COLLOQUIUM MATHEMATICUM

VOL. LXVII

1994

FASC. 2

SOME REMARKS ON HOLOMORPHIC EXTENSION IN INFINITE DIMENSIONS

BY

PHAM KHAC BAN (HANOI)

In finite-dimensional complex analysis, the extension of holomorphic maps has been investigated by many authors. In recent years some authors have considered this problem in the infinite-dimensional case. The aim of the present note is to study the extension of holomorphic maps with values in some Banach complex manifolds.

Let X be a Banach complex manifold. We say that X has the holomorphic extension property (briefly HEP) if every holomorphic map from a Riemann domain Ω over a Banach space having a Schauder basis to X can be extended holomorphically to $\widehat{\Omega}$, the envelope of holomorphy of Ω . Now as in [10], X is said to satisfy the weak disc condition if every sequence $\{f_n\}$ of holomorphic maps from the unit open disc D into X, convergent in $H(D^*, X)$, where $D^* = \{\lambda \in D : \lambda \neq 0\}$, is convergent in H(D, X), the space of holomorphic maps from D into X equipped with the compact-open topology.

In this note we shall prove the following two theorems.

THEOREM A. Let X be a Banach manifold satisfying the weak disc condition. Then X has the HEP.

THEOREM B. Let X be a pseudoconvex Banach manifold having C^1 partitions of unity such that every holomorphic map from D^* into X can be extended holomorphically to D. Then X has the HEP.

Here X is called *pseudoconvex* if

 $\widehat{K}_P := \{ z \in X : \varphi(z) \le \sup_K \varphi \text{ for all plurisubharmonic functions } \varphi \text{ on } X \}$

is compact for each compact subset K of X.

Cover X by a locally finite system of coordinates $\{(U_i, \varphi_i)\}$. Let $\{V_i\}$ be another open cover of X such that $V_i \subset U_i$, dist $(V_i, \partial U_i) > 0$ and $\varphi_i(V_i)$ is isomorphic to a ball in a Banach space for every *i*.

¹⁹⁹¹ Mathematics Subject Classification: Primary 58B12.

^[155]

By hypothesis there exists a C^1 -partition of unity $\{h_i\}$ such that $h_i = 1$ on V_i and supp $h_i \subset U_i$ for every *i*. Let $p: TX \to X$ be the tangent bundle of X. For each $u \in TX$, put

$$||u|| = \sum h_i(pu) ||D\varphi_i(pu)(u)||.$$

Denote by ρ_X the integral distance on X associated with $\|\cdot\|$. Then ρ_X defines the topology of X (cf. [1]).

Proof of Theorem A. Let $f: \Omega \to X$ be a holomorphic map, where Ω is a Riemann domain over a Banach space B with a Schauder basis. By S_X we denote the sheaf of germs of holomorphic maps on $\widehat{\Omega}$ with values in X and by S_X^f the domain of existence of f. Then S_X^f is the component of S_X containing the set $\{(x, f_x) : x \in \Omega\}$, where f_x denotes the germ of f at x. We have the commutative diagram

$$\begin{array}{cccc} \Omega & \stackrel{f}{\longrightarrow} & X \\ e \downarrow & \stackrel{}{\longrightarrow} & \stackrel{}{\uparrow} \widetilde{f} \\ \widehat{\Omega} & \stackrel{}{\longleftarrow} & S^{f}_{X} \end{array}$$

in which e, α, β are canonical maps and \widetilde{f} is the canonical extension of f.

(i) First we shall prove that S_X^f satisfies the weak disc condition. Given a sequence $\{u_n\} \subset H(D, S_X^f)$ convergent to u in $H(D^*, S_X^f)$. By hypothesis $\{\tilde{f}u_n\}$ converges to h in H(D, X). Take a neighbourhood U of h(0) in Xwhich is isomorphic to an open subset of a Banach space E. Then we can assume that $\tilde{f}u_n(\delta D) \subset U$ for $n \geq 1$.

