COLLOQUIUM MATHEMATICUM

VOL. LXVII

A SARD TYPE THEOREM FOR BOREL MAPPINGS

BҮ

PIOTR HAJLASZ (WARSZAWA)

We find a condition for a Borel mapping $f : \mathbb{R}^m \to \mathbb{R}^n$ which implies that the Hausdorff dimension of $f^{-1}(y)$ is less than or equal to m - n for almost all $y \in \mathbb{R}^n$.

1. Introduction and statement of result. Sard's theorem ([14], [13], [15]) implies that if $f \in C^{\infty}(\mathbb{R}^m, \mathbb{R}^n)$, then for almost all $y \in \mathbb{R}^n$, $f^{-1}(y)$ is a smooth manifold of dimension m - n. In general this type of result is no longer true for continuous mappings. Peano curve type examples show that the set $f^{-1}(y)$ can have Hausdorff dimension greater than m - n for all $y \in \mathbb{R}^n$. We will be concerned here with Borel mappings $f : \mathbb{R}^m \to \mathbb{R}^n$, without any smoothness assumptions, hence we cannot expect that $f^{-1}(y)$ is a manifold. However, we can ask what conditions (different than smoothness conditions) f should satisfy in order to get the estimate dim_H $(f^{-1}(y)) \leq m - n$ for almost all $y \in \mathbb{R}^n$ (dim_H stands for the Hausdorff dimension).

The Eilenberg inequality ([3], [4], [2], [5, Theorem 2.10.25]) implies that the above estimate holds a.e. provided f is Lipschitz. We will generalize this result.

This article grew out from the author's interest in the theory of Sobolev mappings. Related Sard type theorems for Sobolev mappings are presented in [7], [6] and in a slightly different form in [1]. Namely, a Sobolev mapping satisfies a similar assumption to that of Theorem 1 below. Hence by the method presented in the proof of Theorem 1 we get a similar estimate of the Hausdorff dimension of $f^{-1}(y)$, where f is a suitable Sobolev mapping. This estimate is of crucial importance for the validity of the so-called *coarea* formula (see [7]). It is also important in the context of nonlinear elasticity (see [6]). It seems that the method of the proof of Theorem 1 is more important than the theorem itself. This is because we can use the same method to produce a large class of theorems by slightly modifying the assumptions and the claim.

[217]

¹⁹⁹¹ Mathematics Subject Classification: Primary 28A75, 28A78; Secondary 28A05. This work was supported by KBN grant no. 2 1057 91 01.

Let H^k denote Hausdorff measure. We aim to prove the following

THEOREM 1. Let $f : \mathbb{R}^m \to \mathbb{R}^n$, where $n \leq m$, be a Borel mapping. Assume that there exists a constant C such that

(1)
$$H^n(f(A)) \le CH^n(A)$$

for all Borel subsets $A \subseteq \mathbb{R}^m$. Then $\dim_{\mathrm{H}}(f^{-1}(y)) \leq m - n$ for almost all $y \in \mathbb{R}^n$.

R e m a r k s. 1) Note that if A is a Borel set, then f(A) is measurable—see Proposition 2 below.

2) The condition (1) is satisfied by Lipschitz mappings.

3) In fact, we will prove a slightly stronger result—see the remark at the end of the paper.

The author wishes to thank Marcin Penconek for discussions concerning Suslin sets.

2. Basic notion. Before we proceed to the proof, let us recall some basic notion and results which will be used in the sequel.

Let 0 < k < m be integers. By $O^*(m,k)$ we denote the manifold of all orthogonal projections from \mathbb{R}^m onto k-dimensional linear subspaces. $O^*(m,k)$ is equipped with the unique invariant measure $\vartheta^*_{m,k}$ normalized to have total mass 1. As usual by N(f|A, y) we denote the Banach indicatrix, i.e. the number of points in $f^{-1}(y) \cap A$. The *integral-geometric measure* is defined for Borel sets by

$$I^{k}(B) = \frac{1}{\beta(m,k)} \int_{p \in O^{*}(m,k)} \int_{y \in \text{image } p} N(p|B,y) \, dH^{k}(y) \, d\vartheta_{m,k}^{*}(p)$$

 $(\beta(m,k))$ is a normalizing coefficient).

