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CONVERGENCE TO EQUILIBRIUM
AND LOGARITHMIC SOBOLEV CONSTANT ON MANIFOLDS

WITH RICCI CURVATURE BOUNDED BELOW

BY

L. SALOFF -COSTE (TOULOUSE)

1. Introduction. Let (M, g) be a complete Riemannian manifold hav-
ing finite volume v(M) = V , where dv denotes the Riemannian measure. Let
∇ be the Riemannian gradient. Consider the Laplace operator ∆ = −div∇
on M . Let Ht = e−t∆ be the corresponding heat diffusion semigroup. It
will be convenient here to consider the normalized measure dµ = (1/V ) dv
and to let Ht act on Lp = Lp(M,µ), 1 ≤ p <∞. The semigroup Ht admits
a kernel ht with respect to dµ and

Htf(x) =
∫

M

ht(x, y)f(y) dµ(y), f ∈ L2,

with 0 < ht(x, y) < ∞ for all t > 0, x, y ∈ M . Moreover, it is well known
that ht(x, y) tends to 1 as t tends to infinity. For specific examples, it is
then natural to ask for quantitative estimates on how fast ht tends to 1.
Several authors have discussed similar questions when M is a finite set. See
for instance [1, 11] and the references given in these papers. The techniques
used below can also be applied to certain finite Markov chains and this is
developed in [12, 13].

Define the time to equilibrium T = T (M, g) by

(1) T = inf{t > 0 : sup
x∈M

‖hx
t − 1‖1 ≤ 1/e}

where hx
t (y) = ht(x, y) and the choice of the constant 1/e < 1 is for con-

venience. Roughly speaking, the present work describes upper and lower
bounds on T that depend on geometric quantities such as the diameter of
(M, g). Note that the inequality

(2) ‖hx
t − 1‖1 ≤ e−bt/Tc

follows easily from the submultiplicativity of supx ‖hx
t −1‖1 as a function of

t. Thus, any estimate on T yields a quantitative version of the convergence
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of ht. It is well known and easy to see that the smallest non-zero eigen-
value λ of the Laplace operator governs the asymptotic exponential rate of
convergence to equilibrium. This and (2) imply that T ≥ 1/λ. This does
not mean, however, that equilibrium is approximately reached at time 1/λ:
bounding T requires further information besides estimates on λ.

In [26], which should be considered as a companion paper, very specific
examples like the n-dimensional torus, the n-sphere or classical groups are
studied. For these examples, the main parameter is the dimension. For
instance, we have

Theorem 1 ([26]). The n-dimensional torus Tn = (R/2πZ)n satisfies

T (Tn) ∼ 1
2 log n as n→∞.

The n-sphere Sn ⊂ Rn+1 satisfies

T (Sn) ∼ log n
2n

as n→∞.

The present paper studies families of manifolds of a fixed dimension.
The main results are:

Theorem 2. For compact Riemannian manifolds of dimension n with
non-negative Ricci curvature, there exist two dimensional constants 0 <
c(n) ≤ C(n) <∞ such that

c(n)d2 ≤ T ≤ C(n)d2

where d is the diameter.

Theorem 3. Let (N, g) be a fixed compact Riemannian manifold with
fundamental group π1 and universal covering N . Let M = N/Γ be any
compact covering of M where Γ is a subgroup of π1.

1. If π1 has polynomial growth, the heat diffusion on M satisfies

cd2 ≤ T (M) ≤ Cd2.

2. If π1 has Kazhdan’s property , the heat diffusion on M satisfies

cd ≤ T (M) ≤ Cd.

Here, d is the diameter of M and c, C depend only on (N, g).

Theorem 2 is proved in Section 3. The first part of Theorem 3 is proved
in Section 4. Part 2 of Theorem 3 is proved in Section 5. These results
follow from known spectral estimates and Harnack inequalities.

In Section 6, we use a lower bound on T (M) to estimate the logarithmic
Sobolev constant from above when M has Ricci curvature bounded below.

Theorem 4. Fix n ≥ 2. For any ε > 0, there exist compact Riemannian
manifolds of dimension n with constant sectional curvature equal to −1 and
such that α/λ ≤ ε. Here, α is the log-Sobolev constant defined in (18).
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For contrast, note that compact manifolds of dimension n with non-
negative Ricci curvature satisfy c(n)λ ≤ α ≤ λ/2; see Rothaus [23, 22].

