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SMALL SETS WITH RESPECT TO
CERTAIN CLASSES OF TOPOLOGIES

BY

A. B. KHARAZ I SHV IL I (TBILISI)

Let E be a non-empty set and let T be a topology on E. We denote by
the symbol K(T ) the σ-ideal of all first category sets in E with respect to
the topology T . We denote by the symbol B(T ) the family of all subsets of
E which have the Baire property with respect to the topology T .

Let Γ be some group of transformations of the set E. Let T (E,Γ ) be
the class of all topologies T on E which satisfy the following conditions:

1) T is a Baire space topology;
2) the Suslin number c(T ) is equal to ω;
3) the group Γ preserves the category and the Baire property, i.e.

(∀g ∈ Γ )(∀X ∈ K(T ))(g(X) ∈ K(T )),
(∀g ∈ Γ )(∀X ∈ B(T ))(g(X) ∈ B(T )).

Example 1. Let (E, T ) be a non-empty Baire topological space with
c(T ) = ω and let Γ be some group of homeomorphisms from E onto E.
Then it is clear that T ∈ T (E,Γ ).

Let E be a non-empty set, let Γ be some group of transformations of
E and let X be a subset of E. We say that X is a first category set with
respect to the class T (E,Γ ) if

(∀T ∈ T (E,Γ ))(∃T ′ ∈ T (E,Γ ))(T ⊆ T ′ & K(T ) ⊆ K(T ′) & X ∈ K(T ′)).

We shall denote by the symbol K(T (E,Γ )) the family of all subsets of E
which are first category sets with respect to the class T (E,Γ ).

The following proposition is an immediate corollary from the definition
of the family K(T (E,Γ )).

Proposition 1. K(T (E,Γ )) is a proper ideal in the power set Boolean
algebra of E.
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Further we shall consider some situations when this ideal is not σ-
additive. Moreover, we shall see that in some natural situations there ex-
ists a countable family of sets from K(T (E,Γ )) which is a covering of the
set E.

Obviously, the following question arises: how can one characterize the
sets from the ideal K(T (E,Γ )) only in terms of the pair (E,Γ )? The next
proposition gives one of possible characterizations of sets belonging to the
ideal K(T (E,Γ )).

Proposition 2. Let E be a non-empty set , let Γ be some group of
transformations of E and let X be a subset of E. Then the following two
sentences are equivalent :

1) the set X belongs to the ideal K(T (E,Γ ));
2) for any countable family (gi)i∈I of elements of Γ there exists a count-

able family (hj)j∈J of elements of Γ such that⋂
j∈J

hj

( ⋃
i∈I

gi(X)
)

= ∅.

The proof of Proposition 2 is based on the following three simple lemmas.

Lemma 1. Let E be a non-empty set and let Γ be a group of trans-
formations of E. Let A be a countable subset of E. Then the next two
sentences are equivalent :

1) the set A belongs to the ideal K(T (E,Γ ));
2) for any countable orbit Γ (x) (x ∈ E) the equality Γ (x)∩A = ∅ holds.

P r o o f. The implication 1)⇒2) is obvious. So we only need to prove
the implication 2)⇒1). Suppose that a given countable set A ⊆ E satisfies
relation 2). Let (gi)i∈I be an arbitrary countable family of elements from the
group Γ . Since A is countable the family of all uncountable Γ -orbits which
intersect A is at most countable. Using this fact we can find a countable
family (hj)j∈J of elements from Γ such that⋂

j∈J

hj

( ⋃
i∈I

gi(A)
)

= ∅.

The last equality implies relation 1) for the set A ⊆ E (compare with the
proof of Lemma 3).

Lemma 2. Let E be a set and let Γ be a group of transformations of E.
Let T be an arbitrary topology on E with c(T ) = ω and suppose that a set
X ⊆ E has the Baire property with respect to the topology T . If the group
Γ preserves K(T ) and B(T ) then there exists a countable family (gi)i∈I of



SMALL SETS 125

elements from Γ such that the set

X∗ =
⋃
i∈I

gi(X)

is almost invariant under Γ , i.e.

(∀g ∈ Γ )(g(X∗)MX∗ is in K(T )).

P r o o f. Suppose that for every countable family (gi)i∈I of elements from
Γ the mentioned set X∗ is not almost invariant under Γ . Then, using the
method of transfinite recursion, we can construct an ω1-sequence (Xξ)ξ<ω1

of subsets of E satisfying the following conditions:

a) X0 = X;
b) the family (Xξ)ξ<ω1 is increasing with respect to inclusion;
c) for any ξ < ω1 the set Xξ can be represented in the form

Xξ =
⋃
j∈J

hj(X),

where (hj)j∈J is a countable family of elements from Γ (this family, of
course, depends on ξ);

d) for any ξ < ω1 the set Xξ+1 \Xξ is not first category with respect to
the topology T .

