (3.16):

3(∇̃ỹR̃)(ũ, H̃2z̃, ũ, H̃2z̃)− (∇̃ỹR̃)(ũ, H̃z̃, ũ, H̃3z̃) = 0.

Also here we put z̃ = αã + βb̃ and consider the coefficient of αβ to obtain

6(∇̃ỹR̃)(ũ, H̃2ã, ũ, H̃2b̃)− (∇̃ỹR̃)(ũ, H̃ã, H̃2b̃, H̃ũ)(3.21)

− (∇̃ỹR̃)(H̃ã, H̃2b̃, H̃ũ, ũ)− (∇̃ỹR̃)(H̃2b̃, ũ, H̃2ã, ũ) = 0.

Putting b̃ = Xi, i = 1, . . . , n− 1, in (3.21) and then considering ã =
∑

aiXi

gives

5(∇̃ỹR̃)(ũ, H̃2ã, ũ, ã)− (∇̃ỹR̃)(ũ, H̃ã, ã, H̃ũ)− (∇̃ỹR̃)(H̃ã, ã, H̃ũ, ũ) = 0.

Using the first Bianchi identity for the last term, we obtain

(3.22) 3(∇̃ỹR̃)(ũ, H̃2ã, ũ, ã)− (∇̃ỹR̃)(ũ, H̃ã, ũ, H̃ã) = 0.

Further, a new linearization in (3.22) leads to

(3.23) 3(∇̃ỹR̃)(ũ, H̃2b̃, ũ, ã)− (∇̃ỹR̃)(ũ, H̃ã, ũ, H̃b̃) = 0.

Now, put b̃ = X2j , j ∈ {1, . . . , (n− 1)/2}, in (3.23) to get

(3.24) 3(λj)2(∇̃ỹR̃)(ũ, X2j , ũ, ã) + (∇̃ỹR̃)(ũ, H̃ã, ũ, H̃X2j) = 0.

For b̃ = X2j−1 we get

(3.25) 3(λj)2(∇̃ỹR̃)(ũ, X2j−1, ũ, ã) + (∇̃ỹR̃)(ũ, H̃ã, ũ, H̃X2j−1) = 0.
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So, comparing (3.19) with (3.24) and (3.20) with (3.25), taking into
account that H̃ is non-singular, we obtain

(∇̃ỹR̃)(ũ, Xi, ũ, ã) = 0, i = 1, . . . , n− 1.

So, in particular, (∇̃ũR̃)(ũ, ã, ũ, ã) = 0, and this proves the result since the
converse is trivial.

Now we will express Theorem 3.1 in a more geometrical way. Therefore
we note that when the flow Fξ is normal, (2.9) and Proposition 2.1 imply
that the sectional curvature K(γ′, ξ), or equivalently, ‖Hγ′‖ is constant
along any transversal geodesic γ. Then we get

Corollary 3.1. Let Fξ be a contact normal flow on (M, g). Then (M,
g, ξ) is a locally KTS-space if and only if the sectional curvature K(γ′,Hγ′)
is constant along the transversal geodesic γ for all γ.

P r o o f. Let γ be a unit speed transversal geodesic. Then Proposition 2.1
implies that (∇γ′H)γ′ is vertical and hence

γ′R(γ′,Hγ′, γ′,Hγ′) = (∇γ′R)(γ′,Hγ′, γ′,Hγ′).

Thus, γ′K(γ′,Hγ′) = ‖Hγ′‖−2(∇γ′R)(γ′,Hγ′, γ′,Hγ′). The required re-
sult now follows at once from Theorem 3.1.

Note that for a normal contact flow Fξ the sectional curvature K(Hγ′, ξ)
is constant along a transversal geodesic γ.

4. Extrinsic geometry of geodesic spheres. The shape opera-
tor. For our applications we start by considering the shape operator of small
geodesic spheres. Let m ∈ M and denote by Gm(r) the geodesic sphere cen-
tered at m and with sufficiently small radius r such that Gm(r) is contained
in a normal neighborhood. The extrinsic geometry of this hypersurface is
described by the shape operator Tm. Let p ∈ Gm(r) and let γ denote the
unit speed geodesic through p with γ(0) = m and γ′(0) = u. Since ∂

∂r (γ(r))
is a unit normal vector of Gm(r) at p = γ(r) = expm(ru), Tm is defined by

Tm(p)X =
(
∇X

∂

∂r

)
(p)

where X ∈ TpGm(r). See [3], [7], [15] for more details and for further
references about the geometry of small geodesic spheres. Jacobi vector fields
may be used to derive the following power series expansion for the shape
operator:

(4.1) Tm(p) =
1
r
I − r

3
Rm − r2

4
R′

m − r3

90
(9R′′

m + 2R2
m) + O(r4)
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where Rm = R(m) = Ru.u, R′
m = R′(m) = (∇uR)u.u, etc. Moreover, it

should be noted that for this expression the spaces {γ′(0)}⊥ and {γ′(r)}⊥
are identified via a parallel orthonormal basis along γ.

