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ON POSITIVE ROCKLAND OPERATORS

BY

PASCAL AUSCHER (RENNES) , A. F. M. ter ELST (EINDHOVEN)
AND DEREK W. ROB INSON (CANBERRA)

Let G be a homogeneous Lie group with a left Haar measure dg and L the
action of G as left translations on Lp(G; dg). Further, let H = dL(C) denote
a homogeneous operator associated with L. If H is positive and hypoelliptic
on L2 we prove that it is closed on each of the Lp-spaces, p ∈ 〈1,∞〉, and
that it generates a semigroup S with a smooth kernel K which, with its
derivatives, satisfies Gaussian bounds. The semigroup is holomorphic in the
open right half-plane on all the Lp-spaces, p ∈ [1,∞].

Further extensions of these results to nonhomogeneous operators and
general representations are also given.

1. Introduction. A differential operator H on a homogeneous group
G is defined to be a Rockland operator if it is right-invariant, homogeneous
and injective in each nontrivial irreducible unitary representation. If H is
positive on L2(G; dg) then it generates a holomorphic semigroup with a ker-
nel and recently Dziubański [Dzi] proved that the kernel, together with its
derivatives, decreases exponentially on the right half-plane. Dziubański also
raised the question whether one could establish stronger decrease proper-
ties than exponential. Stronger bounds have been derived by Hebisch [Heb]
for Rockland operators which are sums of even powers and in fact Hebisch
showed that the kernel, and its derivatives, satisfy “Gaussian” bounds on
the positive real line. The aim of this paper is to show that the kernel of the
semigroup generated by a general positive Rockland operator has “Gaus-
sian” bounds on the right half-plane. Similar bounds are also established
for the derivatives.

The theory of Rockland operators began with Rockland’s analysis of
differential operators on the Heisenberg group [Roc]. Helffer and Nourrigat
[HeN1] proved that a Rockland operator on a graded group is hypoelliptic
and in addition they derived several inequalities between the norm on the Cn

spaces and the operator norm. Then Miller [Mil] showed that one can replace
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a graded group by a homogeneous group in the Helffer–Nourrigat theorem.
Subsequently, Folland and Stein [FoS] used the proof of an earlier theorem of
Nelson and Stinespring [NeS] to deduce that a positive Rockland operator is
essentially self-adjoint on the space C∞

c (G). Moreover, they established that
the closure generates a continuous semigroup with a kernel which is in the
Schwartz space over the group. Dziubański [Dzi] then extended their result
and showed that on the right half-plane one has an exponential decay for
the kernel and all its derivatives. Our results give more precise “Gaussian”
bounds, more detailed analyticity properties of the semigroup and stronger
regularity properties of the Rockland operators. Consequently, we are able
to extend many of the previous results to nonhomogeneous operators and
to general representations of the group.

Throughout the sequel we adopt the general notation of [Rob]. Let G
be a (connected, simply connected) homogeneous group with Lie algebra
g and let (X , G, U) denote a strongly, or weak∗, continuous representation
of G on the Banach space X by bounded operators g 7→ U(g). If ai ∈ g
then Ai (= dU(ai)) will denote the generator of the one-parameter subgroup
t 7→ U(exp(−tai)) of the representation. Let (γt)t>0 be a family of dilations
on g, i.e., a one-parameter group of automorphisms of the form

γt(ai) = twiai

for some basis a1, . . . , ad of g and some positive numbers w1, . . . , wd, which
we call weights. We always assume that the smallest weight is at least one.
Let D =

∑d
i=1 wi be the homogeneous dimension of G. For the multi-indices

we introduce the following notation. If n ∈ N0 let

Jn(d) =
n⊕
k=0

{1, . . . , d}k

and set

J(d) =
∞⋃
n=0

Jn(d).

Then if α = (i1, . . . , in) ∈ J(d) we denote the Euclidean length n of α by
|α| and the weighted length by

‖α‖ =
n∑
k=1

wik .

If n ∈ N we define Xn = Xn(U) =
⋂
α∈Jn(d)D(Aα) and

‖x‖n = max
α∈J(d)
|α|≤n

‖Aαx‖,

where Aα = Ai1 . . . Ain if α = (i1, . . . , in). Similarly we define the weighted
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spaces

X ′
n = X ′

n(U) =
⋂

α∈J(d)
‖α‖≤n

D(Aα)

for all n ∈ R with n > 0. Now, however, it can happen for a given n that
there are no multi-indices α such that ‖α‖ = n. Therefore the corresponding
norms and seminorms are given by

‖x‖′n=
{

maxα∈J(d),‖α‖≤n ‖Aαx‖ if there exist α ∈ J(d) with ‖α‖ = n,
0 otherwise,

N ′
n(x)=

{
maxα∈J(d),‖α‖=n ‖Aαx‖ if there exist α ∈ J(d) with ‖α‖ = n,
0 otherwise,

.

Moreover, let X∞ = X∞(U) =
⋂∞
n=1 Xn. It follows by a line by line ex-

tension of Lemma 2.4 of [ElR2] that the G̊arding space, and in particular
the space X∞, is dense in X ′

n for all n > 0. The density is with respect
to the weak, or weak∗, topology. If U is the left regular representation on
Lp(G; dg) then we denote the corresponding spaces by Lp;n, L′p;n, Lp;∞ and
the norms and seminorms by ‖ · ‖p;n etc. Further, we let L denote the left
regular representation on L2. If U is the left regular representation in the
space Cb(G) of bounded continuous functions on G we similarly use the
notation Cb;∞(G).

Let m ∈ 〈0,∞〉 and let C : J(d) → C be such that C(α) = 0 if ‖α‖ > m
and there exists at least one α ∈ J(d) with ‖α‖ = m and C(α) 6= 0. We call
C a form of order m. We write cα = C(α). The principal part P of C is the
form

P (α) =
{
C(α) if ‖α‖ = m,
0 if ‖α‖ < m.