The results proved in the paper are somewhat more precise than those
stated in this introduction. In particular, L2 and uniform convergence are
also considered.

2. Basics. In order to obtain quantitative estimates for the convergence
of ht to equilibrium, some notion of “distance” must be chosen. We will
mainly work with L1 and L2 distances. Other Lp norms yield a scale of
different choices. Set

Np(ht − 1) = sup
x
‖hx

t − 1‖p.

For p ≥ 2,

N2(ht − 1) ≤ Np(ht − 1) ≤ N∞(ht − 1) = (N2(ht/2 − 1))2.

For 1 < p ≤ 2, define mp = 1+d(2−p)/(2(p−1))e to be the smallest integer
greater than or equal to 1+(2−p)/(2(p−1)). We claim that, for 1 < p ≤ 2,

N2(ht − 1) ≤ (Np(ht/mp
− 1))mp .

To begin with, recall that

Nq(ht − 1) ≤ Nr(ht1 − 1)Ns(ht2 − 1)

for all t = t1 + t2 > 0 and 1 ≤ q, r, s ≤ ∞ with 1 + 1/q = 1/r + 1/s. To
prove the claim, apply the last inequality successively with q = pi+1, r = pi,
s = p and p1 = p. This gives

Npi+1(ht − 1) ≤ Npi(hit/(i+1) − 1)Np(ht/(i+1) − 1) ≤ Np(ht/(i+1) − 1)i+1.

Clearly, 1/pi = 1/p− (i− 1)(1− 1/p) and thus, pi ≥ 2 if and only if

i ≥ 1 +
2− p

2(p− 1)
.

This proves the claim. We conclude that Np(ht − 1) does not depend too
much on p when p is bounded away from 1. Note that, for p > 1, Np(ht−1)
tends to infinity when t tends to zero whereas N1(ht− 1) is always bounded
by 2. Consider, however, the first time Tp for which Np(ht − 1) ≤ 1/e. For
several classes of examples, the different Tp’s, including T1, behave all the
same. For instance, this is the case for manifolds of a fixed dimension with
non-negative Ricci curvature. See also the examples in [26].

The reasons for considering N1 is that it yields the weakest notion of
convergence (among the Np’s), and that it does not depend on the normal-
ization µ(M) = 1. Note indeed that

Np(ht − 1) = V 1−1/p sup
x∈M

( ∫
M

|ht(x, y)− 1|p dv(y)
)1/p
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where ht = V −1ht is the canonical heat kernel on M , i.e., the kernel of e−t∆

with respect to the Riemannian measure dv. Whether we work with N2 or
N∞ does not really matter since N∞(ht − 1) = (N2(ht/2 − 1))2.

Recall that the spectral gap of (M, g) is defined by

(3) λ = min{‖∇f‖22/‖f‖22 : f ∈ C∞ ∩ L2, ‖f‖2 6= 0, Uf = 0}
where Uf =

∫
M
f dµ. Because ∂t‖Htf‖22 = −2‖∇Htf‖22, it follows easily

from the definition that

(4) ‖Ht − U‖2→2 ≤ e−λt.

For compact manifolds, we have λ > 0 but, in general, it may well happen
that λ = 0. For instance, [3] shows that λ = 0 for manifolds of finite volume
such that

lim sup
r→∞

−1
r

log(1− µ(B(x, r))) = 0.

Bounding ‖hx
t −1‖2 in terms of λ is, in theory, very easy. Write t = ε+s,

hx
t (y) = Hsh

x
ε (y) and

(5) ‖hx
t − 1‖2 = ‖(Hs − U)hx

ε‖2 ≤ ‖hx
ε‖2‖Hs − U‖2→2 ≤ ‖hx

ε‖2e−λs.

This leaves us with the task of bounding ‖hx
ε‖2 = (h2ε(x, x))1/2. This can

be done by different means. Sobolev’s type inequalities can for instance be
used for that purpose. See [29, 30] and, more specifically, [26]. In this paper,
we will use Harnack inequalities instead. Examples where N2 is bounded by
using the full description of the spectrum of ∆ are given in [26].