Now we prove our first characterization.

Theorem 4.1. Let Fξ be an isometric flow on (M, g). Then (M, g, ξ)
is a locally KTS-space if and only if for every point m ∈ M and every
transversal geodesic γ through m we have the following property : for every
p ∈ γ such that p and sm(p) lie in a normal neighborhood of m the shape
operators Tp(m) and Tsm(p)(m) at m of the geodesic spheres of radius d(m, p)
centered at p and at sm(p) commute with (sm∗)(m), that is,

(4.2) (sm∗)(m) · Tp(m) = Tsm(p)(m) · (sm∗)(m).

P r o o f. First, let (M, g, ξ) be a locally KTS-space. Then each sm is an
isometry and hence (4.2) follows.

Conversely, suppose (4.2) holds. Using (4.1) we have

Tp(m) =
1
r
I − r

3
Rp +

r2

4
R′

p −
r3

90
(9R′′

p + 2R2
p) + O(r4)

or

(4.3) Tp(m) =
1
r
I − r

3
Rm − r2

12
R′

m − r3

180
(3R′′

m + 4R2
m) + O(r4).

Similarly,

(4.4) Tsm(p)(m) =
1
r
I − r

3
Rm +

r2

12
R′

m − r3

180
(3R′′

m + 4R2
m) + O(r4).

Next, let x ∈ {u, ξ}⊥ at TmM. Then (4.2)–(4.4) yield at once R(u, x, u, ξ)
= 0 and (∇uR)(u, x, u, x) = 0, for all horizontal u and all m ∈ M. Hence,
the result follows from Theorem 2.2.

Further, we have

Theorem 4.2. Let (M, g) be a Riemannian manifold and let Fξ be a
contact flow on it. Then (M, g, ξ) is a locally KTS-space if and only if for
all unit horizontal u, all m ∈ M and all sufficiently small r the operator

(Tp + Tsm(p))(m), p = expm(ru),

preserves the horizontal subspace of Tm(M).

P r o o f. For a locally KTS-space the result follows at once from Theo-
rem 4.1.

Conversely, the hypothesis implies together with the expansions (4.3)
and (4.4),

g((Tp + Tsm(p))(m)x, ξ)

= − 2
3rR(u, x, u, ξ)− 1

90r3(3(∇2
uuR)(u, x, u, ξ) + 4R(u, Ruxu, u, ξ)) + O(r4)
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for all x ∈ {u, ξ}⊥. Consequently,

(4.5) R(u, x, u, ξ) = 0,

which shows that Fξ is normal. Further, we also have

(4.6) 3(∇2
uuR)(u, x, u, ξ) + 4R(u, Ruxu, u, ξ) = 0.

But from (4.5) we get

(4.7)


Ruξu = ‖Hu‖2ξ,
(∇uR)uξu = RuHuu− ‖Hu‖2Hu,

(∇2
uuR)uξu = 2(∇uR)uHuu,

which, together with (4.6), yields (∇uR)(u, Hu, u, x) = 0. In particular,

(4.8) (∇uR)(u, Hu, u,Hu) = 0

for all horizontal u and all m∈M . Now the result follows from Theorem 3.1.

Similarly we get

Theorem 4.3. Let Fξ be a contact normal flow on (M, g). Then (M, g, ξ)
is a locally KTS-space if and only if for all m ∈ M, all horizontal unit u
and all sufficiently small r we have, for p = expm(ru),

(i) (Tp + Tsm(p))(m)ξ = α1ξ, or
(ii) (Tp + Tsm(p))(m)Hu is horizontal , or
(iii) (Tsm(p) − Tp)(m)Hu = α2ξ.

