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CURVATURE PROPERTIES OF CARTAN HYPERSURFACES
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1. Introduction. Every Einsteinian as well as every conformally flat
hypersurface M in Mn+1(c), n ≥ 4, is a pseudosymmetric manifold ([23],
Proposition 3.2). Thus every quasi-umbilical hypersurface M in Mn+1(c),
n ≥ 4, is pseudosymmetric. An n-dimensional hypersurface M , dim M ≥ 3,
is called quasi-umbilical if M has at every point a principal curvature of
multiplicity ≥ n − 1. In [25] (Theorem 1) it was shown that every hyper-
surface M in Mn+1(c), n ≥ 3, having at every point at most two distinct
principal curvatures is also pseudosymmetric. A necessary and sufficient
condition for hypersurfaces in Mn+1(c), n ≥ 4, to be pseudosymmetric
will be presented in the subsequent paper [17]. Pseudosymmetric hypersur-
faces in M4(c) were considered in [25]. A Cartan hypersurface in a sphere
Sn+1(c) is a compact hypersurface with principal curvatures −(3c)1/2, 0,
(3c)1/2 with the same multiplicity ([27]). Thus every Cartan hypersurface
is minimal. Cartan hypersurfaces only exist when n = 3, 6, 12, 24. These
hypersurfaces were discovered by E. Cartan in his work about isoparamet-
ric hypersurfaces, i.e. hypersurfaces with constant principal curvatures, in
spaces of constant curvature ([2], [3]). We refer to [4] (Section 3) for a review
on isoparametric hypersurfaces. In this note we prove that 3-dimensional
Cartan hypersurfaces are not semisymmetric pseudosymmetric manifolds.
Further, we show that Cartan hypersurfaces of dimensions 6, 12 or 24 are
not pseudosymmetric. However, these hypersurfaces realize a weaker con-
dition of pseudosymmetry type. Namely, we prove that such hypersurfaces
are Ricci-pseudosymmetric. We note that every pseudosymmetric manifold
is Ricci-pseudosymmetric. The converse statement is not true ([22], [13]).
In addition, we verify that Cartan hypersurfaces of dimensions 6, 12 or 24
have non-pseudosymmetric Weyl tensor.

2. Conditions of pseudosymmetry type. Let (M, g) be a connected
n-dimensional, n ≥ 3, semi-Riemannian manifold of class C∞. We define
on M the endomorphisms R̃(X, Y ) and X ∧ Y by
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R̃(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, (X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y,

respectively, where ∇ is the Levi-Civita connection of (M, g) and X, Y, Z ∈
Ξ(M), Ξ(M) being the Lie algebra of vector fields on M . We define the
Riemann–Christoffel curvature tensor R and the concircular tensor Z(R)
of (M, g) by R(X1, . . . , X4) = g(R̃(X1, X2)X3, X4), Z(R) = R − κ

n(n−1)G

respectively, where κ is the scalar curvature of (M, g) and G is given by
G(X1, . . . , X4) = g((X1 ∧ X2)X3, X4). For a (0, k)-tensor field T on M ,
k ≥ 1, we define the (0, k + 2)-tensors R · T and Q(g, T ) by

(R · T )(X1, . . . , Xk;X, Y )

= −T (R̃(X, Y )X1, X2, . . . , Xk)− . . .− T (X1, . . . , Xk−1, R̃(X, Y )Xk),
Q(g, T )(X1, . . . , Xk;X, Y )

= T ((X ∧ Y )X1, X2, . . . , Xk) + . . . + T (X1, . . . , Xk−1, (X ∧ Y )Xk).

A semi-Riemannian manifold (M, g) is said to be pseudosymmetric ([19]) if
at every point of M the following condition is satisfied:

(∗) the tensors R ·R and Q(g,R) are linearly dependent.

The manifold (M, g) is pseudosymmetric if and only if

(1) R ·R = LRQ(g,R)

holds on the set UR = {x ∈ M | Z(R) 6= 0 at x}, where LR is some function
on UR. It is clear that any semisymmetric manifold (R · R = 0, [28]) is
pseudosymmetric. The condition (∗) arose in the study of totally umbilical
submanifolds of semisymmetric manifolds ([1]) as well as when considering
geodesic mappings of semisymmetric manifolds (e.g. [21], [6]). There exist
many examples of pseudosymmetric manifolds which are not semisymmetric
([19], [21], [12], [16]).