3. Manifolds with non-negative Ricci curvature. In this section,
we prove Theorem 2 and, more precisely, the following result:

Theorem 5. Let (M, g) be an n-dimensional compact Riemannian man-
ifold with non-negative Ricci curvature and diameter d. The heat diffusion
associated with the Laplace–Beltrami operator satisfies

N2(ht+s − 1) ≤ exp
(

3n1/2d

4t1/2
− λs

)
for all s, t > 0

and

N2(ht − 1) ≤ e−c for t =
((

1 +
3
π2

)
n1/3 +

4
π2
c

)
d2 with c ≥ 0.

Moreover ,
N1(ht − 1) ≥ e−c for t = cd2/(π2n).

P r o o f. Start with the lower bound. Recall that

‖hx
t − 1‖1 = sup

‖f‖∞≤1

|(Ht − U)f(x)|.
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As a test function, choose an eigenfunction φ associated with the eigenvalue
λ, normalized by ‖φ‖∞ = φ(x0) = 1, for some x0 ∈ M . Since Uφ = 0, we
get

‖hx
t − 1‖1 ≥ Htφ(x0) = e−λt

and the desired result then follows from Cheng’s estimate λ ≤ nπ2/d2.
See [8].

The upper bound begins with the Harnack inequality

ht(x, x) ≤ h(1+ε)t(x, y)(1 + ε)n/2 exp(d2/(4εt))

obtained by P. Li and S.-T. Yau in [19]. Integrating over M yields

ht(x, x) ≤ (1 + ε)n/2 exp(d2/(4εt)).

In particular, for ε = d/
√
nt we get

ht(x, x) ≤ exp
(

3n1/2d

4t1/2

)
.

Together with (5), this gives

‖hx
t+s − 1‖2 ≤ exp

(
3n1/2d

4t1/2
− λs

)
.

For the second upper bound in Theorem 5, we take

t = n1/3d2 and s =
(

3
π2
n1/3 +

4
π2

)
d2

and use the estimate

(6) λ ≥ π2

4d2
,

which is taken from [18].

R e m a r k s. 1. Theorem 5 is stated for compact manifolds without
boundary but it also holds for the heat diffusion with Neumann boundary
condition on compact manifolds of non-negative Ricci curvature with convex
boundary. See [19]. In particular, this theorem applies to convex bounded
domains in Rn. In this case, (6) holds without the factor 4 and is due to
Payne and Weinberger [21]. In all cases, Theorem 5 shows that t of order
d2n1/3 suffices for the heat diffusion to be close to equilibrium whereas d2/n
is necessary. This should be compared with the result stated for the torus
Tn in the introduction. In this case, the diameter is d = 2πn1/2, λ = 1,
and equilibrium is approximately achieved at time t = log n

8π2nd
2. This shows

that the lower bound in Theorem 5 is sharp up to a logarithmic dimensional
factor.

2. Theorem 5 and the above remark lead us to the following question:
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For the heat diffusion on a convex bounded domain in Rn with Neumann
boundary condition, what is a good upper bound (depending on n) on the
equilibrium time T defined in (1)?

In the same spirit, working out the details in the case of the euclidean
ball in Rn with Neumann boundary condition seems to be a worthwhile
project.

4. Coverings under polynomial volume growth. As a second
example, we consider towers of compact coverings under polynomial growth.
Recall that a finitely generated group G has polynomial volume growth if
there exist two constants A and d such that

#(Ek) ≤ Akd, k = 1, 2, . . . ,

where E is one (or any) fixed finite generating set of G containing the iden-
tity. The following result is based on Gromov’s theorem [14] and contains
the first statement of Theorem 3.

Theorem 6. Let N be a normal covering of a compact Riemannian
manifold (N, g) with deck transformation group G having polynomial volume
growth. There exist constants A, b, B, C, C ′ depending only on G, N , g
such that , for any subgroup Γ ⊂ G with finite index , the heat diffusion on
M = N/Γ satisfies

N2(ht − 1) ≤ C ′e−s for t = Cd2(1 + s), s > 0,

and
e−At/d2

≤ N1(ht − 1) ≤ Be−bt/d2
for t > 0

where d is the diameter of M .

P r o o f. It follows from the results in [25] that the diffusion onM satisfies
a parabolic Harnack inequality, uniformly over all possible choices of Γ .
Namely, there exists a constant C1 depending only on G, N , g but not on
Γ such that, for any x ∈M = N/Γ , any r > 0, and any positive solution u
of (∂t +∆)u = 0 in ]0, r2[×B(x, r), we have

(7) sup
Q−

u ≤ C1 inf
Q+

u

where Q− = ]r2/4, r2/2[ × B(x, r/2) and Q+ = ]3r2/4, r2[ × B(x, r/2). In
fact, [25] shows that (7) holds on N and this easily implies that it holds
with the same constant C1 on any quotient M = N/Γ .