As soon as the family of sets (Xξ)ξ<ω1 is constructed, we see that the
disjoint family of sets (Xξ+1 \Xξ)ξ<ω1 contradicts the equality c(T ) = ω.

Lemma 3. Let E be a non-empty set and let Γ be some group of
transformations of E. Let a set X ⊆ E satisfy relation 2) of Proposition
2 and let T be an arbitrary topology from the class T (E,Γ ). Denote by
RO(T ) the family of all regular open sets with respect to T and denote by
L the smallest σ-ideal which contains the family of sets K(T )∪ {X} and is
invariant under the group Γ . Then the family

T ′ = {V \ Y : V ∈ RO(T ) & Y ∈ L}

is a topology on E for which the following relations hold :

1) T ′ belongs to the class T (E,Γ ) and extends the topology T ;
2) K(T ′) = L;
3) K(T ) ⊆ K(T ′);
4) X belongs to the σ-ideal K(T ′).

P r o o f. It can be directly checked that T ′ is a topology on the set E and
extends the original topology T (cf. [1]). Also it is easy to see that relation
1) holds if no non-empty set V ∈ T belongs to the ideal L. Suppose for a
while that V ∈ L. Using Lemma 2 we can find a countable family (gi)i∈I of
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elements from Γ such that the set

V ∗ =
⋃
i∈I

gi(V )

is almost invariant under Γ . Of course, we also have V ∗ ∈ L. Since X
satisfies relation 2) of Proposition 2 there exists a countable family (hj)j∈J

of elements from Γ such that⋂
j∈J

hj(V ∗) ∈ K(T ).

But the last formula cannot be true because the set V ∗ is almost invariant
and does not belong to the ideal K(T ). So we obtain a contradiction and
thus relation 1) holds. Analogously, relations 2), 3) and 4) may be checked.

Using these three lemmas it is not difficult to prove Proposition 2. The
argument of this proof is the same as in [3] or [4]. In fact, the main part of
Proposition 2 is contained in Lemma 3.

From Proposition 2 we immediately obtain the following

Proposition 3. Let E be a non-empty set and let Γ be a countable
group of transformations of E. Then K(T (E,Γ )) = {∅}.

Proposition 2 sometimes yields nice geometrical properties of certain sets
belonging to the ideal K(T (E,Γ )). For instance, we have the following

Proposition 4. Let E be a normed vector space and let Γ be a non-
separable subgroup of the additive group of E. Then every ball in E belongs
to the ideal K(T (E,Γ )).

P r o o f. Take any ball B in the space E and consider an arbitrary
countable family (gi)i∈I of elements from Γ . Denote by G the closed vector
subspace of E generated by the family (gi)i∈I . The space G is separable,
hence there exists an element g ∈ Γ \G. Without loss of generality we may
assume that the center of the ball B coincides with the zero element of the
additive group of E. Let κ be a natural number such that

dist(κg,G) > diam(B).

Let us put h = κg. Then it is easy to see that h ∈ Γ and

(h+ (G+B)) ∩ (G+B) = ∅.

This finishes the proof of Proposition 4.

In fact, we have proved that if E is a normed vector space and Γ is a non-
separable subgroup of the additive group of E then the ideal K(T (E,Γ ))
contains the ideal of all bounded subsets of E.
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Proposition 5. If E is a normed vector space (with norm ‖ · ‖) and Γ
is a non-separable subgroup of the additive group of E then there exists a
countable covering of E by sets belonging to the ideal K(T (E,Γ )).

P r o o f. For any natural number n ≥ 1 let us put Bn = {x ∈ E : ‖x‖ ≤
n}. Then, by Proposition 4, every ball Bn is a first category set with respect
to the class T (E,Γ ). But it is obvious that

⋃
n≥1Bn = E, so we have found

a countable covering of E by sets belonging to the ideal K(T (E,Γ )).

Lemma 4. Let R be the real line and let Γ be any uncountable subgroup
of R. Let l2(ω1) be the Hilbert space with Hilbert dimension ω1. Consider
R and l2(ω1) as abstract groups. Then there exists an isomorphism ϕ : R →
l2(ω1) such that ϕ(Γ ) is an everywhere dense subgroup of l2(ω1).