A semi-Riemannian manifold (M, g) is said to be Ricci-pseudosymmetric
([22], [13]) if at every point of M the following condition is satisfied:

(∗∗) the tensors R · S and Q(g, S) are linearly dependent.

The manifold (M, g) is Ricci-pseudosymmetric if and only if

(2) R · S = LSQ(g, S)

holds on the set US = {x ∈ M | S − κ
ng 6= 0 at x}, where LS is some

function on US . It is clear that if at a point x ∈ UR the relation (1) is
satisfied then also (2) holds at x. The converse statement is not true. E.g.
every warped product M1 ×F M2, dim M1 = 1, dim M2 = n − 1 ≥ 3, of a
manifold M1 and a not pseudosymmetric Einstein manifold M2 is a non-
pseudosymmetric Ricci-pseudosymmetric manifold (cf. [22], Corollary 3.2
and [19], Theorem 4.1).
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For any X, Y ∈ Ξ(M) we define the endomorphism C̃(X, Y ) by

C̃(X, Y ) = R̃(X, Y )− 1
n− 2

(X ∧ S̃Y + S̃X ∧ Y ) +
κ

(n− 1)(n− 2)
X ∧ Y,

where the Ricci operator S̃ of (M, g) is defined by S(X, Y ) = g(X, S̃Y ). We
denote by C the Weyl conformal curvature tensor of (M, g), C(X1, . . . , X4)
= g(C̃(X1, X2)X3, X4). Now we define the (0, 6)-tensor C · C by

(C · C)(X1, . . . , X4;X, Y )

= −C(C̃(X, Y )X1, X2, X3, X4)− . . .− C(X1, X2, X3, C̃(X, Y )X4).

A semi-Riemannian manifold (M, g), dim M ≥ 4, is said to be a manifold
with pseudosymmetric Weyl tensor ([24]) if at every point of M the following
condition is satisfied:

(∗∗∗) the tensors C · C and Q(g, C) are linearly dependent.

The manifold (M, g) is a manifold with pseudosymmetric Weyl tensor if and
only if

(3) C · C = LCQ(g, C)

holds on the set UC = {x ∈ M | C 6= 0 at x}, where LC is some function
on UC . The condition (∗∗∗) arose in the study of 4-dimensional warped
products ([15]). Namely, in [15] (Theorem 2) it was proved that at every
point of a warped product M1 ×F M2, with dim M1 = dim M2 = 2, (∗∗∗) is
satisfied. Many examples of manifolds satisfying (∗∗∗) are presented in [8].
For instance, the Cartesian product of two manifolds of constant curvature
is a manifold realizing (∗∗∗). Recently, warped products satisfying (∗∗∗)
were considered in [24]. In [8] it was shown that the classes of manifolds re-
alizing (∗) and (∗∗∗) do not coincide. However, there exist pseudosymmetric
manifolds satisfying (3), e.g. Einsteinian pseudosymmetric manifolds ([8],
Theorem 3.1). We note that (∗∗∗) is invariant under conformal deformations
of the metric tensor g.

R e m a r k 1. In [16] an example is presented of a pseudosymmetric
warped product manifold Sp×F Sn−p, p ≥ 2, n−p ≥ 2, with pseudosymmet-
ric Weyl tensor. This manifold cannot be realized as a hypersurface isomet-
rically immersed in a manifold of constant curvature ([16], Theorem 4.1).

R e m a r k 2. Applying Theorem 4.5 of [28] and Theorem 4.1 of [8] in
the Corollary of [26] we conclude that every minimal hypersurface imbedded
in an (n + 1)-dimensional sphere, n ≥ 4, with two principal curvatures of
multiplicities ≥ 2 is a semisymmetric manifold with pseudosymmetric Weyl
tensor.
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Further, we define the (0, 6)-tensor Q(S, R) by

Q(S, R)(X1, . . . , X4;X, Y )
= R((X ∧S Y )X1, X2, X3, X4) + . . . + R(X1, X2, X3, (X ∧S Y )X4),

where X ∧S Y is the endomorphism defined by (X ∧S Y )Z = S(Y, Z)X −
S(X, Z)Y .