It also follows from [25] that there exist C2, C3 depending only on G, N ,
g such that, for any x ∈M and r > 0, we have∫

B

|f − fB |2 dµ ≤ C2r
2
∫
B

|∇f |2 dµ, f ∈ C∞(B),(8)
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µ(B(x, 2r)) ≤ C3µ(B(x, r))(9)

where B = B(x, r) and fB is the mean of f over the ball B. For more details
on this matter, see [9].

Now, applying (7) to the heat kernel ht on M , we obtain

hd2(x, x) ≤ C1

where d is the diameter of M . Moreover, for r = d, the balls of radius r are
equal to M and (8) shows that the spectral gap λ = λ(M) satisfies

λ ≥ 1
C2d2

.

The last two inequalities and (5) give the desired upper bound on N2(ht−1)
and N1(ht − 1).

To estimate N1(ht − 1) from below, it suffices to have an upper bound
on λ. Consider two points x1, x2 ∈ M at distance d apart. For i = 1, 2,
let φi(x) = (d/2− d(xi, x))+ where d(x, y) is the Riemannian distance and
(z)+ = max{0, z}. Set ψ = φ1−aφ2 where a > 0 is chosen so that

∫
ψ dµ =

0. Obviously, we have∫
|ψ|2 ≥

∫
|φ1|2 + a2

∫
|φ2|2

≥ (1 + a2)
d2

8
inf
M
{µ(B(x, d/4))} ≥ (1 + a2)d2

8C2
3

and ∫
|∇ψ|2 dµ ≤ 1 + a2.

Using ψ as a test function in (3), we get

λ ≤ 8C2
3

d2
.

This and the argument of Section 3 end the proof of Theorem 6.

R e m a r k s. 1. Theorem 6 shows that a time of order d2 is necessary
and suffices for approximate equilibrium of the heat diffusion on M = N/Γ
uniformly over all possible choices of Γ . This proves the first assertion in
Theorem 3.

2. In Theorem 6, the Laplace–Beltrami operator can be replaced by any
uniformly subelliptic operator. See [25].

5. A lower bound on T . This section presents a lower bound on
the time to equilibrium T under the condition that Ric ≥ −Kg. It also
contains the proof of the second statement of Theorem 3 concerning towers
of compact coverings, where π1 has Kazhdan’s property.

Theorem 7. Let (M, g) be a compact Riemannian manifold of dimension
n. Assume that Ric ≥ −Kg for some K ≥ 0. Then there exist 0 < c, C <∞
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depending only on n and K such that if the diameter d of M satisfies d ≥ C,
then N1(ht − 1) ≥ 1/2 for all 0 < t ≤ cd. In particular , T (M) ≥ cd.

P r o o f. We need to introduce some notation. Let V (x, r) = v(B(x, r))
be the Riemannian volume of the ballB(x, r) and setW (x) =1/µ(B(x, 1)) =
V/V (x, 1). Using classical bounds on the volume of balls in constant cur-
vature spaces and a refinement of Bishop’s comparison theorem (see [7],
Proposition 4.1), one gets the well known inequality

(10)
V (x, r)
V (x, s)

≤ (r/s)n exp(
√

(n− 1)Kr) for 0 < s ≤ r, x ∈M.

Let ht(x, y) be the kernel of the heat diffusion semigroup e−t∆ with respect
to the Riemannian measure dv. We have ht = V −1ht.

Using Theorem 3.1 of Li–Yau’s paper [19] (see also Theorem 6.3 in [24]),
we find that

(11) ht(x, y) ≤ C1W (x) exp
(
− d(x, y)2

5t

)
for t ≥ 1, x, y ∈M

where d(x, y) is the Riemannian distance between x and y. Here and in the
sequel the different constants ci, Ci depend only on n and K. For all t ≥ 1
and x ∈M , r > 0, (11) gives

‖hx
t − 1‖1 ≥

∫
d(x,y)≥r

|1− ht(x, y)| dµ(y)

≥
(

1− V (x, r)
V

)
(1− C1W (x)e−r2/(5t)).