The formal adjoint C† of C is the function C† : J(d) → C defined by

C†(α) = (−1)|α|C(α∗),

where α∗ = (in, . . . , i1) if α = (i1, . . . , in). We consider the operators

dU(C) =
∑

α∈J(d)

cαA
α

with domain D(dU(C)) = X ′
m. If (F , G, U∗) is the dual representation of

(X , G, U) then dU∗(C†) is called the dual operator and denoted by H†.
If P is the principal part of a form C we call P a Rockland form if

the operator dU(P ) is injective on the space X∞(U) for every nontrivial
irreducible unitary representation U of G. It then follows from the Helffer–
Nourrigat theorem [HeN1] that dL(P )|C∞c is a hypoelliptic operator. In
fact, the Helffer–Nourrigat theorem is formulated for graded groups. But
it follows from Propositions 1.3 and 1.4 of [Mil] that the existence of a
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Rockland form ensures that the order m of P is an integer multiple of the
smallest weight and all weights are rational multiples of this smallest weight.
Therefore G is a graded group if one rescales the original weights by a large
enough constant.

A Rockland form P is called a positive Rockland form if dL(P ) is sym-
metric and (ϕ, dL(P )ϕ) ≥ 0 for all ϕ in the Schwartz space on G (see [FoS],
p. 129). Throughout this paper we assume that C is a form of order m and
that the principal part P of C is a positive Rockland form. We call dL(P )
a positive Rockland operator .

An important feature of the class of Rockland operators that we will
use repeatedly is that it is closed under the operation of taking powers. If
H is a Rockland operator then Hn is a Rockland operator for all n ∈ N.
Moreover, if H is a positive Rockland operator then all the powers, Hn, are
also positive Rockland operators.

The group G can be equipped with two distances. The first is the Eu-
clidean modulus | · |, as defined in [Rob], p. 256. In addition it has a ho-
mogeneous modulus | · |′, which also induces a right-invariant metric on G
by d′(g;h) = |gh−1|′ (see [HeS]). The balls with radius s are denoted by Bs
and B′

s.
The main theorem of this paper is the following.

Theorem 1.1. Let P be a positive Rockland form, (X , G, U) a continuous
representation of G and H = dU(P ) the associated operator. Then

I. The closure H of H generates a continuous semigroup S.
II. The semigroup S is holomorphic in the open right half-plane.

III. The semigroup S has a representation independent kernel K in
L1;∞(G; dg) ∩ C0;∞(G) such that

AαStx =
∫
G

dh (AαKt)(h)U(h)x

for all α ∈ J(d), x ∈ X and g ∈ G.
IV. For each ε ∈ 〈0, π/2〉 and all α ∈ J(d) there exist a, b > 0 such that

|(AαKz)(g)| ≤ a|z|−(D+‖α‖)/me−b((|g|
′)m|z|−1)1/(m−1)

for all g ∈ G and z ∈ Λ(π/2− ε) = {z ∈ C\{0} : |arg z| < π/2− ε}.
The outline of this paper is as follows. First we prove the theorem on

L2 and then we lift the result to a general representation by a transfer-
ence argument. The L2 proof is based on the examination of high powers
(λI +H)−n of the resolvent of H. Using Davies’ method we obtain bounds
on the kernels of these operators and then convert these to Gaussian bounds
on the kernel of the semigroup by Cauchy integral techniques. The key point
is that powers of the resolvent have improved regularity and boundedness
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properties. The technique of using powers of the resolvent to improve reg-
ularity was implicit in the iterative argument of Nirenberg [Nir] and was
used explicitly by Nelson and Stinespring [NeS]. It also occurs in a slightly
different context in Agmon’s work, [Agm], pp. 250–260.

2. Positive Rockland operators on L2. Let P be a positive Rockland
form of order m and H = dL(P ) the associated positive Rockland operator
on L2. In this section we prepare for the proof of Theorem 1.1 by establishing
analogous results for the left regular representation L on L2(G; dg).

Proposition 2.1. Let H be a positive Rockland operator which is homo-
geneous of degree m. Then

I. The operator H is self-adjoint.
II. For all n ∈ N one has D(Hn) = L′2;nm, with equivalent norms.

There exists a c > 0 such that

cN ′
2;nm(ϕ) ≤ ‖Hnϕ‖2

for all ϕ ∈ D(Hn).
III. The spaces L2;∞ and C∞

c (G) are cores for Hn, for all n ∈ N.
IV. If n ∈ N and k ∈ 〈0, nm〉 then there exists a c > 0 such that

N ′
2;k(ϕ) ≤ εnm−kN ′

2;nm(ϕ) + cε−k‖ϕ‖2

for all ε > 0 and ϕ ∈ L′2;nm.
V. If n ∈ N and k ∈ 〈0, nm〉 then there exists a c > 0 such that

‖ϕ‖′2;k ≤ εnm−k‖ϕ‖′2;nm + cε−k‖ϕ‖2

for all ε > 0 and ϕ ∈ L′2;nm.

P r o o f. The operator Hn|C∞c (G) is essentially self-adjoint by the argu-
ments of [NeS]. So

Hn ⊆ (Hn)∗ ⊆ Hn|C∞c
∗ = Hn|C∞c ⊆ Hn

and Hn|C∞c = Hn. Therefore Hn is self-adjoint and C∞
c (G) is a core for

Hn.
Next for all α ∈ J(d) and n ∈ N with nm ≥ ‖α‖ there exists, by

Helffer–Nourrigat [HeN1], Proposition 6.4, a c > 0 such that

‖Aαϕ‖2 ≤ c(‖Hnϕ‖2 + ‖ϕ‖2)

for all ϕ ∈ C∞
c (G). Since C∞

c (G) is dense in D(Hn) and L′2;k is complete
it follows that D(Hn) ⊆ L′2;k if k ≤ nm. But L′2;nm ⊆ D(Hn) ⊆ D(Hn), so
D(Hn) = D(Hn) = L′2;nm, with equivalent norms. This proves Statements
I, III and the first part of II.