P r o o f. For a locally KTS-space the result follows again from Theo-
rem 4.1. Conversely, using (4.7) we get, from (4.3) and (4.4),

(Tp + Tsm(p))(m)ξ = αξ − 1
15r3(∇uR)uHuu + O(r4),

g((Tp + Tsm(p))(m)Hu, ξ) = − 1
15r3(∇uR)(u, Hu, u,Hu) + O(r4),

(Tsm(p) − Tp)(m) = 1
6r2R′

m + O(r4).

Then each of the conditions implies (4.8) and the result follows again.

Next, we will consider some functions of a geometrical nature instead of
operators and investigate their behavior under the geodesic reflections. Let
Fξ be a contact normal flow on (M, g) and let γ be a transversal geodesic
tangent to the unit horizontal vector u. We also put γ′ = u. Further, denote
by σ the geodesic on Gm(r) tangent to Hu at p = expm(ru) and by κm(p)
its curvature at that point, that is,

κm(p) = ‖Hu‖−2g(Tm(p)Hu,Hu).
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Note that since ∇u(Hu) = ‖Hu‖2ξ, Hu is not parallel along γ but the
2-plane {ξ,Hu} is parallel along γ. So, let (E1, E2) be an orthonormal basis
of that plane spanned by the parallel vectors E1, E2 and with initial values

E1(0) = ξ(m), E2(0) = ‖Hu‖−1(Hu)(m).

Then at p = expm(ru) we have

(4.9)

{
ξ(p) = E1(r) cos(r‖Hu‖)− E2(r) sin(r‖Hu‖),
(Hu)(p) = ‖Hu‖{E1(r) sin(r‖Hu‖) + E2(r) cos(r‖Hu‖)}.

Now we prove

Theorem 4.4. Let Fξ be a contact normal flow on (M, g). Then (M, g, ξ)
is a locally KTS-space if and only if

(4.10) κm(p) = κm(sm(p)), p = expm(ru),

for all m ∈ M, all horizontal unit u and all sufficiently small r.

P r o o f. First, suppose (M, g, ξ) is a locally KTS-space. Then each
reflection sm is an isometry which preserves ξ and so, it also preserves H.
Hence, (4.10) follows.

Conversely, suppose (4.10) holds. Using (4.9) and (4.1) we obtain

κm(p) = r−1 − 1
3‖Hu‖−2r(R(u, Hu, u,Hu)(m)(4.11)

− 1
4‖Hu‖−2r2(∇uR)(u, Hu, u,Hu)(m) + O(r3)

and
κm(sm(p)) = r−1 − 1

3‖Hu‖−2rR(u, Hu, u,Hu)(m)(4.12)

+ 1
4‖Hu‖−2r2(∇uR)(u, Hu, u,Hu)(m) + O(r3).

Then we obtain again (∇uR)(u, Hu, u,Hu) = 0 for all horizontal u and all
m ∈ M . The desired result follows then also from Theorem 3.1.

Using (4.3) and (4.4) we obtain in a similar way

Theorem 4.5. Let Fξ be a contact normal flow on (M, g). Then (M, g, ξ)
is a locally KTS-space if and only if

(4.13) κp(m) = κsm(p)(m), p = expm(ru),

for all m ∈ M, all unit horizontal u and all sufficiently small r.

5. Intrinsic geometry of geodesic spheres. The Ricci operator.
In this final section we consider some aspects of the intrinsic geometry of
small geodesic spheres. We take the same notations and conventions as
in Section 4. Using the same identification as for (4.1), the power series
expansion for Tm(p) leads, via the Gauss equation for the hypersurfaces
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Gm(r) and via contraction, to the following expansion for the Ricci operator
Q̃m of Gm(r):

(5.1) Q̃m(p)

=
n− 2

r2
I +

{
Q− %(u, ·)u− 1

3
%(u, u)I − n

3
R

}
(m)

+ r

{
∇uQ− (∇u%)(u, ·)u− 1

4
(∇u%)(u, u)I − n + 1

4
∇uR

}
(m)

+ r2

{
1
2
∇2

uuQ− 1
2
(∇2

uu%)(u, ·)u− 1
10

(∇2
uu%)(u, u)I

− n + 2
10

∇2
uuR +

1
9
%(u, u)R− 1

45

n∑
a,b=1

R2
uaubI −

n + 2
45

R2

}
(m) + O(r3)

where Ruaub = R(u, ea, u, eb) and {ea : a = 1, . . . , n} is an arbitrary or-
thonormal basis of TmM .