Define R(x) by requiring that

(12) V (x,R(x)) = 1
4V,

and note that (10) and (12) imply

(13) W (x) = 4
V (x,R(x))
V (x, 1)

≤ exp(C2R(x))

whenever R(x) ≥ 1. Using (12), we obtain

Lemma 8. Let (M, g) be a complete manifold of dimension n, having
finite volume and satisfying Ric ≥ −Kg for some constant K ≥ 0. Then,
for t ≥ 1, we have

‖hx
t − 1‖1 ≥ 3

4 (1− C1W (x)e−R(x)2/(5t))

and , in particular ,

(14) ‖hx
t − 1‖1 ≥ 1/2 for 1 ≤ t ≤ R(x)2

5 log(2C1W (x))
.
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Inequalities (13) and (14) show that

‖hx
t − 1‖1 ≥ 1/2 for 1 ≤ t ≤ c1R(x).

To finish the proof of Theorem 7 it suffices to prove that, whenM is compact
with diameter d,

(15) max
M

R(x) ≥ d/6.

To see this, consider two points x1, x4 at distance d apart and two other
points x2, x3 on a geodesic joining x1 to x4 and such that d(x1, x2) =
d(x2, x3) = d(x3, x4) = d/3. The balls B(xi, d/6) are disjoint and∑4

i=1 V (xi, d/6) ≤ V . This implies that at least one of the xi’s satisfies
R(x) ≥ d/6. Together with Lemma 8, this shows that if d ≥ max{1, 6/c1},
then N1(ht − 1) ≥ 1/2 for t ≤ c1d/6.

We can now give a proof of the second statement of Theorem 3. Assume
that (N, g) is a compact manifold with universal covering N and fundamen-
tal group π1 having Kazhdan’s property (i.e., property T, see [17, 5, 20]).
We want to prove that there exist two constants 0 < c,C < ∞ such that
any compact covering of N satisfies

cd ≤ T (M, g) ≤ Cd.

Because N is compact, there exists K ≥ 0 such that any covering of N
satisfies Ric ≥ −Kg. In particular, Theorem 7 applies uniformly to any
compact covering of N and yields the desired lower bound on T . This part
does not use the fact that π1 has Kazhdan’s property.

For the upper bound, we need the fact that there exists ε > 0 such that
the smallest non-zero eigenvalue λ = λ(M) of any compact covering M of
(N, g) satisfies

(16) λ ≥ ε.

This is a consequence of π1 having Kazhdan’s property (see [5, 20]). Note
also that there exists a > 0 such that supM V (x, 1) ≥ a for all coverings M
of N . Hence, (11) gives

(17) sup
x,y∈M

h1(x, y) ≤ AV

where A depends only on (N, g).
Inserting (16) and (17) in (5) shows that

N1(ht − 1) ≤ N2(ht − 1) ≤ AV e−ε(t−2) for t ≥ 2.

Together with (10), this yields a constant C depending only on (N, g) such
that T ≤ Cd.

6. An upper bound on the log-Sobolev constant. Consider the
log-Sobolev constant α = α(M) associated with the Laplace operator on M .
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It is defined by

α = min{‖∇f‖22/L(f) : L(f) 6= 0, f ∈ C∞ ∩ L2}

where

L(f) =
∫

M

|f |2 log(|f |2/‖f‖22) dµ.

In other words, α is the largest constant c such that

(18) cL(f) ≤ ‖∇f‖22, f ∈ C∞ ∩ L2.

L. Gross introduced this type of logarithmic Sobolev inequality in [15] where
he proved that (18) is equivalent to

(19) ‖e−t∆‖2→q ≤ 1 for all t > 0 and q ≥ 2 such that q ≤ 1 + e4ct.

This property is called hypercontractivity . We refer the reader to [2, 10, 15]
for detailed discussions of the log-Sobolev inequality and hypercontractivity.
For the n-dimensional torus or the n-sphere the log-Sobolev constant α
is known explicitly and satisfies α = λ/2, whereas in general, α ≤ λ/2.
Moreover, O. Rothaus has shown in [23] that for compact manifolds of non-
negative Ricci curvature, 2nλ/(n+ 1)2 ≤ α ≤ λ/2. This contrasts with the
following result:

Theorem 9. Fix n ≥ 2 and K ≥ 0. Let (M, g) be a complete Riemannian
manifold of dimension n such that Ric ≥ −Kg. Then:

1. The log-Sobolev constant α is positive if and only if M is compact.
2. Moreover , if M is compact with diameter d, there exist C1, C2 > 0,

depending only on n and K, such that

(20) α ≤ C1
log d
d

if d ≥ C2.