It follows by scaling that there exists a c > 0 such that

‖Aαϕ‖2 ≤ εnm−‖α‖‖Hnϕ‖2 + cε−‖α‖‖ϕ‖2
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for all ϕ ∈ C∞
c (G) and ε > 0, if ‖α‖ < nm. In particular, for all k < nm,

N ′
2;k(ϕ) ≤ εnm−k‖Hnϕ‖2 + cε−k‖ϕ‖2

and in addition
N ′

2;nm(ϕ) ≤ c‖Hnϕ‖2

for all ϕ ∈ C∞
c (G). This proves Statements IV, V and the last part of II by

closure and density.

Our aim is to bound the semigroup kernel associated with H. To this
end we adopt the tactic of [AMT]. First, we obtain appropriate bounds on
the kernel of a large power of the resolvent kernel where the power is large
relative to the largest weight r. Secondly, we derive the semigroup estimates
from the resolvent estimates by a Cauchy contour integration technique.

Note that with the choice of r one has the continuous embedding L′2;kr ⊆
L2;k for each k ∈ N.

Proposition 2.2. If n ∈ N, k, ε > 0 and n ≥ (dr + k)/m then (λI +
H)−2n has an integral kernel R(2n)

λ ∈ L′∞;k for all λ ∈ Λ(π − ε). Moreover ,

|(AαR(2n)
λ )(g)| ≤ a|λ|−2n+(D+‖α‖)/me−b|λ|

1/m|g|′

for all g ∈ G and α ∈ J(d) with ‖α‖ ≤ k, where a, b > 0 are independent
of λ.

P r o o f. It follows from the Helffer–Nourrigat estimates (Proposition
2.1.II) and the spectral theorem that there exists c1 > 0 such that

(‖(λI +H)−n‖L2→L′2;nm
)−1 ≥ c−1

1

uniformly for all λ ∈ Λ(π − ε) with |λ| = 1.
Next, fix a real ψ ∈ Cb;∞(G). Let

n1(ψ) = sup{|(Aiψ)(g)| : g ∈ G, i ∈ {1, . . . , d}}
and for j ∈ N define recursively

nj+1(ψ) = sup
i∈{1,...,d}

nj(Aiψ) ∨ nj(ψ).

If j ≤ t < j + 1, with j ∈ N, define nt(ψ) = nj(ψ). Next for % ∈ R define
U% : L2 → L2 by

(U%ϕ)(g) = e−%ψ(g)ϕ(g).
Then U% maps L2;l continuously into L2;l for all l ∈ N0. Let

H(%) = U%HU
−1
% .

The starting point is the observation that

U%AiU
−1
% = Ai + %Mψi
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for all i ∈ {1, . . . , d}, where ψi = Aiψ and Mψi is the multiplication operator
with ψi. Therefore U%AiU−1

% is a perturbation of Ai.
The operator (λI +H(%))n can be expressed in the form

(λI +H(%))n = (λI +H)n +
∑

β∈J(d)
‖β‖≤nm−1

Mβ(%, λ, ψ)Aβ

where Mβ(%, λ, ψ) are bounded multiplication operators satisfying

‖Mβ(%, λ, ψ)‖ ≤ c2|%|(1 + |%|nm−1)(1 + nnm(ψ))nm

uniformly for all % ∈ R, λ ∈ Λ(π − ε) with |λ| = 1, β ∈ J(d) with ‖β‖ ≤
nm− 1 and real ψ ∈ Cb;∞(G). Therefore

‖(λI +H(%))n − (λI +H)n‖L′2;nm→L2

≤ nmdnm−1c2|%|(1 + |%|nm−1)(1 + nnm(ψ))nm.

So if |%| ≤ 1, 2nm+1c2d
nm−1nm|%| < (2c1)−1, λ ∈ Λ(π− ε) with |λ| = 1 and

real ψ ∈ Cb;∞(G) with nnm(ψ) ≤ 1 then (λI + H(%))n is invertible as an
operator from L′2;nm into L2 and

‖(λI +H(%))−nϕ‖′2;nm ≤ 2c1‖ϕ‖2

for all ϕ ∈ L2. Hence there exist c3, c4 > 0 such that

‖U%AαU−1
% (λI +H(%))−nϕ‖′2;nm−k ≤ c3‖ϕ‖2

for all % ∈ [−c4, c4], λ ∈ Λ(π − ε) with |λ| = 1, α ∈ J(d) with ‖α‖ ≤
k, real ψ ∈ Cb;∞(G) with nnm(ψ) ≤ 1 and ϕ ∈ L2. Thus the operator
U%A

α(λI +H)−nU−1
% maps L2 continuously into L′2;nm−k. But L′2;nm−k is

continuously embedded in L2;d by the condition on n. Moreover, by the
Sobolev embedding theorem for Lie groups ([Rob], B2.2), the space L2;d is
continuously embedded in C0. Therefore there exists R(n,%)

α,λ ∈ L2 such that

(U%AαU−1
% (λI +H(%))−nϕ̌)(e) =

∫
G

dhR
(n,%)
α,λ (h)ϕ(h)

for all ϕ ∈ L2, where ϕ̌(g) = ϕ(g−1). Moreover, ‖R(n,%)
α,λ ‖2 ≤ c5 for some

constant c5 > 0 uniformly for all |%| ≤ c4, λ ∈ Λ(π − ε) with |λ| = 1,
α ∈ J(d) with ‖α‖ ≤ k and real ψ ∈ Cb;∞(G) with nnm(ψ) ≤ 1. Then, by
right invariance,

(Aα(λI +H)−nϕ)(g) =
∫
G

dhR
(n,0)
α,λ (h)ϕ(h−1g)

for all ϕ ∈ L2 and g ∈ G. Let R(n)
α,λ = R

(n,0)
α,λ and define R(n)

λ = R
(n,0)
β,λ if

‖β‖ = 0.



