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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A MODEL
OF GRAVITATIONAL INTERACTION OF PARTICLES, II

BY

PIOTR B I L E R (WROC LAW), DANIELLE H I L H O R S T (ORSAY)
AND TADEUSZ N A D Z I E J A (WROC LAW)

We study the existence and nonexistence in the large of radial solutions
to a parabolic-elliptic system with natural (no-flux) boundary conditions
describing the gravitational interaction of particles. The blow-up of solutions
defined in the n-dimensional ball with large initial data is connected with
the nonexistence of radial stationary solutions with a large mass.

1. Introduction. This is the second part of [5]. We study here radial
solutions of the parabolic-elliptic system from [5, (1)–(5)], their existence
and nonexistence for both stationary and evolution cases. The system, de-
fined in a bounded domain Ω of Rn, is

ut = ∆u +∇ · (u∇ϕ),(1)
∆ϕ = u,(2)

with the nonlinear no-flux condition

(3)
∂u

∂ν
+ u

∂ϕ

∂ν
= 0,

where ν denotes the outward unit normal vector to ∂Ω. For the potential
ϕ we assume either

(4.1) ϕ = 0 on ∂Ω,

or instead of the Dirichlet boundary condition above,

(4.2) ϕ = En ∗ u

with En being the fundamental solution of the n-dimensional Laplacian. For
the initial-boundary value problem we add the condition

(5) u(x, 0) = u0(x) ≥ 0.

1991 Mathematics Subject Classification: 35B40, 35K60, 35Q99, 82C21.
Key words and phrases: parabolic-elliptic system, nonlinear boundary conditions,

global existence of solutions, blowing-up solutions.
Research of the first and third authors was partially supported by KBN grants.

[297]



298 P. BILER ET AL.

For the interpretation of (1)–(5) we refer the reader to the introduction
of [5].

When Ω is a radially symmetric domain: a ball, an annulus, or a spher-
ical shell in Rn, we consider radially symmetric solutions. We define the
integrated density Q(r, t) =

∫
Br

u dx which satisfies the following parabolic
equation with the Dirichlet boundary conditions on [0, R]× [0, T ] if Ω = BR:

Qt = Qrr − (n− 1)r−1Qr + σ−1
n r1−nQQr,

Q(0, t) = 0, Q(R, t) = Q0,(6)
Q(r, 0) = Q0(r) ≥ 0, Q0(r) nondecreasing.

Such a formulation permits us to deal with less regular densities u (including
measures, not only L1 functions) than those considered in [5].

To justify this approach observe that the system (1)–(4) is rotation in-
variant. Hence, for a radially symmetric initial condition (5) the unique so-
lution constructed by any method described in [5, Theorem 2(i), (ii)] (p > n)
is radial. After integrating this solution we obtain a (more regular) new de-
pendent variable Q(r, t) =

∫
Br

u dx = σn

∫ r

0
%n−1u(%, t) d%, which is equal

to the mass contained in the ball of current radius r ∈ [0, R]. It is easy to
verify that Q satisfies (6) (observe that σnrn−1φr = Q if φ(r, t) = ϕ(x, t)
with |x| = r), together with the physically obvious compatibility conditions

(7) M =
∫

BR

u0 dx, Q0(R) = Q0 = M.

All this shows that (6) with the above conditions (7) does have a unique
solution in the class of solutions described in [5, Theorem 2]. The total mass
M is considered as a meaningful parameter in the problem (6)–(7).

2. Radially symmetric stationary solutions. We recall some pre-
vious results on the radially symmetric stationary solutions in the two- and
three-dimensional cases from [11], [13], where the problem

(rn−1Φ′(r))′
R∫

0

%n−1 exp(−Φ(%)) d%

(8) = Mσ−1
n rn−1 exp(−Φ(r)), ′ = d/dr,

Φ′(0) = 0, Φ(R) = 0

has been studied. This problem can be deduced from the stationary equa-
tions corresponding to (1)–(4) (cf. [5, (10), (11)]).

In the two-dimensional case an explicit form of solution to (8) is available,
since the equation (8) is integrable for n = 2. This implies that (8) has a
unique solution for all 0 < M < 8π and it has no solution for M ≥ 8π.
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In the three-dimensional case the situation is much more complicated.
Namely, for sufficiently small M the problem (8) has a unique solution, and
there exists M0 > 8π such that for M > M0 there are no solutions. For
some intermediate values of M from the interval (0,M0) there are several
solutions, and for M = 8π there exist infinitely many solutions.

