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UNIQUENESS FOR A CLASS OF COOPERATIVE
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

BY

JANUSZ M I E R C Z Y Ń S K I (WROC LAW)

Let

(1) ẋ = f(t, x)

be a system of ordinary differential equations, with f = (f1, . . . , fn) : I ×U
→ Rn, where I is an open interval in R and U ⊂ Rn = {(x1, . . . , xn)}
is an open subset. Recall that the function f satisfies the Carathéodory
conditions if the following hold:

(C1) f(t, ·) is continuous for each fixed t ∈ I.
(C2) f(·, x) is measurable for each fixed x ∈ U .
(C3) There exists an integrable function m : I → [0,∞) such that

|f(t, x)| ≤ m(t) for each (t, x) ∈ I × U .

It is well known (see e.g. Thm. 1.1 on p. 43 in [1]) that if f satisfies the
Carathéodory conditions then for each (t0, x0) ∈ I × U there exists at least
one solution to the initial value problem

(2)
ẋ = f(t, x),
x(t0) = x0

defined on an open interval J ⊂ I containing t0. (Of course, here by solution
we understand an absolutely continuous function satisfying (1) a.e.)

The Carathéodory conditions alone do not imply uniqueness of solutions
to (2).

System (1) is called cooperative (or quasimonotone) if the following is
satisfied:

(A1) For all i 6= j the function fi is nondecreasing with respect to xj .

Our next assumption will be:

(A2)
∑n

i=1 fi(t, x) = 0 for all t ∈ I, x ∈ U .
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Theorem. Let f satisfy (C1) through (C3) along with (A1) and (A2).
Then for any (t0, x0) ∈ I×U there exists precisely one solution to the initial
value problem (2).

Before proceeding with the proof of the Theorem let us introduce the
following notation: for x, y ∈ U we write x ≤ y if xi ≤ yi for each i, and
x < y if x ≤ y and x 6= y.

Let (t0, x0) be fixed. First of all, notice that the result is a local one,
so we may assume U to be an open parallelepiped in Rn. This enables
us to avoid pathologies described in [12] and in Chapter II of [10]. By an
argument similar to that used in the proof of Thm. 1.2 on pp. 45–47 in [1]
(compare also Thm. 16.2 in [10]) there exists a maximum solution xmax(·)
of (2) such that for any solution x(·) of (2) the inequality x(t) ≤ xmax(t)
holds for all t in the common interval of existence. Analogously, there exists
a minimum solution xmin(·) of (2).

Notice that by (A2) we have
n∑

i=1

d

dt
(xmax)i(t) =

n∑
i=1

d

dt
(xmin)i(t) = 0

for a.e. t in their respective intervals of existence, so the absolutely contin-
uous real functions Σmax :=

∑n
i=1(xmax)i and Σmin :=

∑n
i=1(xmin)i have

their derivatives equal to 0 a.e. This implies Σmin(t) = Σmax(t) as long
as both are defined. Suppose to the contrary that for some τ one has
xmin(τ) < xmax(τ). From this it follows that Σmin(τ) < Σmax(τ). The
contradiction obtained proves the Theorem.

Concluding remarks. 1. Condition (A2) can be generalized to:

(A2′) There exists a C1 first integral H : U → R for (1) such that
(∂H/∂xi)(x) > 0 for each x ∈ U (see [6], [7], or [5]).

The proof remains much the same.

2. In many papers dealing with cooperative systems satisfying (A2)
or (A2′) some additional conditions have been assumed guaranteeing the
uniqueness of solutions (see [8], [9], [11]). In the light of our Theorem those
hypotheses are redundant.

3. We have the continuous dependence of the unique solution on the
initial value (compare pp. 58–60 in [1]). Therefore, whenever U is convex
and system (1) is autonomous, it generates a continuous local flow that is
monotone (for the definition and properties of monotone flows the reader is
referred to [4], see also [2], [3]).
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[6] J. Mierczy ń sk i, Strictly cooperative systems with a first integral , SIAM J. Math.
Anal. 18 (1987), 642–646.

[7] —, A class of strongly cooperative systems without compactness, Colloq. Math. 62
(1991), 43–47.

[8] F. Nakaj ima, Periodic time-dependent gross-substitute systems, SIAM J. Appl.
Math. 36 (1979), 421–427.

[9] G. R. Se l l and F. Nakaj ima, Almost periodic gross-substitute dynamical systems,
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