204 P. AUSCHER ET AL.

Since (λI +H(−%))−n is bounded from L2 into L∞ it follows by duality
that (λI+H(%))−n is bounded from L1 into L2. Therefore, by composition,

R
(2n,%)
α,λ = R

(n,%)
α,λ ∗R(n,%)

β,λ ∈ C0(G),

where β is again the multi-index with length zero. Using the fact that
H(%) = U%HU

−1
% , it then follows that

R
(2n,%)
α,λ (g) = R

(2n)
α,λ (g)e%(ψ(g−1)−ψ(e))

for all g ∈ G, |%| ≤ c4, λ ∈ Λ(π−ε) with |λ| = 1, α ∈ J(d) with ‖α‖ ≤ k and
real ψ ∈ Cb;∞(G) with nnm(ψ) ≤ 1. By [Rob], Chapter III, Equation (4.31),
there exists a c6 > 0 such that |ψ(g−1)−ψ(e)| ≥ c6|g| uniformly for all g ∈ G
and real ψ ∈ Cb;∞(G) with nnm(ψ) ≤ 1. So

|R(2n)
α,λ (g)| ≤ ‖R(2n,%)

α,λ ‖∞e−c4c6|g| ≤ c25e
−c4c6|g|

uniformly for all g ∈ G. By [VSC], Proposition III.4.2, there exists a c7 > 0
such that |g| ≥ c7|g|′ for all g ∈ G with |g|′ ≥ 1. So there exist a, b > 0 such
that

|R(2n)
α,λ (g)| ≤ ae−b|g|

′

uniformly for all g ∈ G and λ ∈ Λ(π − ε) with |λ| = 1.
Next we use a scaling argument to remove the restriction on λ. Let λ ∈

Λ(π−ε). Since H(ϕ◦γu) = um(Hϕ)◦γu and (Aαϕ)γ−1
u = u‖α‖Aα(ϕ◦γ−1

u )
for all u > 0, one readily deduces that

(Aα(λI +H)−2nϕ) ◦ γ−1
u = u−2nm+‖α‖Aα(λu−mI +H)−2n(ϕ ◦ γ−1

u ).

Choose u = |λ|1/m. Then

(Aα(λI +H)−2nϕ(g) = |λ|−2n+(D+‖α‖)/m
∫
G

dhR
(2n)
α,λ (γu(h))ϕ(h−1g).

So Aα(λI +H)−2n has a kernel R(2n)
α,λ and R

(2n)
α,λ (h) = |λ|−2n+(D+‖α‖)/m ×

R
(2n)
α,λ (γu(h)) for all h ∈ G. Then

|R(2n)
α,λ (h)| ≤ a|λ|−2n+(D+‖α‖)/me−b|λ|

1/m|h|′

for all h ∈ G.
Finally, we prove that R(2n)

λ is k times differentiable and that AαR(2n)
λ =

R
(2n)
α,λ for all α ∈ J(d) with ‖α‖ ≤ k. It suffices to consider the case |λ| = 1.

Then

R
(2n)
α,λ = R

(n)
α,λ∗R

(n)
λ = Aα(λI+H)−nR(n)

λ = Aα((λI+H)−nR(n)
λ ) = AαR

(2n)
λ .

This completes the proof of the proposition.
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Corollary 2.3. The holomorphic self-adjoint semigroup S generated by
H has a kernel K ∈ L1;∞(G; dg) ∩ C0;∞(G) such that

(AαSzϕ)(g) =
∫
G

dh (AαKz)(h)ϕ(h−1g)

for all α ∈ J(d), z ∈ Λ(π/2), ϕ ∈ L2 and g ∈ G. Moreover , the function
z 7→ Kz(g) is analytic on Λ(π/2), uniformly for g ∈ G, and for each α ∈
J(d) and ε ∈ 〈0, π/2〉 there exist a, b > 0 such that

|(AαKz)(g)| ≤ a|z|−(D+‖α‖)/me−b((|g|
′)m|z|−1)1/(m−1)

for all z ∈ Λ(π/2− ε) and all g ∈ G.

P r o o f. The semigroup S can be constructed from the resolvent (λI +
H)−1 using the standard Cauchy integral representation of the exponential.
Alternatively, one can use the Cauchy representation for the derivatives of
the exponential. Let n ∈ N and k > 0 and suppose that n ≥ (dr + k)/m.
Assume that z ∈ Λ(π/2− ε). Then

Sz = (2πi)−1(2n− 1)!z−(2n−1)
∫
ΓR

dλ eλz(λI +H)−2n

where ΓR is the contour in the complex plane formed by connecting the
two line segments LR,± = {λ ∈ C : arg λ = ±(π − ε/2), |λ| ≥ R|z|−1} and
the arc AR = {λ ∈ C : arg λ ∈ [−π + ε/2, π − ε/2], |λ| = R|z|−1}. We
will deduce below, from the bounds of Proposition 2.2, that the semigroup
kernel K exists,

Kz = (2πi)−1(2n− 1)!z−(2n−1)
∫
ΓR

dλ eλzR
(2n)
λ

and z 7→ Kz(g) is analytic for all g ∈ G.
First, assume R ≥ 1. If λ ∈ LR,± then Re(λz) < −|λ||z|δ, where

δ = sin(ε/2). Therefore the foregoing integral exists pointwise and

|Kz(g)| ≤ a(2π)−1(2n− 1)!|z|−(2n−1)
∫
ΓR

dλ e−|λ||z|δ|λ|−(2n−D/m)

≤ a′|z|−D/m

for some a′ > 0 and for all g ∈ G. Moreover, a similar estimate bounds the
derivative of z 7→ Kz(g), uniformly for g ∈ G, and this establishes uniform
analyticity of the function.

Secondly, |Kz(g)| can be estimated more accurately as follows. Assume
|z| = 1. The integral over the arc AR gives a contribution to Kz(g) which



206 P. AUSCHER ET AL.

is bounded by

B(A)
z (g) = a(2π)−1(2n− 1)!

