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CURVATURE PROPERTIES OF CARTAN HYPERSURFACES

BY
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1. Introduction. Every Einsteinian as well as every conformally flat
hypersurface M in M™*1(c), n > 4, is a pseudosymmetric manifold ([23],
Proposition 3.2). Thus every quasi-umbilical hypersurface M in M"*1(c),
n > 4, is pseudosymmetric. An n-dimensional hypersurface M, dim M > 3,
is called quasi-umbilical if M has at every point a principal curvature of
multiplicity > n — 1. In [25] (Theorem 1) it was shown that every hyper-
surface M in M"*1(c), n > 3, having at every point at most two distinct
principal curvatures is also pseudosymmetric. A necessary and sufficient
condition for hypersurfaces in M™"*1(c), n > 4, to be pseudosymmetric
will be presented in the subsequent paper [17]. Pseudosymmetric hypersur-
faces in M*(c) were considered in [25]. A Cartan hypersurface in a sphere
S"*+1(¢c) is a compact hypersurface with principal curvatures —(3¢)*/2, 0,
(3¢)'/? with the same multiplicity ([27]). Thus every Cartan hypersurface
is minimal. Cartan hypersurfaces only exist when n = 3,6,12,24. These
hypersurfaces were discovered by E. Cartan in his work about isoparamet-
ric hypersurfaces, i.e. hypersurfaces with constant principal curvatures, in
spaces of constant curvature ([2], [3]). We refer to [4] (Section 3) for a review
on isoparametric hypersurfaces. In this note we prove that 3-dimensional
Cartan hypersurfaces are not semisymmetric pseudosymmetric manifolds.
Further, we show that Cartan hypersurfaces of dimensions 6, 12 or 24 are
not pseudosymmetric. However, these hypersurfaces realize a weaker con-
dition of pseudosymmetry type. Namely, we prove that such hypersurfaces
are Ricci-pseudosymmetric. We note that every pseudosymmetric manifold
is Ricci-pseudosymmetric. The converse statement is not true ([22], [13]).
In addition, we verify that Cartan hypersurfaces of dimensions 6, 12 or 24
have non-pseudosymmetric Weyl tensor.

2. Conditions of pseudosymmetry type. Let (M, g) be a connected
n-dimensional, n > 3, semi-Riemannian manifold of class C*°. We define

on M the endomorphisms R(X,Y) and X AY by
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RX,Y)Z=[Vx,.VY|Z-Vixy1Z, (XAY)Z=g(Y,2)X —g(X,Z2)Y,
respectively, where V is the Levi-Civita connection of (M, g) and X,Y, Z €
Z(M), Z(M) being the Lie algebra of vector fields on M. We define the
Riemann—Christoffel curvature tensor R and the concircular tensor Z(R)
of (M,g) by R(X1,...,X4) = g(R(X1, X3) X3, X4), Z(R) = R — ;551G
respectively, where k is the scalar curvature of (M, g) and G is given by
G(Xy,...,X4) = g((X1 AN X9)X3,X4). For a (0,k)-tensor field T on M,

k > 1, we define the (0, k + 2)-tensors R - T and Q(g,T’) by
(R-T)(X1,..., X X,Y)

= —T(R(X,Y)X1, Xo,..., X)) — ... = T(X1,..., Xp_1, R(X,Y)Xp),
Q(g, T)(X1,..., Xi; X,Y)

=TUX AY)X1, Xoo o, X)) 4 oo+ T(X1, o, X1, (X AY)X).

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([19]) if
at every point of M the following condition is satisfied:

(*)  the tensors R - R and (g, R) are linearly dependent.
The manifold (M, g) is pseudosymmetric if and only if

(1) R-R=LrQ(g,R)

holds on the set Ugr = {x € M | Z(R) # 0 at x}, where L is some function
on Ug. It is clear that any semisymmetric manifold (R - R = 0, [28]) is
pseudosymmetric. The condition (x) arose in the study of totally umbilical
submanifolds of semisymmetric manifolds ([1]) as well as when considering
geodesic mappings of semisymmetric manifolds (e.g. [21], [6]). There exist
many examples of pseudosymmetric manifolds which are not semisymmetric
([19], [21], [12], [16]).