A semi-Riemannian manifold (M, g) is said to be Ricci-generalized pseu-
dosymmetric [5] if at every point of M the following condition is satisfied:

(∗∗∗∗) the tensors R ·R and Q(S, R) are linearly dependent.

A very important subclass of Ricci-generalized pseudosymmetric mani-
folds is formed by the manifolds satisfying ([20], [5], [7])

(4) R ·R = Q(S, R).

Any 3-manifold (M, g) satisfies (4) ([14], Theorem 3.1). Moreover, any hy-
persurface M isometrically immersed in an (n + 1)-dimensional Euclidean
space En+1, n ≥ 4, satisfies (4) ([23], Corollary 3.1).

As was proved in [23], at every point of a hypersurface M isometrically
immersed in a manifold of constant curvature Mn+1(c), n ≥ 4, the following
condition is satisfied:

(∗∗∗∗) the tensors R ·R−Q(S, R) and Q(g, C) are linearly dependent.

More precisely, in [23] (Proposition 3.1) it was proved that every hypersur-
face M isometrically immersed in a space of constant curvature Mn+1(c),
n ≥ 4, satisfies the equality

(5) R ·R−Q(S, R) = − n− 2
n(n + 1)

κ̃Q(g, C),

where κ̃ is the scalar curvature of Mn+1(c) and R, S and C are the Riemann–
Christoffel curvature tensor, the Ricci tensor and the Weyl tensor of M ,
respectively. Using Theorem 3.1 of [14] which was mentioned above and
the fact that the Weyl tensor of any 3-dimensional manifold vanishes iden-
tically, we conclude immediately that (∗∗∗∗) is trivially satisfied on any
3-dimensional semi-Riemannian manifold. Recently, warped products real-
izing (∗∗∗∗) were considered in [9]. For instance, in [9] it was shown that
every warped product M1×F M2 with dim M1 = 1 and dim M2 = 3, satisfies
(∗∗∗∗). The relations (∗)–(∗∗∗∗) are called conditions of pseudosymmetry
type. We refer to [18] and [10] for reviews on semi-Riemannian manifolds
satisfying such conditions. A hypersurface satisfying a curvature conditon
of pseudosymmetry type is said to be a hypersurface of pseudosymmetry
type [10].
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3. Main results. The Gauss equation of a hypersurface M isomet-
rically immersed in a Riemannian space of constant curvature Mn+1(c),
n ≥ 3, can be written in the form

R(X1, . . . , X4) =
κ̃

n(n + 1)
G(X1, . . . , X4)(6)

+ H(X1, X4)H(X2, X3)−H(X1, X3)H(X2, X4),

where κ̃ is the scalar curvature of the ambient space, H is the second fun-
damental form of M in Mn+1(c), R is the Riemann–Christoffel curvature
tensor of M , G is the (0, 4)-tensor corresponding to the metric tensor g of
M and X1, X2, X3, X4 are vector fields tangent to M . Further, we denote
by S and κ the Ricci tensor and the scalar curvature of M , respectively.

Proposition 1. Let M be a hypersurface in Mn+1(c), n = 3p, p ≥ 1.
Moreover , suppose M has at a point x eigenvalues −λ, 0 and λ, where λ ∈
R− {0}, with the same multiplicity.

(i) If p ≥ 1 then

(7) R · S =
1

n(n + 1)
κ̃Q(g, S)

holds at x.
(ii) If p = 1 then

(8) R ·R =
1

n(n + 1)
κ̃Q(g,R)

holds at x.
(iii) If p > 1 then the tensors R · R and Q(g,R) as well as the tensors

C · C and Q(g, C) are linearly independent at x and moreover the equality

(9) R ·R−Q(S, R) = −n− 2
n− 1

(
1
n

κ +
2
3
λ2

)
Q(g, C)

holds at x.