π−ε/2∫
−π+ε/2

dθ R−(2n−1−D/m)eRe−bR
1/m|g|′

≤ a′eR−bR
1/m|g|′ ,

where we have used 2n − 1 ≥ D/m and R ≥ 1. But the exponential is
minimized by choosing R = (b|g|′m−1)m/(m−1) and hence if b|g|′ ≥ m then

B(A)
z (g) ≤ a′′e−b

′(|g|′)m/(m−1)
.

Thirdly, the line segments LR,± in ΓR both give contributions which can
be bounded by

B(L)
z (g) = a(2π)−1(2n− 1)!

∞∫
R

dµµ−(2n−D/m)e−µδ−bµ
1/m|g|′ .

Since R = (b|g|′m−1)m/(m−1) ≥ 1 one again has bounds of the form

B(L)
z (g) ≤ a′′e−b

′(|g|′)m/(m−1)
.

Therefore one concludes that

|Kz(g)| ≤ ae−b(|g|
′)m/(m−1)

for some a, b > 0, uniformly for all z ∈ Λ(π/2 − ε) with |z| = 1 and all
g ∈ G with |g|′ sufficiently large. But we have already established that Kz

is uniformly bounded if |z| = 1. Therefore the foregoing bounds extend to
all g ∈ G, and z ∈ Λ(π/2− ε) with |z| = 1, by increasing the value of a.

Finally, since H is homogeneous one obtains the bounds

|Kz(g)| ≤ a|z|−D/me−b((|g|
′)m|z|−1)1/(m−1)

for all z ∈ Λ(π/2− ε) and all g ∈ G by scaling.
It now follows straightforwardly that K is indeed the kernel of S.
If α ∈ J(d) with ‖α‖ ≤ k then one can define similarly the function

Kα,z : G→ C by

Kα,z(g) = (2πi)−1(2n− 1)!z−(2n−1)
∫
ΓR

dλ eλz(AαR(2n)
λ )(g)

It follows as above that

|Kα,z(g)| ≤ a|z|−(D+‖α‖)/me−b((|g|
′)m|z|−1)1/(m−1)

for all z ∈ Λ(π/2 − ε) and all g ∈ G. It then follows that Kz is pointwise
differentiable and that AαKz = Kα,z for all α with ‖α‖ ≤ k. Hence Kz is
infinitely often differentiable in both the L1 and the L∞ sense.
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R e m a r k. The kernel K is usually not positive. It follows from [Rob],
Chapter III, Section 5, that K is positive if and only if H is a second-
order operator, in the unweighted sense, with real coefficients and with the
principal coefficients satisfying an ellipticity condition.

3. Miscellany. In this section we extend the foregoing results to general
positive Rockland operators as defined in the introduction and to general
continuous representations. In particular, we complete the proof of Theo-
rem 1.1. Subsequently, we examine properties of Rockland operators which
are special to unitary representations or to translations on the Lp-spaces.

3.1. Lower order terms. In the previous section we derived Gaussian
bounds for the kernel of the semigroup generated by H on L2 under the
assumption that H is homogeneous. Next we use perturbation theory to
remove this homogeneity hypothesis.

Proposition 3.1. Let H = dL(C) where C is a form of order m whose
principal part is a positive Rockland form. Then

I. For all n ∈ N one has D(Hn) = L′2;nm, with equivalent norms. More-
over , there exists a c > 0 such that

N ′
2;nm(ϕ) ≤ c(‖Hnϕ‖2 + ‖ϕ‖2)

for all ϕ ∈ D(Hn).
II. The spaces L2;∞ and C∞

c (G) are cores for Hn, for all n ∈ N.

P r o o f. Let H0 = dL(P ) denote the principal part of H.
Suppose n = 1. Then D(H0) = L′2;m by Proposition 2.1. Moreover,

since H1 = H −H0 is of degree at most m− 1 one has

‖H1ϕ‖2 ≤ ε‖H0ϕ‖2 + cε−m+1‖ϕ‖2

for some c > 0 and all ε ∈ 〈0, 1] by Statements I and II of Proposition 2.1
applied to H0. Thus H1 is a relatively bounded perturbation of H0 with
relative bound zero. Hence D(H) = D(H0) = L′2;m with equivalent norms.
The rest of the proof then follows the proof of Proposition 2.1.

Next suppose n > 1. Then the principal part Hn
0 of the operator Hn

is a positive Rockland operator. Therefore we can repeat the foregoing
argument with H0 replaced by Hn

0 , H1 replaced by Hn−Hn
0 and the degree

m replaced by nm.

The semigroup results now follow by use of perturbation theory.

Theorem 3.2. Let H = dL(C) where C is a form of order m whose
principal part is a positive Rockland form. Then H generates a continuous
semigroup S with a kernel K ∈ L1;∞(G; dg)∩C0;∞(G). Moreover , for each
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α ∈ J(d) and ε ∈ 〈0, π/2〉 there exist a, b > 0 and an ω ≥ 0 such that

|(AαKz)(g)| ≤ a|z|−(D+‖α‖)/meω|z|e−b((|g|
′)m|z|−1)1/(m−1)

for all z ∈ Λ(π/2− ε) and all g ∈ G.
If K† is the kernel of the semigroup generated by the dual operator H†

then K†
t (g) = Kt(g−1) for all g ∈ G.

P r o o f. Again we use H0 to denote the principal part of H, and H1 for
the lower order terms. Since H0 is positive self-adjoint and H1 is relatively
bounded by H0 with relative bound zero it follows from standard perturba-
tion theory that H generates a continuous semigroup S on L2. Moreover,
it follows from the perturbation theory of holomorphic semigroups that S is
holomorphic in the open right half-plane.

Next, we exploit the perturbation arguments developed in the appendix
of [BrR2] and subsequently used in [ElR1], [ElR2] and [ElR4] to construct
the kernel K of S from the kernel K(0) of the semigroup S(0) generated by
the principal part H0 of H. Since the proof is very similar to the previous
applications we only sketch the outline of the argument.