First, we have

Theorem 5.1. Let Fξ be an isometric flow on a Riemannian manifold
(M, g) of dimension n > 3. Then (M, g, ξ) is a locally KTS-space if and only
if for every m ∈ M, every transversal geodesic γ : r 7→ expm(ru), u hori-
zontal and ‖u‖ = 1, and every small r we have the following commutativity
property for the Ricci operator Q̃:

(5.2) (sm∗)(m) · Q̃p(m) = Q̃sm(p)(m) · (sm∗)(m),

where p = expm(ru).

P r o o f. Let (M, g, ξ) be a locally KTS-space. Then the result follows
from Theorem 4.1 by using the Gauss equation and the fact that all sm are
isometries.

Conversely, from (5.1) we get

Q̃p(m) =
n− 2

r2
I +

{
Q− %(u, ·)u− 1

3
%(u, u)I − n

3
R

}
(m)(5.3)

− r

12
{(∇u%)(u, u)I + (n− 3)∇uR}(m)

+ r2

{
− 1

60
(∇2

uu%)(u, u)I − n− 3
60

∇2
uuR +

1
9
%(u, u)R

− 1
45

n∑
a,b=1

R2
uaubI −

n + 2
45

R2

}
(m) + O(r3),

and
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(5.4) Q̃sm(p)(m)

=
n− 2

r2
I +

{
Q− %(u, ·)u− 1

3
%(u, u)I − n

3
R

}
(m)

+
r

12
{(∇u%)(u, u)I + (n− 3)∇uR}(m)

+ r2

{
− 1

60
(∇2

uu%)(u, u)I − n− 3
60

∇2
uuR +

1
9
%(u, u)R

− 1
45

n∑
a,b=1

R2
uaubI −

n + 2
45

R2

}
(m) + O(r3).

Next, let x be a unit vector in TmM orthogonal to the plane {u, ξ}.
Then, using (5.2), (5.3) and (5.4) we obtain

%(x, ξ) = 1
3nR(u, x, u, ξ),(5.5)

(∇u%)(u, u) = (3− n)(∇uR)(u, x, u, x).(5.6)

Now, let a and b be arbitrary horizontal vectors. Then (5.5) and (5.6) imply,
for a orthogonal to b,

%(a, ξ) = 1
3nR(b, a, b, ξ),(5.7)

(∇a%)(a, a) = (3− n)(∇aR)(a, b, a, b).(5.8)

Next, let b = ei where ei, i = 1, . . . , n−2, is an orthonormal basis of {a, ξ}⊥.
Then contraction in (5.7) yields easily, since n > 3, R(b, a, b, ξ) = 0, which
means that the flow is normal. Together with (5.8), this implies by ex-
plicit computation that (∇a%)(a, a) = 0, and so (∇aR)(a, b, a, b) = 0. The
required result now follows from Theorem 2.2.

In a similar way, using also (4.7) and proceeding as in Section 4, we get

Theorem 5.2. Let Fξ be a contact flow on (M, g) with dim M > 3. Then
(M, g, ξ) is a locally KTS-space if and only if for all unit horizontal u, all
m ∈ M and all sufficiently small r the operator

(Q̃p + Q̃sm(p))(m), p = expm(ru),

preserves the horizontal subspace of TmM .

Theorem 5.3. Let Fξ be a contact normal flow on (M, g) with dim M>3.
Then (M, g, ξ) is a locally KTS-space if and only if for all unit horizontal
u, all m ∈ M and all sufficiently small r we have, for p = expm(ru),

(i) (Q̃p + Q̃sm(p))(m)ξ = αξ, or
(ii) (Q̃p + Q̃sm(p))(m)Hu is horizontal.

We finish this section by deriving two additional characterizations by
means of properties of special sectional curvatures of small geodesic spheres.
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Let Fξ be again a contact normal flow on (M, g), m ∈ M, and γ a transversal
unit speed geodesic with γ(0) = m, γ′(0) = u. We recall that the two-plane
spanned by ξ and Hγ′ is parallel along γ and tangent to the geodesic spheres
Gm(r) at p = expm(ru). Let KG

m(p) denote the corresponding sectional
curvature of Gm(r). Then we have

Theorem 5.4. Let Fξ be a contact normal flow on (M, g). Then (M, g, ξ)
is a locally KTS-space if and only if

(5.9) KG
m(p) = KG

m(sm(p)), p = expm(ru),

for all m ∈ M, all unit horizontal u and all sufficiently small r.