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric
([22], [13]) if at every point of M the following condition is satisfied:

(%)  the tensors R - S and Q(g,S) are linearly dependent.
The manifold (M, g) is Ricci-pseudosymmetric if and only if

(2) R-S=LsQ(g,5)

holds on the set Us = {x € M | S — £g # 0 at o}, where Lg is some
function on Ug. It is clear that if at a point z € Upg the relation (1) is
satisfied then also (2) holds at x. The converse statement is not true. E.g.
every warped product My xgp My, dimM; =1, dimMs; =n—1 > 3, of a
manifold M; and a not pseudosymmetric Einstein manifold Ms is a non-
pseudosymmetric Ricci-pseudosymmetric manifold (cf. [22], Corollary 3.2
and [19], Theorem 4.1).
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For any X,Y € Z(M) we define the endomorphism C(X,Y) by

C(X,Y)=R(X,Y) - i

(n—1)(n—2)

(X ASY +SXAY) + X MY,

n—2
where the Ricci operator S of (M, g) is defined by S(X,Y) = g(X, SY). We
denote by C the Weyl conformal curvature tensor of (M, g), C(X1,...,X4)

= g(C(X1,X2)X3,X4). Now we define the (0,6)-tensor C - C' by
(C : C)(Xla c Xy X Y)

= —C(O(X,Y)X1, X2, X3,Xy) — ... — C(X1, X2, X3,0(X,Y) Xy).

A semi-Riemannian manifold (M, g), dim M > 4, is said to be a manifold
with pseudosymmetric Weyl tensor ([24]) if at every point of M the following
condition is satisfied:

(#xx)  the tensors C' - C' and Q(g,C) are linearly dependent.

The manifold (M, g) is a manifold with pseudosymmetric Weyl tensor if and
only if

(3) C-C=LcQg,C)

holds on the set Uc = {x € M | C # 0 at x}, where L¢ is some function
on Uc. The condition (x#%) arose in the study of 4-dimensional warped
products ([15]). Namely, in [15] (Theorem 2) it was proved that at every
point of a warped product M; X p Ma, with dim M; = dim My = 2, (skx) is
satisfied. Many examples of manifolds satisfying (s#x*) are presented in [8].
For instance, the Cartesian product of two manifolds of constant curvature
is a manifold realizing (xxx). Recently, warped products satisfying ()
were considered in [24]. In [8] it was shown that the classes of manifolds re-
alizing (%) and (**%) do not coincide. However, there exist pseudosymmetric
manifolds satisfying (3), e.g. Einsteinian pseudosymmetric manifolds ([8],
Theorem 3.1). We note that (x+x) is invariant under conformal deformations
of the metric tensor g.

Remark 1. In [16] an example is presented of a pseudosymmetric
warped product manifold SP Xz S" 7P p > 2, n—p > 2, with pseudosymmet-
ric Weyl tensor. This manifold cannot be realized as a hypersurface isomet-
rically immersed in a manifold of constant curvature ([16], Theorem 4.1).

Remark 2. Applying Theorem 4.5 of [28] and Theorem 4.1 of [8] in
the Corollary of [26] we conclude that every minimal hypersurface imbedded
in an (n + 1)-dimensional sphere, n > 4, with two principal curvatures of
multiplicities > 2 is a semisymmetric manifold with pseudosymmetric Weyl
tensor.
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Further, we define the (0, 6)-tensor Q(S, R) by

Q(S, R)(Xl, e ,X4;X, Y)
= R(X Ag Y)X1, X0, X3, X))+ ...+ R(X1, X2, X3, (X Ag Y)Xy),

where X Ag Y is the endomorphism defined by (X AgY)Z = S(Y,Z)X —
S(X,2Z)Y.