DefineK(n)
t by the recursion relationK(n)

t = −(K(n−1) ∗̂H1K
(0))t where

the convolution product ∗̂ is defined on R×G by

(ϕ ∗̂ψ)t(g) =
∫
R
ds
∫
G

dhϕs(h)ψt−s(h−1g) =
∫
R
ds
∫
G

dhϕt−s(h)ψs(h−1g).

Then one proves that the perturbation series

Kt =
∑
n≥0

K
(n)
t

is Lp-convergent, for all p ∈ [1,∞] and all t > 0, and identifies Kt as
the kernel of S. In fact the series is convergent on exponentially weighted
Lp-spaces and this allows one to extend the Gaussian bounds from K(0)

to K.
Let % ≥ 0 and define L%1 to be the L1-space with respect to the measure

dg e%|g|
′
and denote the norm by

‖ϕ‖%1 =
∫
G

dg e%|g|
′
|ϕ(g)|.

Similarly, let L%∞ be the space of measurable functions ϕ for which g 7→
e%|g|

′ |ϕ(g)| is essentially bounded with norm

‖ϕ‖%∞ = ess sup
g∈G

e%|g|
′
|ϕ(g)|.

Since |·|′ satisfies the triangle inequality it follows from the recursion relation
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for K(n) that one has the coupled integral inequalities

(1) ‖K(n)
t ‖%∞ ≤

t∫
0

ds (‖K(n−1)
t−s ‖%∞‖H1K

(0)
s ‖%1) ∧ (‖K(n−1)

t−s ‖%1‖H1K
(0)
s ‖%∞)

and

(2) ‖K(n)
t ‖%1 ≤

t∫
0

ds ‖K(n−1)
t−s ‖%1‖H1K

(0)
s ‖%1.

But it follows from the Gaussian bounds of Corollary 2.3 applied to K(0)

that with a suitable choice of a > 0 and ω ≥ 0,

‖K(0)
t ‖%1 ≤ aeω(1+%m)t, ‖H1K

(0)
t ‖%1 ≤ at−(m−1)/meω(1+%m)t,

‖K(0)
t ‖%∞ ≤ at−D/meω(1+%m)t, ‖H1K

(0)
t ‖%∞ ≤ at−(D+m−1)/meω(1+%m)t

for all % ≥ 0. Now these estimates allow one to solve the integral inequalities
(1) and (2). One obtains bounds

‖K(n)
t ‖%1 ≤ a(bntn/n!)1/meω(1+%m)t,

‖K(n)
t ‖%∞ ≤ at−D/m(bntn/n!)1/meω(1+%m)t.

Then estimating the sum K of the series K(n) with the Hölder inequality
yields

‖Kt‖%∞ ≤ a′t−D/meω(1+%m)t.

But the latter bound gives

e%|g|
′
|Kt(g)| ≤ a′t−D/meω(1+%m)t

and minimizing over % one finds

|Kt(g)| ≤ at−D/meωte−b((|g|
′)mt−1)

1/(m−1)

for some a, b > 0 and ω ≥ 0.
The function K defined by the perturbation expansion is now a function

of the Gaussian type and it follows from the standard arguments of “time-
dependent” perturbation theory that it is indeed equal to the semigroup
kernel of the perturbed semigroup S. But applying similar arguments to the
semigroup Sθt = Seiθt with θ ∈ Λ(π/2) one establishes that Kz is defined
in the open right half-plane and satisfies the desired Gaussian bounds in
Λ(π/2− ε). It remains to bound the left derivatives of K.

The estimation of the derivatives AαKt is almost identical to the estima-
tion of Kt if α ∈ J(d) and ‖α‖ < m. The starting point is now the recursion
relation

(AαK(n)
t )(h) = −

t∫
0

ds
∫
G

dk (AαK(n−1)
t−s )(k)(H1K

(0)
s )(k−1h),
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which gives a set of coupled integral inequalities on the weighted spaces
which can then be solved with the aid of the above bounds together with
the estimates

‖AαK(0)
t ‖%1 ≤ at−‖α‖/meω(1+%m)t, ‖AαK(0)

t ‖%∞ ≤ at−(D+‖α‖)/meω(1+%m)t,

which again follow from the bounds of Corollary 2.3 applied to K(0). Now
the derivatives only introduce an extra factor (t − s)−‖α‖/m in the bound
on K

(n−1)
t−s in the integral inequalities and since this factor is integrable at

s = t this presents no problem. It merely introduces an additional factor
t−‖α‖/m in the overall estimate. If, however, ‖α‖ ≥ m a new problem
arises because the additional factor (t− s)−‖α‖/m is not integrable and the
recursion relation is ill-defined. But this can be dealt with by the methods
of [ElR1].

The n = 0 estimates are valid for all α and by splitting the convolution
integral into two parts one obtains an alternative recursion relation which is
well defined and can be used to estimate the higher derivatives. This second
relation has the form

(AαK(n)
t )(h) = −

t/2∫
0

ds
∫
G

dk (AαK(n−1)
t−s )(k)(H1K

(0)
s )(k−1h)

−
t∫

t/2

ds
∫
G

dkK
(n−1)
t−s (k)(AαL(k)K(0)

s )(h).

In the first integral the extra singularity (t − s)−‖α‖/m introduced by the
derivatives plays no role because s ≤ t/2. In the second integral the term
AαL(k)K(0)

s will have a nonintegrable singularity at s = 0 but this will
not cause any difficulty because it is excluded from the region of integra-
tion. Nevertheless, it is important for the form of the final bounds that
the singularity of this second term is of the correct order. But this follows
because L(k−1)AαL(k) is close to Aα in a suitable sense. The appropriate
comparison is given by Lemma 4.3 of [ElR4] which is a weighted version of
Lemma 4.3 of [ElR1]. If w ∈ 〈0,∞〉 is such that w/wi ∈ N for all i one has
to use the equivalent modulus | · |′′ defined by∣∣∣ exp

( d∑
i=1

ξiai

)∣∣∣′′ =
( d∑
i=1

|ξi|2w/wi

)1/(2w)

in the proof of Lemma 4.3 in [ElR4]. The detailed estimation of the deriva-
tives is then given by repetition of the arguments of [ElR1]. We omit further
details.