P r o o f. (i) We can choose an orthonormal basis E1, . . . , En at x such
that

(10)
H(Ea, Eb) = Hab = −λg(Ea, Eb) = −λδab,

H(Eα, Eβ) = Hαβ = 0g(Eα, Eβ) = 0,

H(Er, Es) = Hrs = λg(Er, Es) = λδrs,

where a, b, c, d ∈ {1, . . . , p}, α, β, γ, δ ∈ {p + 1, . . . , 2p}, r, s, t, u ∈ {2p +
1, . . . , n}. For a (0, k)-tensor T at x we put Thijklm... = T (Eh, Ei, Ej , Ek,
El, Em, . . .), where h, i, j, k, l, m ∈ {1, 2, . . . , n}. Thus (6) takes the form

(11) Rhijk = HhkHij −HhjHik +
1

n(n + 1)
κ̃Ghijk.
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Now we have

Shk = −H2
hk +

n− 1
n(n + 1)

κ̃ghk,(12)

κ = −2n

3
λ2 +

n− 1
n + 1

κ̃,(13)

gijHhiSkj = −H3
hk +

n− 1
n(n + 1)

κ̃Hhk,(14)

where H2
hk = gijHhiHkj , H3

hk = gijH2
hiHkj and gij = δij are the com-

ponents of the tensor g−1 with respect to the given basis at x. Since
H3

hk = λ2Hhk, (14) reduces to

gijHhiSkj =
(
− λ2 +

n− 1
n(n + 1)

κ̃

)
Hhk.

Using this and (11) we find

glmShlRmijk =
1

n(n + 1)
κ̃(Shkgij − Shjgik)

+
(
− λ2 +

n− 1
n(n + 1)

κ̃

)
(HhkHij −HhjHik),

which yields (7).
(ii) This assertion is a consequence of Lemma 1.2 of [12] (see also Lemma

2 of [20]) and the fact that (7) holds at x.
(iii) Using (10), (11) and the definitions of R ·R and Q(g,R) we get

R ·Rαabcdβ = λ2 1
n(n + 1)

κ̃gαβGdabc,

R ·Rcabrsd = 2λ2

(
− λ2 +

1
n(n + 1)

κ̃

)
grsGcabd,

Q(g,R)αabcdβ = λ2gαβGdabc, Q(g,R)cabrsd = −2λ2grsGcabd.

From these equalities it follows that the tensors R·R and Q(g,R) are linearly
independent at x. Further, using again (10) and (11) we can easily verify
that the following components of the Weyl tensor C of M are non-zero at x:

Cabcd = τ1Gabcd, Caαβb = %Gaαβb, Crstu = τ1Grstu,

Carsb = (τ1 − 2λ2)Garsb, Cαβγδ = τ2Gαβγδ, Crαβs = %Grαβs,

where

% =
1

n− 2
(λ2 + τ), τ =

1
n− 1

κ− 1
n + 1

κ̃,

τ1 =
1

n− 2
(nλ2 + τ) and τ2 =

1
n− 2

τ.
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Now, using the definitions of the tensors C · C and Q(g, C) we get

C · Cαabcdβ =
n− 1
n− 2

λ2%gαβGdabc, Q(g, C)αabcdβ =
n− 1
n− 2

λ2gαβGdabc,

C · Crabcds = 2λ2(τ1 − 2λ2)grsGdabc, Q(g, C)rabcds = 2λ2grsGdabc.

From these equalities it follows that the tensors C ·C and Q(g, C) are linearly
independent at x. Finally, the relation (5), by (13), turns into (9). Our
proposition is thus proved.

As a consequence of the proposition above we obtain the following.

Theorem 1. Every Cartan hypersurface M in Sn+1(c), n = 6, 12, 24, is
a non-pseudosymmetric Ricci-pseudosymmetric manifold with non-pseudo-
symmetric Weyl tensor. Moreover , the condition

R ·R−Q(S, R) = −n− 2
n− 1

(
κ

n
+

2
3
λ2

)
Q(g, C)

holds on M . Furthermore, every Cartan hypersurface M in S4(c) is a
non-semisymmetric pseudosymmetric manifold.

R e m a r k 3. From the results presented in [11] (see Theorems 1 and 2)
we conclude that, at every point of a hypersurface M in En+1, n ≥ 4, at
which the tensor R ·S is non-zero, the conditions (∗) and (∗∗) are equivalent.
Proposition 1 states that this is not the case when the ambient space is a
space of non-zero constant curvature.
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