P r o o f. First, let (M, g, ξ) be a locally KTS-space. Then any reflection
sm is an isometry which preserves ξ and also H (Theorem 5.3 of [6]). Now
(5.9) follows at once from this remark and from the Gauss equation for the
hypersurface Gm(r).

To prove the converse we proceed as follows. Let (E1, . . . , En−1, En = γ′)
be a parallel orthonormal basis along γ and denote by RG the Riemannian
curvature tensor of Gm(r). Then we have [3, (4.3)]

(5.10) RG
abcd(p)

= r−2(δacδbd − δadδbc)

+ {Rabcd − 1
3 (Rubudδac + Ruaucδbd −Rubucδad −Ruaudδbc)}(m)

+ r{∇uRabcd − 1
4 (∇uRubudδac +∇uRuaucδbd −∇uRubucδad

−∇uRuaudδbc)}(m) + O(r2),

where Rabcd = R(Ea, Eb, Ec, Ed), etc. and a, b, c, d = 1, . . . , n− 1.
Next, put

E1(0) = ξ(m), E2(0) = ‖Hu‖−1(Hu)(m).

Since the two-plane spanned by ξ and Hγ′ is parallel, we have KG
m(p) =

RG
1212(p) and so (5.10) yields, after a straightforward computation,

KG
m(p) = r−2 + ‖Hu‖−2R(ξ,Hu, ξ,Hu)(m)(5.11)

− 1
3{‖Hu‖−2R(u, Hu, u,Hu) + ‖Hu‖2}(m)

− 1
4r‖Hu‖−2(∇uR)(u, Hu, u,Hu)(m) + O(r2).

Hence (5.9) and (5.11) yield clearly (∇uR)(u, Hu, u,Hu) = 0, and the re-
quired result follows from Theorem 3.1.

With the same notations as above we also have
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Theorem 5.5. Let Fξ be a contact normal flow on (M, g). Then (M, g, ξ)
is a locally KTS-space if and only if

KG
p (m) = KG

sm(p)(m), p = expm(ru),

for all m ∈ M, all unit horizontal u and all sufficiently small r.

P r o o f. For a locally KTS-space, (5.12) follows from Theorem 4.1 and
the Gauss equation of the geodesic spheres.

To prove the converse, we first derive a power series expansion for
KG

p (m). To do this, put

E1(r) = ξ(p), E2(r) = ‖Hu‖−1(Hu)(p), En(r) = u,

where γ′(r) is also denoted by u. Then from (5.10) we have

KG
p (m) = RG

1212(m) = r−2 + R1212(p)− 1
3 (Ru2u2 + ‖Hu‖2)(p)(5.13)

+ 1
4r(∇uRu2u2)(p) + O(r2).

Since Rabcd(p) = Rabcd(m) + r(∇uRabcd)(m) + O(r2), (5.13) takes the form

KG
p (m) = r−2 + R1212(m)− 1

3 (Ru2u2 + ‖Hu‖2)(m)(5.14)

+ r(∇uR1212 − 1
12∇uRu2u2)(m) + O(r2).

Further, we have

ξ(m) = E1(0) cos(r‖Hu‖) + E2(0) sin(r‖Hu‖),
(Hu)(m) = − ‖Hu‖{E1(0) sin(r‖Hu‖)− E2(0) cos(r‖Hu‖)}

and hence

(5.15)
E1(0) = ξ(m)− r(Hu)(m)− 1

2r2‖Hu‖2ξ(m) + O(r3),

E2(0) = ‖Hu‖−1(Hu)(m) + r‖Hu‖ξ(m)

− 1
2r2‖Hu‖(Hu)(m) + O(r3).

Substitution of (5.15) in (5.14) yields

KG
p (m) = r−2 + ‖Hu‖−2R(ξ,Hu, ξ,Hu)(m)(5.16)

− 1
3{‖Hu‖−2R(u, Hu, u,Hu) + ‖Hu‖2}(m)

− 1
12r‖Hu‖−2(∇uR)(u, Hu, u,Hu)(m) + O(r2).

The corresponding expression for KG
sm(p)(m) follows by replacing r by −r

in (5.16). So, the hypothesis (5.12) leads again to (∇uR)(u, Hu, u,Hu) = 0,
and the required result follows.
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