A general nonexistence result in star-shaped domains from [5, Section 2]
gives nonexistence of solutions in the ball BR ⊂ Rn when M ≥ 2nσnRn−2.

Applying the contraction principle, it has been proved in [13] that if Ω
is a spherical shell, i.e. Ω = {x ∈ Rn : 0 < a < |x| < R}, then (8) with
a suitable condition at r = a has a unique radially symmetric solution for
all positive M ’s. The existence of solutions for all M > 0 is proved, using
different methods, also in [6] and [11]. It is an interesting fact that in the
case of shells, nonradially symmetric solutions can exist (see [15]–[18] for a
related problem in general domains).

Using phase plane methods developed in [11], it is possible to prove that
in every dimension the problem (8) has a unique solution for sufficiently
small M > 0. Moreover, for n ≥ 10 there exists at most one solution for
arbitrary M > 0. Note that [10] dealt with similar equations but without
normalization constant µ. The arguments extending those from [10], [11]
mentioned above are much simpler in the (stationary) formulation of (6)–(7)
(see (9) below), more general than (8) since less regularity of Φ is required.
For Q(r, t) independent of t the problem (6)–(7) becomes

(9)
Qrr − (n− 1)r−1Qr + σ−1

n r1−nQQr = 0,

Q(0) = 0, Q(R) = M.

For simplicity of notation we suppose (with no loss of generality) that
R = 1. Indeed, if Q satisfies (9), then Q̃(r) = R2−nQ(Rr) solves the
equation (9) with the boundary conditions Q̃(0) = 0, Q̃(1) = MR2−n, this
last being rescaled by R2−n.

Theorem 1. Let R = 1 in the problem (9).
(i) There exists M0(n) such that (9) admits no solution for M > M0(n).

In fact , M0(2) = 8π, M0(n) = 2σn for n ≥ 10.
(ii) If 3 ≤ n ≤ 9, then solutions of (9) are unique for small M > 0. For

M = 2σn there exist infinitely many solutions; for M 6= 2σn the number of
solutions is finite but grows to infinity as M approaches 2σn.

(iii) If n = 2 or n ≥ 10, then for every M > 0 there exists at most one
solution of (9).

P r o o f. For n = 2 the problem (9) (as well as (8)) is integrable and the
explicit form of solution is Q(r) = 8πM(8π −M + Mr2)−1r2 (cf. also the
discussion of singular solutions after the proof of Theorem 3).
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For n > 2 we will employ the phase plane method (cf. [10], [11]).
Introducing the new independent variable s = log r and putting v(r) =
σ−1

n r3−nQr(r) and w(r) = σ−1
n r2−nQ(r) we can verify that v and w satisfy

the system

(10) v′ = 2v − vw, w′ = (2− n)w + v, ′ = d/ds,

together with the boundary conditions

(11) w(−∞) = 0, w(0) = σ−1
n M

(the only trajectory such that w(s) ≥ 0 for s → −∞ satisfies w(−∞) = 0).
The dynamical system (10) has two stationary points P1 = (0, 0) and

P2 = (2(n − 2), 2). The eigenvalues of the linearization of (10) at these
points are α1 = 2, α2 = 2 − n and β1,2 = 1

2 (2 − n ± ((n − 2)(n − 10))1/2).
The origin P1 is hence a saddle. The solution curve γ(s) = {(v(s), w(s)) :
s ∈ R, v(s), w(s) > 0}, starting at the origin and tangent to the eigenvector
(1, 1/n) corresponding to the eigenvalue 2, is a separatrix.

The stationary point P2 is a sink and

L(v, w) = 1
2 (w − 2)2 + (v − 2(n− 2))− 2(n− 2) log(v/(2(n− 2))), v > 0,

with L(P2) = 0, is a Lyapunov function for (10). Hence the basin of at-
traction of P2 contains the whole positive quadrant and we conclude that
γ connects P1 with P2. For 3 ≤ n ≤ 9, Im β1,2 6= 0 and the curve γ turns
around P2 infinitely many times, so we obtain (ii). Note that an analysis of
this Lyapunov function L allows us to obtain some estimates for the unique-
ness interval (0,M0) and for the nonexistence range (M1,∞), with M1 much
less than 2nσn given by Pokhozhaev type arguments in [5, Section 2].