We will use the following theorem of Mattila.

PROPOSITION 1 ([12, Theorem 4.7]). If $E \subseteq \mathbb{R}^m$ is such that $I^k(E) < \infty$, then $\dim_{\mathrm{H}}(E) \leq k$.

The well known theorem of Lusin and Sierpiński ([5, Theorem 2.2.13], [8, Lemma 39.2, Theorem 94], [9], [10], [11, p. 44]) states that if $A \subseteq \mathbb{R}^{k+l}$ is a Borel subset and $\pi_k : \mathbb{R}^{k+l} \to \mathbb{R}^k$ is the standard projection, then the set $\pi_k(A)$ is H^k -measurable. It is also known that not only projections, but an arbitrary Borel image of a Borel set is measurable (see [9, Chap. 3.38.III, Th. 2; Chap. 3.38.IV, Remark 1]). However, for the reader's convenience we present a "one-line" proof of this fact.

PROPOSITION 2. If $f : \mathbb{R}^m \to \mathbb{R}^n$ is a Borel mapping, and $A \subseteq \mathbb{R}^m$ is a Borel subset, then f(A) is measurable.

Proof. Let $\pi_n : \mathbb{R}^{m+n} \to \mathbb{R}^n$ and $\pi_m : \mathbb{R}^{m+n} \to \mathbb{R}^m$ denote the standard projections. Let $G_f \subseteq \mathbb{R}^{m+n}$ denote the graph of f. Since f is Borel, G_f is a Borel set and hence by Lusin–Sierpiński's theorem $f(A) = \pi_n(G_f \cap \pi_m^{-1}(A))$ is measurable.

3. Proof of Theorem 1. Since the problem is local it suffices to consider the mapping f restricted to a ball B^m .

Step 1: m = n. For each $p \in \mathbb{N}$, let $H_p = \{A_{i,p}\}_{i=1}^p$ be a decomposition of B^n into Borel sets (i.e. $B^n = \bigcup_{i=1}^p A_{i,p}, A_{i,p} \cap A_{j,p} = \emptyset$ for $i \neq j$) such that each $A_{i,p} \in H_p$ is a union of elements from H_{p+1} and $\sup_i \operatorname{diam} A_{i,p} \to 0$ as $p \to \infty$. Evidently

$$N(f|B^n, y) = \lim_{p \to \infty} \sum_{i=1}^p \chi_{f(A_{i,p})}(y)$$

 $(\chi_E \text{ stands for the characteristic function of } E)$. Note that the above limit exists, since the sequence is non-decreasing. It follows directly from Proposition 2 (or, in a more elementary way, from (1)) that $N(f|B^n, \cdot)$ is a measurable function. Hence by (1) we obtain

(2)
$$\int_{\mathbb{R}^n} N(f|B^n, y) dH^n(y) = \lim_{p \to \infty} \sum_{i=1}^p \int_{\mathbb{R}^n} \chi_{f(A_{i,p})}(y) dH^n(y)$$
$$= \lim_{p \to \infty} \sum_{i=1}^p H^n(f(A_{i,p}))$$
$$\leq C \lim_{p \to \infty} \sum_{i=1}^p H^n(A_{i,p}) = CH^n(B^n)$$

This inequality completes the proof.

Step 2: General case. Fix $p \in O^*(m, m-n)$. Let $B_{p,x}^n = p^{-1}(x) \cap B^m$ for $x \in \text{image } p$. Assume for the moment that we have proved the measurability of $N(f|B_{p,x}^n, y)$ as a function of p, x and y. Applying (2) to $f|_{B_{p,x}^n}$ we have

$$\int_{\mathbb{R}^n} N(f|B_{p,x}^n, y) \, dH^n(y) \le CH^n(B_{p,x}^n).$$

Integrating both sides over $p \in O^*(m, m - n)$ and $x \in \text{image } p$ we get

$$\int_{\mathbb{R}^n} \int_{p \in O^*(m,m-n)x \in \text{image } p} \int N(f|B_{p,x}^n, y) dH^{m-n}(x) d\vartheta_{m,m-n}^*(p) dH^n(y) \leq C_1.$$

Since $N(f|B_{p,x}^n, y) = N(p|f^{-1}(y), x)$, by Fubini's theorem we get $I^{m-n}(f^{-1}(y)) < \infty$ for H^n -almost all $y \in \mathbb{R}^n$. Now the theorem follows from Proposition 1.