A semi-Riemannian manifold (M, g) is said to be Ricci-generalized pseu-
dosymmetric [5] if at every point of M the following condition is satisfied:

(##%%)  the tensors R- R and Q(S, R) are linearly dependent.

A very important subclass of Ricci-generalized pseudosymmetric mani-
folds is formed by the manifolds satisfying ([20], [5], [7])

(4) R-R=Q(S,R).

Any 3-manifold (M, g) satisfies (4) ([14], Theorem 3.1). Moreover, any hy-
persurface M isometrically immersed in an (n + 1)-dimensional Euclidean
space E"t1 n > 4 satisfies (4) ([23], Corollary 3.1).

As was proved in [23], at every point of a hypersurface M isometrically
immersed in a manifold of constant curvature M"1(c), n > 4, the following
condition is satisfied:

(%)  the tensors R- R — Q(S, R) and Q(g,C) are linearly dependent.

More precisely, in [23] (Proposition 3.1) it was proved that every hypersur-
face M isometrically immersed in a space of constant curvature M"*1(c),
n > 4, satisfies the equality

where % is the scalar curvature of M"!(c) and R, S and C are the Riemann—
Christoffel curvature tensor, the Ricci tensor and the Weyl tensor of M,
respectively. Using Theorem 3.1 of [14] which was mentioned above and
the fact that the Weyl tensor of any 3-dimensional manifold vanishes iden-
tically, we conclude immediately that (xkxx) is trivially satisfied on any
3-dimensional semi-Riemannian manifold. Recently, warped products real-
izing (s**%) were considered in [9]. For instance, in [9] it was shown that
every warped product M7 X p Mo with dim M; = 1 and dim M, = 3, satisfies
(#xxx). The relations (x)—(skskx) are called conditions of pseudosymmetry
type. We refer to [18] and [10] for reviews on semi-Riemannian manifolds
satisfying such conditions. A hypersurface satisfying a curvature conditon
of pseudosymmetry type is said to be a hypersurface of pseudosymmetry

type [10].

n—2
1
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3. Main results. The Gauss equation of a hypersurface M isomet-
rically immersed in a Riemannian space of constant curvature M"™*(c),
n > 3, can be written in the form

_
n(n+1)
+ H(X1, X4)H (X2, X3) — H(X1, X3)H (X2, X4),

where K is the scalar curvature of the ambient space, H is the second fun-
damental form of M in M"!(c), R is the Riemann—Christoffel curvature
tensor of M, G is the (0, 4)-tensor corresponding to the metric tensor g of
M and X, Xo, X3, X4 are vector fields tangent to M. Further, we denote
by S and s the Ricci tensor and the scalar curvature of M, respectively.

6) R(Xi,...,X4) = G(X1,...,X4)

PROPOSITION 1. Let M be a hypersurface in M™*i(c), n = 3p, p > 1.
Moreover, suppose M has at a point x eigenvalues —X,0 and A\, where \ €
R — {0}, with the same multiplicity.

(i) If p > 1 then

1 ~
(7) R-S= mHQ(QaS)
holds at x.
(ii) If p=1 then
1 ~
(8) R-R= mHQ(QaR)

holds at x.
(iii) If p > 1 then the tensors R- R and Q(g, R) as well as the tensors
C-C and Q(g,C) are linearly independent at x and moreover the equality

n—2(11 2
‘R — = _ il )2
) ROR- QSR = 23 (1n+ 30 Q0.)
holds at x.
Proof. (i) We can choose an orthonormal basis Ei, ..., E, at x such
that

H(Eq, Ey) = Hop = —Ag(Ea, Ep) = —Ada,
(10) H(Ew, Eg) = Hop = 09(Eq, Eg) = 0,
H(E,,Es) = Hys = \g(E;, Es) = Ay,
where a,b,c,d € {1,...,p}, a,B,7,0 € {p+1,...,2p}, r,s,t,u € {2p +