For n ≥ 10 the triangle ∆ bounded by the lines v = (n−2)w, w = 0 and
2(n − 2)(w − 2) + β1(v − 2(n − 2)) = 0 is positively invariant for the flow
generated by (10). To verify this note that (2(2 − n), β1) is an eigenvector
of the linearization of (10) at P2. Hence γ connects P1 with P2 and stays
in ∆, so (i) follows. The inequality w′ > 0 holds in ∆, so (10)–(11) has a
unique solution for M ≤ 2σn.

3. Global existence in the radial case. In this section we prove a
result on the global existence of solutions in the radial case for not too large
data. The construction is based on a modification of the formulation (6)–(7)
(with integrated densities) of the problem in the ball and uses the theory
of classical Hölder continuous solutions. A related approach for n = 2 is
sketched in [20, Theorem 3.2]. A part of the proof gives also arguments
showing existence and regularity of solutions for the problem in an annulus.

Compared to [4, Remark 8] and [5, Theorem 2(iii), (iv)] dealing with the
formulation (1)–(5), here less regular densities u can be studied.
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We rewrite (6)–(7) with R = 1 (which results in no loss of generality,
cf. the discussion preceding Theorem 1) using a new independent variable
y = rn, so that we obtain

Qt = n2y2−2/nQyy + nσ−1
n QQy,

Q(0, t) = 0, Q(1, t) = M,(12)
Q(y, 0) = Q0(y) ≥ 0, Q0(1) = M.

The problem (12) is completely equivalent to (6)–(7) but the equation is
slightly simpler than (6).

Let us remark that in the one-dimensional symmetric case, the problem
(1)–(5) on Ω = (−1, 1) in the new dependent variable Q(y, t) =

∫ y

0
u(x, t) dx

for even functions u assumes the form

Qt = Qyy + QQy,

Q(0, t) = 0, Q(1, t) = M,(13)
Q(y, 0) = Q0(y).

Its analysis resembles that in [12] for the one-dimensional electrolytic
case. Observe that if a function v solves the linear problem for the heat
equation

vt = vyy,

vy(0, t) = 0, vy(1, t)− M

2
v(1, t) = 0,(14)

v(y, 0) = exp
(

1
2

y∫
0

Q0(x) dx

)
,

then Q = 2vy/v, defined by the Hopf–Cole substitution, is a solution of (13).
Separating the variables we see that the solution of (14) can be represented
in the form

v(y, t) = a0 exp(λ2t) cosh λy +
∞∑

k=1

ak exp(−λ2
kt) cos λky,

where λ is a positive (unique) solution of the equation λ tanh λ = M/2,
a0 > 0, and λk tan λk = −M/2, k = 1, 2, . . . , 0 < λ1 < λ2 < . . .

From the explicit form of v we get limt→∞Q(y, t) = 2λ tanh λy. This
means (since Qy = u is the original variable from (1)) limt→∞ u(y, t) =
2λ2(cosh λy)−2 =: u(y). The function Φ = − log u satisfies the stationary
equation d2

dy2 Φ = exp(−Φ) with the conditions Φ′(0) = 0, Φ(1) = 0, and∫ 1

0
exp(−Φ) = M .

Theorem 2. If n ≥ 5, then the problem (12) in the ball B1 with the
initial condition Q0(·) satisfying the Hölder condition with exponent 1−2/n
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on [0, 1], together with d
dy Q0(1) < ∞ and the smallness condition Q0(y) ≤

((n−4)/(n−2))2σny1−2/n, y ∈ [0, 1], has a classical solution global in time.
Moreover , Q(·, t) converges to a stationary solution as t→∞, uniformly in y.

P r o o f. The strategy of the proof is the following: we construct a solu-
tion Q = Qε to a regularized uniformly parabolic problem in [0, 1]× [0, T ],
T > 0 arbitrary, then we pass to the limit ε → 0 on [δ, 1] × [0, T ], for any
δ > 0, obtaining a classical solution of (12) global in time.

Note that the assumption on Q0(y) is a low concentration condition
in the sense of [5, Section 2], which, however, allows us to consider some
singular densities, e.g. u0(r) ≤ 2(n− 4)r−2.

We begin with a construction of supersolutions and subsolutions of the
regularized uniformly parabolic problem

(15) (Pε) Qt = n2(y + ε)2−2/nQyy + nσ−1
n QQy, ε > 0,

with the same boundary conditions as for (12) and smooth initial conditions
Qε(y, 0) converging to the one in (12) in C1−2/n([0, 1]).