The proof of the last statement of the theorem, concerning the dual
kernel, is straightforward.
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3.2. General representations. In the previous subsection we proved that
if the principal part P of the form C is a positive Rockland form then the
operator dL(C) associated with the left regular representation L of G in L2

generates a holomorphic semigroup with a kernel which, together with all
its derivatives, satisfies Gaussian bounds. Now let (X , G, U) be a strongly,
or weak∗, continuous representation of G. Let H = dU(C) and let K be
the kernel of the semigroup generated by dL(C). We shall show that H
generates a continuous semigroup S which is holomorphic in the open right
half-plane and which has K as kernel. The idea of the proof is to use the
kernel K to define a semigroup on X and then show that the generator is H.

First we show that (Kt)t>0 is a bounded approximation of the identity.

Lemma 3.3.

lim
t→0

∫
G

dg Kt(g) = 1.

P r o o f. Let ϕ ∈ C∞
c (G), ϕ ≥ 0,

∫
dg ϕ(g) = 1. Let s > 0 be such that

suppϕ ⊆ Bs. Further, let ψ ∈ C∞
c (G), ψ ≥ 0, be such that ψ(g) = 1 for all

g ∈ Bs+1 and set τ = ϕ ∗ ψ. Then τ ∈ C∞
c (G) and τ(g) = 1 for all g ∈ B1.

Consider the decomposition∫
G

dg Kt(g) =
∫
G

dg Kt(g)τ(g) +
∫
G

dg Kt(g)(1− τ(g)).

It follows from the Gaussian bounds of Theorem 3.2 that limt→0

∫
dg Kt(g)×

(1−τ(g)) = 0, and hence it remains to prove that limt→0

∫
dg Kt(g)τ(g) = 1.

Now ∫
G

dg Kt(g)τ(g) =
∫
G

dg
∫
G

dhKt(g)ϕ(h)ψ(h−1g)

=
∫
G

dg
∫
G

dhKt(g)ϕ(h)ψ̌(g−1h)

=
∫
G

dh (Ttψ̌)(h)ϕ(h),

where ψ̌(g) = ψ(g−1) and T is the semigroup generated by dL(C). Because
limt→0 Ttψ̌ = ψ̌ in L2 we obtain

lim
t→0

∫
G

dg Kt(g)τ(g) =
∫
G

dhψ̌(h)ϕ(h) = τ(e) = 1

and the lemma is proved.

We now prove a result which, together with Corollary 2.3, completes
the proof of Theorem 1.1. Moreover, in combination with Theorem 3.2, it
extends Theorem 1.1 to nonhomogeneous operators.
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Theorem 3.4. Let (X , G, U) be a continuous representation of G and
C a form of order m whose principal part is a positive Rockland form. Let
H = dU(C) and H† = dU∗(C) be the dual operator in the dual representa-
tion (F , G, U∗). Then H generates a semigroup S which is holomorphic in
the right half-plane. Moreover , H = H†∗ and the kernel of the semigroup
generated by dL(C) on L2 is the kernel of S.

P r o o f. Let K be the kernel of the semigroup generated by H0 = dL(C)
on L2. For t > 0 define the operator St by Stx =

∫
G
dg Kt(g)U(g)x. Then it

follows from Lemma 3.3 that S is a continuous semigroup. But the same ar-
gument can be applied to the kernels t 7→ Keiθt with θ ∈ 〈−π/2, π/2〉. Since
all constants involved are locally uniform in θ it follows from Kato [Kat],
Theorem XI.1.23, that S is a holomorphic semigroup with holomorphy sec-
tor the open right half-plane. Let H̃ be its generator and for λ ∈ R large
enough let Rλ = (λI + H̃)−1 be the resolvent. Then Rλ is a continuous
operator, so if one replaces X by Xn it follows that Rλ maps Xn into Xn if
(X , G, U) is a strongly continuous representation. Hence Rλ maps X∞ into
X∞ for any representation.

In order to identify the generator of S, we first assume that U is the left
regular representation in L%1 = L1(G; e%|g|dg), where % ≥ 0 is fixed.

Note that Rλϕ = rλ ∗ ϕ, where rλ is the resolvent kernel associated
with the kernel K. Since Rλϕ = (λI + H0)−1ϕ for all ϕ ∈ C∞

c (G) and
C∞

c (G) ⊆ L%1;∞ one deduces that

(ψ, (λI +H)Rλϕ) = ((λI +H†)ψ,Rλϕ) = (ψ,ϕ)

for all ψ,ϕ ∈ C∞
c (G). So (λI +H)Rλϕ = ϕ for all ϕ ∈ C∞

c (G). Since Rλ
is a continuous operator and C∞

c (G) is dense in L%1 it follows that H̃ ⊆ H.
Next, using the dual kernel K† one can define similarly a semigroup S† on
F with generator H̃†. Then it follows from the above that H̃† ⊆ H†. But
S† = S∗, so H̃†

∗
= H̃. Hence

H ⊆ H†∗ = H†∗ ⊆ H̃†
∗

= H̃ ⊆ H

So H = H†∗ = H̃ is the generator of S.
Finally, we deduce that the generator H̃ of the semigroup S is the clo-

sure H of dU(C) for a general representation U . Let % > 0 be so large
that ‖U(g)‖ ≤ Me%|g| uniformly for all g ∈ G, for some M > 0. Let HL

and SL be the operator and semigroup corresponding to the left regular
representation in L%1. Let ϕ ∈ C∞

c (G) and x ∈ X . Then for all t > 0 one
has

StU(ϕ)x = U(Kt ∗ ϕ)x = U(SLt ϕ)x.

Hence by the Duhamel formula
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StU(ϕ)x− U(ϕ)x = U(SLt ϕ− ϕ)x

= −U
( t∫

0

dsHLSLs ϕ
)
x = −

t∫
0

ds (U(SLs H
Lϕ)x).