Put $K = \operatorname{cl\,conv}(\bigcup_{n\geq 1} \widetilde{f}u_n((\delta/2)D))$. Let F be the canonical Banach space spanned by K. Then

$$fu_n: \partial((\delta/2)D) \to H$$

is continuous for $n \ge 1$. Hence by the Cauchy formula

$$\widetilde{f}u_n(z) = \frac{1}{2\pi i} \int_{|\lambda| = \delta/2} \widetilde{f}u_n(\lambda)(\lambda - z)^{-1} d\lambda$$

it follows that $fu_n: (\delta/2)D \to F$ is holomorphic for all $n \ge 1$.

Now for each $n \ge 1$, consider the map

$$\widetilde{u}_n: (\delta/2)D \to \liminf_{0 \in W} H^\infty(W, F)$$

where $H^{\infty}(W, F)$ is the Banach space of bounded holomorphic functions on W with values in F, defined by

$$\widetilde{u}_n(\lambda) = [u_n(\lambda) \circ \theta_{\gamma u_n(\lambda)}]_0$$

where $\gamma = \hat{p}\beta$, $\hat{p} : \hat{\Omega} \to B$ defining Ω as a Riemann domain over B and $\theta_v(r) = v + r$.

Then $\{\widetilde{u}_n\}$ converges to \widetilde{u} in $H((\delta/2)D^*, \liminf_{0 \in W} H^{\infty}(W, F))$, and hence in $H((\delta/2)D, \liminf_{0 \in W} H^{\infty}(W, F))$. Since the above inductive limit is regular there exists a neighbourhood W of zero in B such that $\{\widetilde{u}_n\}$ is contained and bounded in $H^{\infty}(W, F)$. Extend u holomorphically to $0 \in D$ by setting $u(0) = \widetilde{u}(0) \circ \theta_{\gamma u(0)}^{-1}$. It remains to check that $\{u_n\}$ converges to u in $H(D, S_X^f)$.

For this consider the neighbourhood \widetilde{W} of $u(\partial((\delta/2)D))$ given by

$$\widetilde{W} = \bigcup \{ (\gamma u(\lambda) + x, [u(\lambda)]_{\gamma u(\lambda) + x}) : |\lambda| = \delta/2, \ x \in W \}.$$

Take n_0 such that $u_n(\partial((\delta/2)D)) \subset \widetilde{W}$ for all $n > n_0$. Now for each $|\lambda| = \delta/2$ and $n > n_0$ there exists a neighbourhood $W(n, \lambda)$ of $\gamma u(\lambda)$ in $\gamma u(\lambda) + W$ such that $u_n(\lambda)x = u(\lambda)x$ for all $x \in W(n, \lambda)$. Hence $u_n(\lambda)x = u(\lambda)x$ for all $x \in \gamma u(\lambda) + W$ and $|\lambda| = \delta/2$. This shows that the above equality holds for all $|\lambda| \leq \delta/2$. Hence $u_n \to u$ in $H(D, S_X^f)$.

(ii) Now by (i), S_X^f is pseudoconvex.

(iii) Since *B* has a Schauder basis, S_X^f is the domain of existence of a holomorphic function [5]. This implies that the canonical map $\alpha : \Omega \to S_X^f$ can be extended holomorphically to $\widehat{\Omega}$. Hence $\beta : S_X^f \to \widehat{\Omega}$ is a biholomorphism and $\widetilde{f}\beta^{-1}$ is a holomorphic extension of f to $\widehat{\Omega}$. The theorem is proved.

Remark. In the finite-dimensional case Theorem A was proved by Shiffman in [10]. Our proof is different.

Proof of Theorem B. By Theorem A it suffices to show that X satisfies the weak disc condition. Consider a sequence $\{f_n\} \subset H(D, X)$ converging to f in $H(D^*, X)$. By hypothesis $f \in H(D, X)$. Put

$$K = \bigcup_{n \ge 1} f_n(\partial((1/2)D)) \text{ and } Z = (\overline{K})_P^{\wedge}.$$

Since \overline{K} is compact and X is pseudoconvex, Z is also compact. Moreover, by the maximum principle for plurisubharmonic functions we have

$$\left(\bigcup_{n\geq 1} f_n((1/2)\partial D)\right)_P^{\wedge} \supseteq \bigcup_{n\geq 1} f_n((\delta/2)\overline{D}).$$

Hence

$$Z \supseteq \bigcup_{n \ge 1} f_n((1/2)\overline{D}).$$

To complete the proof of Theorem B it remains to show that Z has a hyperbolic neighbourhood W. Indeed, let d_W denote the hyperbolic distance of W. Then

$$d_W(f_n(0), f(0)) \le d_W(f_n(0), f_n(z)) + d_W(f_n(z), f(z)) + d_W(f(z), f(0)) \le 2d_W(0, z) + d_W(f_n(z), f(z))$$

and these inequalities imply that $f_n \to f$ in H(D, X).