Let Qε(y) = 2σn(y + ε)1−2/n, ε ≥ 0. The function Qε solves (15),
while Q0(y) = 2σny1−2/n is a stationary solution of (12) corresponding to
the singular solution U(r) = 2(n − 2)r−2. It is standard to verify that for
β ∈ (0, 1],

(16) Qε,β(y) = min(βQε(y),M)

is a supersolution to (15) with suitably small initial and boundary data in
(12): Qε(y, 0) ≤ Qε,β(y). It is also easy to verify that (12) and (15) have
nontrivial subsolutions of the form max(0, γ(yκ − 1) + M) with κ ∈ (0, 1)
and suitably small γ. Here the assumption d

dy Q0(1) < ∞ is used.
We note that standard arguments (cf. [9]) show that the principle of

comparison with the above super- and subsolutions is valid for solutions of
the regularized problem (15) (the key property is the boundedness of the
derivatives of these super- and subsolutions).

For any solution Q of (15) define P (y, t) = d
dy Q(y, t). The function P

satisfies the uniformly parabolic equation

(17) Pt = n2(y + ε)2−2/nPyy + 2n(n− 1)(y + ε)1−2/nPy + nσ−1
n (QPy + P 2)

with P (0, t) ≥ 0, P (1, t) ≥ 0, and P (y, 0) ≥ 0 (since the initial conditions
for (12) and (15) are nondecreasing functions). Now the crucial observation
is that Pε,β = d

dy Qε,β is a supersolution to (17) if β ∈ (0, (n − 4)/(n − 2)].
For the computation showing this we neglect the term Q d

dy Pε,β ≤ 0, and
since in general no bound for Q from below is available, the above smallness
condition for β appears.

The considerations above, together with [14, Ch. VI, Theorem 5.2], im-
ply the existence of a unique solution of the problem (Pε), Q = Qε ∈
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C2+α,1+α/2([0, 1]× [0, T ]), for each α ∈ (0, 1) and each T > 0. This solution
satisfies the estimates

(18) 0 ≤ Qε(y, t) ≤ Qε,β(y), 0 ≤ d

dy
Qε(y, t) ≤ d

dy
Qε,β(y),

and for each δ > 0,

(19) ‖Qε‖C1−2/n,1/2−1/n([δ,1]×[0,T ]) ≤ C(δ)

with C(δ) independent of ε.
The compactness of the family of approximating solutions {Qε : ε > 0}

is a consequence of their uniform continuity on [0, 1]× [0, T ]. The existence
of a common modulus of continuity follows from (18) applied for small y
and combined with (19) for y ≥ δ. By the above result, there is a sequence
εk → 0 and a function Q ∈ C([0, 1] × [0, T ]) such that Qεk

(y, t) → Q(y, t)
uniformly as εk → 0 and Q satisfies the initial and boundary conditions
in (12).

Next let (y, t) ∈ (0, 1) × (0, T ). It follows from standard results ([14,
Ch. III, Theorem 10.1] and [7, Ch. 3]) that {Qε : ε > 0} is bounded in the
space of Hölder continuous functions Cm+α,(m+α)/2([y/2, 1] × [t/2, T ]) for
each integer m ≥ 0 and α ∈ (0, 1). Then, since Qε satisfies (15) in [y/2, 1]×
[t/2, T ], it follows that Q satisfies (12) in [y/2, 1] × [t/2, T ]. Finally, since
(y, t) was chosen arbitrarily in (0, 1)×(0, T ), Q satisfies (12) in (0, 1)×(0, T ).

As a consequence of (18) the limit solution Q and its derivative d
dy Q can

be estimated from above:

(20)
Q(y, t) ≤ βQ0(y) = β2σny1−2/n,

d

dy
Q(y, t) ≤ β

d

dy
Q0(y) = β2σn(1− 2/n)y−2/n.

These upper bounds in (20) permit us to define an analogue of the Lya-
punov function studied in [5, (23)]:

(21) W =
1∫

0

Qy log Qy dy − (2nσn)−1
1∫

0

y2/n−2Q2 dy.

The same bounds (20) show that W is uniformly bounded on the solutions
constructed above. Moreover, d

dtW (t) ≤ 0, and d
dtW (t) = 0 if and only if

Q is a stationary solution (cf. [5, Section 2]). Finally, if M < 2σn (here we
have assumed M ≤ ((n−4)/(n−2))2σn), by Theorem 1 stationary solutions
are isolated, hence Q(·, t) converges as t →∞ to one of them.

