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A SARD TYPE THEOREM FOR BOREL MAPPINGS

BY

PIOTR H A J  L A S Z (WARSZAWA)

We find a condition for a Borel mapping f : Rm → Rn which implies
that the Hausdorff dimension of f−1(y) is less than or equal to m − n for
almost all y ∈ Rn.

1. Introduction and statement of result. Sard’s theorem ([14], [13],
[15]) implies that if f ∈ C∞(Rm, Rn), then for almost all y ∈ Rn, f−1(y)
is a smooth manifold of dimension m − n. In general this type of result is
no longer true for continuous mappings. Peano curve type examples show
that the set f−1(y) can have Hausdorff dimension greater than m − n for
all y ∈ Rn. We will be concerned here with Borel mappings f : Rm → Rn,
without any smoothness assumptions, hence we cannot expect that f−1(y) is
a manifold. However, we can ask what conditions (different than smoothness
conditions) f should satisfy in order to get the estimate dimH (f−1(y)) ≤
m− n for almost all y ∈ Rn (dimH stands for the Hausdorff dimension).

The Eilenberg inequality ([3], [4], [2], [5, Theorem 2.10.25]) implies that
the above estimate holds a.e. provided f is Lipschitz. We will generalize
this result.

This article grew out from the author’s interest in the theory of Sobolev
mappings. Related Sard type theorems for Sobolev mappings are presented
in [7], [6] and in a slightly different form in [1]. Namely, a Sobolev mapping
satisfies a similar assumption to that of Theorem 1 below. Hence by the
method presented in the proof of Theorem 1 we get a similar estimate of
the Hausdorff dimension of f−1(y), where f is a suitable Sobolev mapping.
This estimate is of crucial importance for the validity of the so-called co-
area formula (see [7]). It is also important in the context of nonlinear
elasticity (see [6]). It seems that the method of the proof of Theorem 1 is
more important than the theorem itself. This is because we can use the
same method to produce a large class of theorems by slightly modifying the
assumptions and the claim.
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Let Hk denote Hausdorff measure. We aim to prove the following

Theorem 1. Let f : Rm → Rn, where n ≤ m, be a Borel mapping.
Assume that there exists a constant C such that

(1) Hn(f(A)) ≤ CHn(A)

for all Borel subsets A ⊆ Rm. Then dimH(f−1(y)) ≤ m − n for almost all
y ∈ Rn.

R e m a r k s. 1) Note that if A is a Borel set, then f(A) is measurable—see
Proposition 2 below.

2) The condition (1) is satisfied by Lipschitz mappings.
3) In fact, we will prove a slightly stronger result—see the remark at the

end of the paper.

The author wishes to thank Marcin Penconek for discussions concerning
Suslin sets.

2. Basic notion. Before we proceed to the proof, let us recall some
basic notion and results which will be used in the sequel.

Let 0 < k < m be integers. By O∗(m, k) we denote the manifold of
all orthogonal projections from Rm onto k-dimensional linear subspaces.
O∗(m, k) is equipped with the unique invariant measure ϑ∗m,k normalized to
have total mass 1. As usual by N(f |A, y) we denote the Banach indicatrix,
i.e. the number of points in f−1(y) ∩ A. The integral-geometric measure is
defined for Borel sets by

Ik(B) =
1

β(m, k)

∫
p∈O∗(m,k)

∫
y∈image p

N(p|B, y) dHk(y) dϑ∗m,k(p)

(β(m, k) is a normalizing coefficient).
We will use the following theorem of Mattila.

Proposition 1 ([12, Theorem 4.7]). If E ⊆ Rm is such that Ik(E) < ∞,
then dimH(E) ≤ k.

The well known theorem of Lusin and Sierpiński ([5, Theorem 2.2.13],
[8, Lemma 39.2, Theorem 94], [9], [10], [11, p. 44]) states that if A ⊆ Rk+l

is a Borel subset and πk : Rk+l → Rk is the standard projection, then the
set πk(A) is Hk-measurable. It is also known that not only projections, but
an arbitrary Borel image of a Borel set is measurable (see [9, Chap. 3.38.III,
Th. 2; Chap. 3.38.IV, Remark 1]). However, for the reader’s convenience we
present a “one-line” proof of this fact.