Therefore

‖t−1(StU(ϕ)x− U(ϕ)x)− U(HLϕ)x‖ =
∥∥∥t−1

t∫
0

dsU(SLs H
Lϕ−HLϕ)x

∥∥∥
≤ sup

0<s≤t
‖SLs HLϕ−HLϕ‖%1‖x‖.

Since SL is a continuous semigroup, it follows that U(ϕ)x is in the domain
of the generator H̃ of S and

H̃U(ϕ)x = U(HLϕ)x = HU(ϕ)x.

Let D = span{U(ϕ)x : ϕ ∈ C∞
c (G), x ∈ X} be the G̊arding space. Then

H̃ ⊇ H|D. But D is dense in X ′
m. So H̃ ⊇ H and hence H̃ ⊇ H. Since

Rλx ∈ X∞ for all x ∈ X∞ it follows that (λI +H)Rλx = x for all x ∈ X∞.
One can then deduce as above for the left regular representation in L%1 by
using duality that H̃ = H = H†∗. This proves the theorem.

Corollary 3.5. The kernel z 7→ Kz(g) is analytic in the open right
half-plane uniformly for all g ∈ G.

P r o o f. If S is the holomorphic semigroup generated by dU(C) on L∞,
where U is the left regular representation, then Sz1Kz2 = Kz1+z2 for all
z1, z2 in the right half-plane. Hence the map z 7→ Kz from Λ(π/2) into L∞
is holomorphic. Fix z0 ∈ Λ(π/2). Then there exists K ′

z0 ∈ L∞ such that

lim
z→z0

∥∥∥∥Kz −Kz0

z − z0
−K ′

z0

∥∥∥∥
∞

= 0.

But g 7→ (Kz −Kz0)(g)/(z − z0) is a continuous function, so

lim
z→z0

Kz(g)−Kz0(g)
z − z0

= K ′
z0(g)

uniformly for all g ∈ G. Therefore z 7→ Kz(g) is analytic.

3.3. Regularity. Finally, we consider unitary representations and prove
optimal regularity results.

Theorem 3.6. Let C be a form of order m whose principal part P is a
positive Rockland form. Suppose (X , G, U) is a unitary representation and
let H = dU(C). Then

I. The operator H is closed.
II. For all n ∈ N one has D(Hn) = X ′

nm with equivalent norms.
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P r o o f. We only have to prove Statement I since the principal part of
Cn is a positive Rockland form. The equivalence of the norms follows from
the closed graph theorem.

Consider the form C1 defined so that

dV (C1) =
∑

α∈J(d)
‖α‖≤m

(−1)|α|A〈α∗,α〉

in any representation (Y, G, V ), where 〈α∗, α〉 denotes the multi-index for-
med by composition of α and the index α∗ obtained by reversing the order
of α. Then C1 is a form of order 2m whose principal part P1 is a positive
Rockland form. Indeed, if V is a nontrivial irreducible unitary representa-
tion, x ∈ Y∞(V ) and dV (P1)x = 0, then (x, dV (P1)x) = 0, so Aαx = 0 in
the representation V for all α ∈ J(d) with ‖α‖ = m. Hence dV (P )x = 0
and x = 0 since P is a Rockland form.

By Proposition 2.1 there exists µ1>0 such that ‖dL(P )ϕ‖2 ≥ µ1N
′
2;m(ϕ)

for all ϕ ∈ L′2;m. Moreover, by Theorem 2.1 in Chapter I of [HeN2], and
the remark immediately after it, there exists µ2 > 0 such that ‖dV (P )x‖ ≥
µ2N

′
m(x) uniformly for all unitary irreducible representations (Y, G, V ) and

x ∈ Y ′m(V ). Let µ = 2−1 min(µ1, µ2). Then

(x, dV (P 2 − µP1)x) ≥ µ(x, dV (P1)x)

if V is an irreducible unitary representation or if V is the left regular rep-
resentation on L2 and x is a C∞-vector. Therefore P 2 − µP1 is a positive
Rockland form. So C†C − µC1 is a form of order 2m whose principal part
is a positive Rockland form.

Then the closure of dU(C†C − µC1) is a generator of a semigroup, so
it is self-adjoint and by spectral theory it is bounded below. Let −% be a
lower bound. Then

‖dU(C)x‖2 = µ(dU(C1)x, x) + (dU(C†C − µC1)x, x) ≥ µ(‖x‖′m)2 − %‖x‖2

for all x ∈ X ′
2m(U). Since X∞(U) is a core for dU(C), by [BrR1], Corol-

lary 3.1.7, and X ′
m is complete, it follows that D(dU(C)) ⊆ X ′

m and hence
dU(C) is closed.

It is also possible to obtain regularity results for the left regular repre-
sentation on the Lp-spaces with respect to left Haar measure if p ∈ 〈1,∞〉.
These are basically a result of the good kernel bounds and the regularity
on L2.

Theorem 3.7. Let U be the left regular representation on Lp, where
p ∈ 〈1,∞〉, and let H = dU(C). Then

I. The operator H is closed.
II. For all n ∈ N one has D(Hn) = L′p;nm with equivalent norms.
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P r o o f. The proof is precisely the same as that for subcoercive operators
in [BER]. It is based on a Lie group version of the usual weak L1-estimates of
singular integration theory combined with the regularity properties already
obtained for L2 together with duality and interpolation arguments.

Theorem 3.8. Let U be the left regular representation on Lp, where
p ∈ 〈1,∞〉, and let H = dU(C). If θ ∈ 〈0, π/2〉 then there is a ν0 ≥ 0,
independent of p, such that the operators νI + H, ν > ν0, have a bounded
functional analysis over the functions which are bounded and holomorphic
in the sector Λ(ϕ) with ϕ ∈ 〈π/2− θ, π].

P r o o f. The proof is precisely the same as in [ElR3]. It is again based
on a Lie group version of arguments of singular integration theory.
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vecteurs, Progr. Math. 58, Birkhäuser, Boston, 1985.
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