P r o o f. The topological weight of the space l2(ω1) is equal to ω1. Hence
there exists a family (eξ)ξ<ω1 of elements from l2(ω1) such that

a) (eξ)ξ<ω1 is everywhere dense in the space l2(ω1);
b) (eξ)ξ<ω1 is independent over the field Q of all rational numbers;
c) if E is the vector space (over Q) generated by the family (eξ)ξ<ω1 then

the algebraic codimension of E in l2(ω1) is equal to the cardinality contin-
uum, i.e. the algebraic dimension of the quotient vector space l2(ω1)/E is
equal to the cardinality continuum.

Notice that a family (eξ)ξ<ω1 with the above properties can be easily
constructed by the method of transfinite recursion.

Now, using the fact that card(Γ ) ≥ ω1 we can also construct by trans-
finite recursion a family (gξ)ξ<ω1 of elements from Γ which are also inde-
pendent over Q. Let Γ ∗ be the vector space (over Q) generated by the
family (gξ)ξ<ω1 . Without loss of generality we may assume that the alge-
braic codimension of the vector space Γ ∗ in R is also equal to the cardinality
continuum. Let

ψ : (gξ)ξ<ω1 → (eξ)ξ<ω1

be a bijection such that ψ(gξ) = eξ (ξ < ω1). Then it is easy to see that
the mapping ψ can be extended to the required isomorphism ϕ between the
abstract groups R and l2(ω1).

Starting from Lemma 4 it is not difficult to prove the following

Proposition 6. Let Γ be an arbitrary uncountable subgroup of the ad-
ditive group of R. Then there exists a countable family (Xn)n≥1 of subsets
of R such that

1) (∀n ≥ 1)(the set Xn belongs to the ideal K(T (R, Γ ));
2) R =

⋃
n≥1Xn.

P r o o f. Let ϕ be an isomorphism between abstract groups R and l2(ω1)
such that the set ϕ(Γ ) is everywhere dense in the space l2(ω1). Then it is
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clear that the group ϕ(Γ ) is non-separable. So we can apply Proposition 5.
Let (Bn)n≥1 be a countable covering of the space l2(ω1) by sets belonging
to the ideal K

(
T (l2(ω1), ϕ(Γ ))

)
. Let us put

Xn = ϕ−1(Bn) (n ≥ 1).

Then it is easy to check that the family (Xn)n≥1 satisfies conditions 1) and
2) of Proposition 6.

We remark here that a quite different proof of Proposition 6 may be
obtained by the method used in [2].

Example 2. Let E be a non-empty set and Γ be a group of transforma-
tions of E. Let µ be a non-zero complete σ-finite Γ -quasi-invariant measure
defined on some σ-algebra of subsets of E. We denote by T (µ) von Neu-
mann’s topology associated with µ. Recall that (see e.g. [1]) the topology
T (µ) satisfies the following conditions:

a) B(T (µ)) = dom(µ);
b) (∀X ⊆ E)(X ∈ K(T (µ)) ⇔ µ(X) = 0);
c) T (µ) is a Baire space topology and c(T (µ)) = ω.

Moreover, since the measure µ is Γ -quasi-invariant, we conclude that the
group Γ preserves both families of sets B(T (µ)) and K(T (µ)). Hence, we
have

T (µ) ∈ T (E,Γ ).
If there exists a countable covering of E by sets belonging to the ideal
K(T (E,Γ )), then we can construct a measure µ̄ with the following proper-
ties:

1) µ̄ is a proper extension of µ;
2) µ̄ is a complete Γ -quasi-invariant measure;
3) T (µ) ⊆ T (µ̄).

For details of construction of such an extension µ̄ of the initial measure
µ see, for instance, [3].

Using the arguments from [3] or [4] one can also prove the following

Proposition 7. Let E be a set and let Γ be some group of transforma-
tions of E such that

1) card(Γ ) = ω1;
2) Γ acts freely on E, i.e. for any g ∈ Γ we have

(∃x ∈ E)(g(x) = x) ⇒ (g = idE).

Then there exists a countable covering of E by sets belonging to the ideal
K(T (E,Γ )). In particular , every topology from the class T (E,Γ ) has a
proper extension in the same class.
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The following problem remains open.

Problem. Let E be a non-empty set and let Γ be some group of trans-
formations of E. In terms of the pair (E,Γ ) give a necessary and sufficient
condition for the existence of a countable covering of E by sets belonging to
the ideal K(T (E,Γ )).

Finally, let us notice that if we have two groups Γ1 and Γ2 of transfor-
mations of a non-empty set E, then, in general, the inclusions Γ1 ⊆ Γ2 or
Γ2 ⊆ Γ1 do not imply any inclusion relation between the ideals K(T (E,Γ1))
and K(T (E,Γ2)) (in this connection see [3]).
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