By [1] it suffices to show that there exists a neighbourhood W of Z in X for which $\sup\{\|\sigma'(0)\| : \sigma \in H(D,W)\} < \infty$. Otherwise we can find a decreasing neighbourhood basis $\{W_n\}$ of Z such that for each $n \ge 1$ there exists a holomorphic map σ_n from D to W_n such that $\|\sigma'(0)\| \ge n$. As in [3] there exists a sequence $\{\beta_n\}$ of holomorphic maps from nD to X such that $\beta_n(nD) \subseteq \sigma_n(D), \|\beta'_n(0)\| = 1$ for $n \ge 1$ and $\{\beta_n\}$ is equicontinuous on every compact set in \mathbb{C} . Since $Z = \bigcap_{n\ge 1} W_n$, by the compactness of Z it follows that $\{\beta_n\}$ contains a subsequence $\{\alpha_n\}$ converging to a holomorphic map $\alpha : \mathbb{C} \to Z$. Obviously $\alpha \ne \text{const because } \|\alpha'(0)\| = 1$.

By hypothesis α can be extended to a holomorphic map $\widehat{\alpha}$ from $\mathbb{C}P^1$ into X. Now take a holomorphic function σ on D^* which cannot be extended to a holomorphic map from D into $\mathbb{C}P^1$. By hypothesis $\gamma = \widehat{\alpha}\sigma$ extends to a holomorphic map $\widehat{\gamma} : D \to X$. Since $\widehat{\alpha}$ is nonconstant, it follows that $\widehat{\alpha}$ is a finite map. Hence we can find a neighbourhood U of $\widehat{\gamma}(0)$ such that $\widehat{\gamma}^{-1}(U)$ is a bounded domain in \mathbb{C} . Thus σ extends holomorphically to $0 \in D$. This is impossible so the theorem is proved.

Remark. In the case when X is a holomorphically convex space with $\dim X < \infty$ such that every holomorphic map from D^* into X extends holomorphically to D, Theorem B was proved by D. D. Thai in [12].

Acknowledgements. The author would like to thank Professor N. V. Khue and Dr. B. D. Tac for suggestions that led to an improvement of the presentation of this note.

REFERENCES

- P. K. Ban, Banach hyperbolicity and the extension of holomorphic maps, Acta Math. Vietnam. 16 (1991), 187–200.
- T. J. Barth, Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc. 79 (1980), 556–558.
- [3] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219.
- F. Docquier und H. Grauert, Levisches Problem und Rungescher Satz f
 ür Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
- [5] L. Gruman et C. O. Kiselman, Le problème de Levi dans les espaces de Banach à base, C. R. Acad. Sci. Paris Sér. A 274 (1972), 1296–1298.

HOLOMORPHIC EXTENSION

- [6] A. Hirschowitz, Prolongement analytique en dimension infinie, Ann. Inst. Fourier (Grenoble) 22 (2) (1972), 255–292.
- S. M. Ivashkovich, Hartogs' phenomenon for holomorphically convex Kähler manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 866–873 (in Russian).
- [8] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Maps, Dekker, New York, 1970.
- P. Noverraz, Pseudo-convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Stud. 3, North-Holland, Amsterdam, 1973.
- [10] B. Shiffman, Extension of holomorphic maps into Hermitian manifolds, Math. Ann. 194 (1971), 249–258.
- B. D. Tac, Extending holomorphic maps in infinite dimensions, Ann. Polon. Math. 54 (1991), 241–253.
- [12] D. D. Thai, On the D^{*}-extension and the Hartogs extension, Ann. Scuola Norm. Sup. Pisa 18 (1991), 13–38.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL INSTITUTE HANOI I HANOI, VIETNAM

Reçu par la Rédaction le 5.8.1992