P r o o f. To relate α to the time to equilibrium T , write t = ε + θ + s,
hx

t (y) = Hs+θh
x
ε (y) and

‖hx
t − 1‖2 = ‖(Hs − U)Hθh

x
ε‖2 ≤ ‖hx

ε‖q′‖Hθ‖q′→2‖Hs − U‖2→2

for any q′ ≤ 2. Now, choose q′ = q′(θ) by setting 1/q + 1/q′ = 1 and
q = q(θ) = 1 + e4αθ so that (19) yields

‖Hθ‖q′→2 = ‖Hθ‖2→q ≤ 1.

Also, note that

‖hx
ε‖q′ ≤ ‖hx

ε‖
2/q
2 .

These inequalities, together with (4), give

(21) ‖hx
t − 1‖2 ≤ ‖hx

ε‖
2/q(θ)
2 e−λs for t = ε+ θ + s and q(θ) = 1 + e4αθ.



CONVERGENCE TO EQUILIBRIUM 119

Similar manipulations can be found in [16, 28] where they are used to obtain
qualitative results on uniform convergence for Ising models. In [26], (21) is
used to derive an upper bound on T for semisimple compact Lie groups.

Now, using (11) and (21) with ε = 1, we find that

‖hx
t − 1‖1 ≤ ‖hx

t − 1‖2 ≤ (C1W (x))1/q(θ)e−λs

for t = 1 + θ + s and q(θ) = 1 + e4αθ. Here, as in Section 5, W (x) =
1/µ(B(x, 1)) = V/V (x, 1). Choosing

θ =
1
4α

log log(C1W (x)), s =
1
α
≥ 2
λ
,

we get

‖hx
t − µ‖1 ≤

1
e

for t ≥ 1 +
1
4α

(4 + log log(C1W (x))).

Comparing this with (14) yields

α ≤ (4 + log log(C1W (x)))
5 log(2C1W (x))

4(R(x)2 − 5 log(2C1W (x)))

if R(x) is large enough. Recall that (13) says that logW (x) ≤ C2R(x) when
R(x) ≥ 1. Therefore, there exist C, C ′′ depending only on n, K such that

(22) α ≤ C
logR(x)
R(x)

if R(x) ≥ C ′.

Now, if (M, g) has finite volume but is not compact, then R(x) tends to
infinity when x tends to infinity and this proves the first claim in Theorem 9.
The second claim follows from (15) and (22).

R e m a r k s. 1. Set W∗ = maxx∈M W (x). The above proof shows in fact
that

α ≤ C log logW∗
logW∗

d2
if d ≥ C ′.

The volume estimate (13) shows that this is stronger than (20). One also
has, for W∗ large enough,

α ≤ C log logW∗/ logW∗,

which is weaker than (20).
2. Another variant of the above argument yields

λ ≤ C

(
logW∗

d

)2

if d ≥ C ′.

3. Let (M, g) be as in Theorem 9 and such that λ ≥ ε for some fixed
ε > 0. Then (11), (13) and classical arguments from the theory of hyper-
contractivity show that, in this case, the log-Sobolev constant satisfies

α ≥ c(n,K, ε)/d.
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4. It is well known that, in any given dimension, there exist compact
manifolds of constant negative sectional curvature with large diameter and
λ uniformly bounded away from zero. For instance, if N is compact with
fundamental group π1(N) having Kazhdan’s property, there exists ε > 0
such that any finite covering of N satisfies λ ≥ ε. See [4, 5, 20] for details
and further results. This yields examples where α/λ can be made arbitrarily
small and proves Theorem 4.

It is also well known that there are examples of non-compact complete
Riemannian manifolds of finite volume with a positive spectral gap. In fact,
any n-dimensional manifold with sectional curvature bounded above by −1
has essential spectrum bounded below by (n−1)2/4. See [6]. If such a man-
ifold has finite volume, it follows that λ > 0. A quantitative (but difficult!)
result is given by Selberg’s theorem which asserts that λ(H/Γ (m)) ≥ 3/16
where H is the hyperbolic plane and Γ (m) = {A ∈ SL2(Z) : A = I mod m}.
See [20, 27, 5].
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