Note that the sequence of approximating solutions can also be con-
structed for M ≤ 2σn, i.e. with β = 1. In this case, however, we cannot
prove any estimate for the derivative of the limit solution. In particular, we
do not know whether the Lyapunov function is defined for a limit function
Q, so the asymptotic behavior of such a solution is difficult to control.
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R e m a r k. The arguments at the beginning of the proof of Theorem 2
(and references to [7], [14]) produce a unique classical Hölder continuous
solution to a counterpart of (6)–(7) in an annulus, or in a spherical shell
{x ∈ Rn : 0 < a < |x| < R}, n ≥ 2, with Hölder continuous initial data of
arbitrary size. The convergence to the stationary states (which are unique
in the class of radial functions, cf. Section 2) follows exactly as at the end
of the proof of Theorem 2 above.

4. Blowing-up solutions. The main result in this section shows that
the smallness assumption in Theorem 2 is essential: there are local radial
solutions of the evolution system in the ball which cannot be continued
to global ones. Below we consider either the system (1)–(4) in the ball
BR ⊂ Rn, n ≥ 2, with a radially symmetric initial condition (5) and its
solution constructed in [5, Theorem 2(i), (ii)], or the equation (12) and its
classical solution whenever it exists. A sufficient condition for blow-up is
more precise than that obtained in [5, Theorem 2(v)] for general star-shaped
domains. The idea of the proof is close to that in the general case.

Theorem 3. If the initial condition has sufficiently large concentration
so that M > 2nσnRn−2, n ≥ 2, then the solution of the evolution system in
the ball BR ⊂ Rn ceases to exist after a finite time T = T (M,R, n).

P r o o f. With no loss of generality we may suppose R=1 as in the proofs
of Theorems 1 and 2. For α∈ [2/n− 1, 0] consider an auxiliary function

(22) w(t)=
1∫

0

Q(y, t)yα dy.

It can be easily checked that for any solution of (12),

dw

dt
= n2y2−2/n+αQy|10 − n2(2− 2/n + α)

1∫
0

y1−2/n+αQy dy

+ nσ−1
n

1∫
0

1
2

(Q2)yyα dy.

After another integration by parts, in the class of solutions considered, we
obtain

dw

dt
≥ 0− n(2n− 2 + nα)y1−2/n+αQ|10

+ n(2n− 2 + nα)(1− 2/n + α)
1∫

0

yα−2/nQdy

+ n(2σn)−1yαQ2|10 − αn(2σn)−1
1∫

0

yα−1Q2 dy.
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In the admissible range of α’s this gives

dw

dt
≥ n(2σn)−1yαQ(Q− 2σn(2n− 2 + nα)y1−2/n)|10
= n(2σn)−1M(M − 2σn(2n− 2 + nα)),

so in particular, for α = 2/n − 1, M > 2nσn leads to unbounded growth
of w(t) in time. But this is absurd in view of a crude estimate w(t) ≤
M

∫ 1

0
yα dy = M(α + 1)−1. Remember that under the assumptions on M of

Theorem 3 stationary solutions do not exist.
Replacing α = 2/n − 1 by a larger α ≤ 0 we can obtain an analogous

nonexistence result for less regular solutions of (1)–(5) or (12), but under a
stronger condition M > 2σn(2n−2+nα). In particular, taking α = 0 we only
need u(t) ∈ L1(BR), lim|x|→0 |x|2(n−1)u(x, t) = 0, hence some singularities
of u are admitted.

Finally, we infer from the local regularity of solutions in [5, Theorem 2(ii)]
that the density u cannot be bounded at the blow-up time T . In fact, the
local smoothing effect shows that u blows up simultaneously in L∞(BR) and
in Lp(BR) for every p > n/2 (recall [5, Theorem 2]).

To end this section, we make some remarks on special singular solutions
to the system (1)–(2) or (6) considered without boundary conditions. This
should help to understand the behavior of blowing-up solutions in Theo-
rem 3.

It is instructive to study the stationary solutions neither in the formu-
lation given by [5, (11)] nor (8) but (9) (with a nondecreasing Q(r) ≥ 0
instead of the boundary condition), since the latter admits also some singu-
lar solutions U , Φ.