To complete our argument it remains to prove the measurability of the function $N(f|B_{p,x}^n, y)$. We first describe precisely its domain of definition. Set

$$\pi: B^m \times \mathbb{R}^n \times O^*(m, m-n) \longrightarrow B^m \times \mathbb{R}^n \times O^*(m, m-n),$$
$$(x, y, p) \stackrel{\pi}{\longmapsto} (p(x), y, p).$$

Note that the image W of π is a manifold equipped with the measure $H^{m-n} \otimes H^n \otimes \vartheta_{m,m-n}^*$. This is the domain of definition of the considered function N. Let G_A denote the graph of $f|_A : A \to \mathbb{R}^n$, where $A \subseteq B^m$ is a Borel subset. We have $G_A \times O^*(m, m-n) \subseteq B^m \times \mathbb{R}^n \times O^*(m, m-n)$. Let $S_A = \pi(G_A \times O^*(m, m-n))$. Since G_A is a Borel set, being the graph of a Borel mapping, it follows from Proposition 2 that S_A is a measurable subset of W. Let $B^m = \bigcup_{i=1}^p A_{i,p}$ be a Borel decomposition as in Step 1. Now it is clear that

$$N: W \to \mathbb{N}_0 \cup \{\infty\}, \qquad N(f|B_{p,x}^n, y) = \lim_{p \to \infty} \sum_{i=1}^p \chi_{S_{A_{i,p}}}.$$

Hence N is measurable.

R e m a r k. In fact, we have proved a slightly stronger result than stated in Theorem 1. Namely, it suffices to assume that (1) holds only for Borel subsets contained in *n*-dimensional affine subspaces of \mathbb{R}^m and as a result we conclude that for almost all y the set $f^{-1}(y)$ has locally finite I^{m-n} measure (i.e. $I^{m-n}(f^{-1}(y) \cap K) < \infty$ for all bounded sets $K \subseteq \mathbb{R}^m$).

REFERENCES

- [1] B. Bojarski and P. Hajłasz, in preparation.
- Y. Burago and V. Zalgaller, *Geometric Inequalities*, Grundlehren Math. Wiss. 285, Springer, 1988.
- [3] S. Eilenberg, On *φ*-measures, Ann. Soc. Polon. Math. 17 (1938), 252–253.
- [4] S. Eilenberg and O. Harold, Continua of finite linear measure I, Amer. J. Math. 65 (1943), 137–146.
- [5] H. Federer, Geometric Measure Theory, Springer, 1969.
- P. Hajłasz, A note on weak approximation of minors, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear.
- [7] —, Sobolev mappings, co-area formula and related topics, preprint.
- [8] T. Jech, Set Theory, Acad. Press, 1978.
- [9] K. Kuratowski, Topology, Vol. 1, Acad. Press, 1966.
- [10] N. Lusin, Sur les ensembles analytiques, Fund. Math. 10 (1927), 1–95.
- [11] N. Lusin et W. Sierpiński, Sur quelques propriétés des ensembles (A), Bull. Acad. Cracovie 4-5A (1918), 35–48.
- [12] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 227–244.

A SARD TYPE THEOREM

- [13] J. Milnor, Topology from the Differentiable Viewpoint, The Univ. Press of Virginia, 1965.
- [14] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883–890.
- [15] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N.J., 1964.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2 02-097 WARSZAWA, POLAND E-mail: HAJLASZ@MIMUW.EDU.PL

Reçu par la Rédaction le 16.9.1993