Proposition 2. If f : Rm → Rn is a Borel mapping , and A ⊆ Rm is a
Borel subset , then f(A) is measurable.
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P r o o f. Let πn : Rm+n → Rn and πm : Rm+n → Rm denote the
standard projections. Let Gf ⊆ Rm+n denote the graph of f . Since f is
Borel, Gf is a Borel set and hence by Lusin–Sierpiński’s theorem f(A) =
πn(Gf ∩ π−1

m (A)) is measurable.

3. Proof of Theorem 1. Since the problem is local it suffices to
consider the mapping f restricted to a ball Bm.

S t e p 1: m = n. For each p ∈ N, let Hp = {Ai,p}p
i=1 be a decomposition

of Bn into Borel sets (i.e. Bn =
⋃p

i=1 Ai,p, Ai,p∩Aj,p = ∅ for i 6= j) such that
each Ai,p ∈ Hp is a union of elements from Hp+1 and supi diam Ai,p → 0 as
p →∞. Evidently

N(f |Bn, y) = lim
p→∞

p∑
i=1

χf(Ai,p)(y)

(χE stands for the characteristic function of E). Note that the above limit
exists, since the sequence is non-decreasing. It follows directly from Propo-
sition 2 (or, in a more elementary way, from (1)) that N(f |Bn, ·) is a mea-
surable function. Hence by (1) we obtain∫

Rn

N(f |Bn, y) dHn(y) = lim
p→∞

p∑
i=1

∫
Rn

χf(Ai,p)(y) dHn(y)(2)

= lim
p→∞

p∑
i=1

Hn(f(Ai,p))

≤ C lim
p→∞

p∑
i=1

Hn(Ai,p) = CHn(Bn).

This inequality completes the proof.

S t e p 2: General case. Fix p∈O∗(m,m−n). Let Bn
p,x =p−1(x)∩Bm for

x∈ image p. Assume for the moment that we have proved the measurability
of N(f |Bn

p,x, y) as a function of p, x and y. Applying (2) to f |Bn
p,x

we have∫
Rn

N(f |Bn
p,x, y) dHn(y) ≤ CHn(Bn

p,x).

Integrating both sides over p ∈ O∗(m,m− n) and x ∈ image p we get∫
Rn

∫
p∈O∗(m,m−n)

∫
x∈image p

N(f |Bn
p,x, y)dHm−n(x)dϑ∗m,m−n(p)dHn(y)≤C1.

Since N(f |Bn
p,x, y) = N(p|f−1(y), x), by Fubini’s theorem we get

Im−n(f−1(y)) < ∞ for Hn-almost all y ∈ Rn. Now the theorem follows
from Proposition 1.
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To complete our argument it remains to prove the measurability of the
function N(f |Bn

p,x, y). We first describe precisely its domain of definition.
Set

π : Bm × Rn ×O∗(m,m− n) −→ Bm × Rn ×O∗(m,m− n),

(x, y, p) π7−→ (p(x), y, p).

Note that the image W of π is a manifold equipped with the measure
Hm−n ⊗ Hn ⊗ ϑ∗m,m−n. This is the domain of definition of the consid-
ered function N . Let GA denote the graph of f |A : A → Rn, where A ⊆ Bm

is a Borel subset. We have GA×O∗(m,m−n) ⊆ Bm×Rn×O∗(m,m−n).
Let SA = π(GA ×O∗(m,m− n)). Since GA is a Borel set, being the graph
of a Borel mapping, it follows from Proposition 2 that SA is a measurable
subset of W . Let Bm =

⋃p
i=1 Ai,p be a Borel decomposition as in Step 1.

Now it is clear that

N : W → N0 ∪ {∞}, N(f |Bn
p,x, y) = lim

p→∞

p∑
i=1

χSAi,p
.

Hence N is measurable.

R e m a r k. In fact, we have proved a slightly stronger result than stated
in Theorem 1. Namely, it suffices to assume that (1) holds only for Borel
subsets contained in n-dimensional affine subspaces of Rm and as a result we
conclude that for almost all y the set f−1(y) has locally finite Im−n measure
(i.e. Im−n(f−1(y) ∩K) < ∞ for all bounded sets K ⊆ Rm).
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