The obvious solution Q(r) = c = const ≥ 0 corresponds for all n ≥ 2 to
a very singular U = cδ0. For n = 2 we can also produce a family of other
solutions Q ≥ 0 of (9) with the boundary condition Q(1) = Q0, which are
determined by measures u. The construction follows in a particularly simple
way from the observation that (9), by using a new independent variable
y = r2, transforms into 4πyQyy + QQy = 0. This equation (the stationary
version of (12) for n = 2) is easily integrable:

8πyQy + Q(Q− 8π) = 2πc0 for some constant c0.

Then, if 2πc0 + 8πQ−Q2 = (Q−Q1)(Q2−Q), i.e. when Q1,2 = π(4∓ (16 +
2c0/π)1/2) for c0 ∈ (−8π, 0), another integration gives (Q−Q1)/(Q2−Q) =
cyβ with β = (1 + c0/(8π))1/2 ∈ (0, 1). The explicit formula for Q is

Q(y) = (Q1 + Q2cy
β)/(1 + cyβ),

0 ≤ Q1 = Q(0) ≤ Q(y) ≤ Q(1) < Q2 < 8π,
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so the mass concentrated at y = 0 is Q1 ∈ (0, 4π), and the total mass is
Q0 ∈ (Q1, Q2), and the latter, just as for radial regular solutions of [5, (11)]
studied by means of (8), is strictly less than 8π (cf. also [19, Lemma 4.5]).

For n ≥ 3, besides these measure solutions, there are singular but inte-
grable solutions U(r) = 2(n − 2)r−2 corresponding to Q(r) = 2σnrn−2. In
the physically most relevant case n = 3 this is the famous solution found
by S. Chandrasekhar in the thirties when he studied the stellar structure.
This is the unique radial solution with a positive singularity at 0, but there
is a surprising result of [1] on existence and an elegant classification of a
rich variety of nonradial singular solutions to [5, (11)] for n = 3. Note that
the solutions with u(r) ∼ r−2 cannot be studied in the framework of [5,
Theorem 1], since u ∈ Lp(B) for p < n/2 only.

The next class of special solutions, more complicated than the stationary
ones, are the self-similar solutions of the Boltzmann form

u(r, t) = (T − t)−1ξ(r(T − t)−1/2).

Passing to the integrated density Q(r, t) = σn

∫ r

0
%n−1u(%, t) d% we obtain

Q(r, t) = σn(T − t)n/2−1ζ(r(T − t)−1/2) for some new function ζ satisfying

(23) ζ ′′ − (s/2 + (n− 1)/s)ζ ′ + (n/2− 1)ζ + s1−nζζ ′ = 0,

s = r(T − t)−1/2, ′ = d/ds.

The equation (23) has explicit solutions:

(24)
for n = 2 : ζ(s) = const ≥ 0; ζ(s) = s2/2;

for n ≥ 3 : ζ(s) = 2sn−2; ζ(s) = sn/n.

Except for the first one they satisfy the condition ζ(0) = 0, which means
that no mass concentrates at the origin. These solutions correspond to

(n = 2) u = cδ0; Q(r, t) = 2πr2/(2(T − t)) so u(r, t) = 1/(T − t);

(n ≥ 3) u(r, t) = 2(n− 2)r−2;
Q(r, t) = σnrn/(n(T − t)) so u(r, t) = 1/(T − t),

respectively. A natural question which may be posed in connection with
self-similar solutions is: Are they stable among other blowing-up solutions?

The precise meaning of the stability of these (unbounded) objects can
be given using the considerations from [8] for semilinear heat equations and
from [2], [3] for the porous medium equation. Namely, after rescaling the
time variable to τ = − log(T − t) and putting Q(r, t) = Q(s(T − t)1/2, t) =
σn(T − t)n/2−1Z(s, τ), where s = r(T − t)−1/2 as before, (6) becomes

(25) Zτ = Zss − (s/2 + (n− 1)/s)Zs + (n/2− 1)Z + s1−nZZs.

Now, the (local) stability of ζ solving (23) is interpreted as the stability
in a suitable function space of ζ as a stationary solution of the parabolic
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equation (25) in (s, τ) ∈ R+ ×R+ as τ →∞. We will not pursue the above
nontrivial question here, because the self-similar solutions (23) are of limited
physical interest, since they do not satisfy the boundary conditions in (7).
Indeed, it can be proved that for ζ satisfying (23) and 0 ≤ ζ 6≡ const we
have lims→∞ ζ(s) = ∞. Their importance is connected rather with the local
behavior near r = 0 and t → T−.
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