1,...,n}. For a (0,k)-tensor T" at  we put Thijkim... = T(En, E;, E;, Ey,
E,, E,,,...), where h,i,j,k,l,m € {1,2,...,n}. Thus (6) takes the form

1
11 Ry = HypHy: — Hp: H; _
(11) hijk hkd1;; hj ik + n(n+ 1)

HGhijk-
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Now we have

n—1
12 Spr = —H? —K
(12) hk hk T n(n+ 1)/€ghk7
2n n—1
13 =-—"-)? ,
(13) " 3 * nt1
(14) 9 Hyi Spj = —Hp, + —— ! KHpp,
1~ K] hk (7'L+ 1) )

where H?, = ¢“Hp;Hy;, Hp, = g”HZ Hyj and g = §" are the com-
ponents of the tensor g—! with respect to the given basis at z. Since
H}, = N Hpy, (14) reduces to

| n—1
UHpiSki = =N+ ———F | Hpp.
9 HpiOk;j ( +n(n+1)l€> hk

Using this and (11) we find

"™ S Romijr = )E(Shkgij — Shjgik)

n(n+1
v < L M%) (HpHy; — Hy Hy)
n(n+1) * I
which yields (7).
(ii) This assertion is a consequence of Lemma 1.2 of [12] (see also Lemma
2 of [20]) and the fact that (7) holds at x.
(iii) Using (10), (11) and the definitions of R - R and Q(g, R) we get

1

—K « Gac’
n(n—i—l)ﬁg p*rdab

R- Raabcdﬁ = )\2

1
* Llcabrs =2 2= A2 ——k rsUca
R Reaprsa = 2A < AT+ +1>/€)9 Geabd,

n(n
Q(ga R)aabcdﬁ - )‘2ga6GdabCu Q(g’ R)cabrsd - _2)\29rchabd-

From these equalities it follows that the tensors R-R and Q(g, R) are linearly
independent at x. Further, using again (10) and (11) we can easily verify
that the following components of the Weyl tensor C' of M are non-zero at x:

C’a,bcd = TlGabcd7 Caaﬂb = QGaaﬁba C’r‘stu = TlGrstua
szrsb = (7—1 - 2>\2)Garsb7 Ca,@’y5 = 7—2Ga,6’y57 Craﬁs = QGraﬁs>

where

1 1 1
== () = — K
o= 5\ 47, T=o—oho R

1 1
T = m(ﬂ)\Q + T) and T9 = m'r.
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Now, using the definitions of the tensors C - C' and Q(g,C) we get
n—1 n—1
C'Caac = )\2 aGaca 7Caac = )\QQGGC7
bedp = 5 A" 09asGlaab Q(g, Claabeas = - —5 A JapGlay
C- Crabcds = 2A2 (Tl - 2>\2)grsGdabm Q(g7 C)rabcds - 2)\29rsGdabc-

From these equalities it follows that the tensors C-C and Q(g, C) are linearly
independent at x. Finally, the relation (5), by (13), turns into (9). Our
proposition is thus proved.

As a consequence of the proposition above we obtain the following.

THEOREM 1. Every Cartan hypersurface M in S"t1(c), n = 6,12,24, is
a non-pseudosymmetric Ricci-pseudosymmetric manifold with non-pseudo-
symmetric Weyl tensor. Moreover, the condition

ReR- Qs R =21 (2430 Q.0)

1

holds on M. Furthermore, every Cartan hypersurface M in S*(c) is a
non-semisymmetric pseudosymmetric manifold.

Remark 3. From the results presented in [11] (see Theorems 1 and 2)
we conclude that, at every point of a hypersurface M in E**!, n > 4, at
which the tensor R-S is non-zero, the conditions (x) and (#x*) are equivalent.
Proposition 1 states that this is not the case when the ambient space is a
space of non-zero constant curvature.
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