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EXAMPLES OF NON-LOCAL TIME DEPENDENT
OR PARABOLIC DIRICHLET SPACES

BY

NIELS JACOB (ERLANGEN)

In [23] M. Pierre introduced parabolic Dirichlet spaces. Such spaces are
obtained by considering certain families (E(τ))τ∈R of Dirichlet forms. He
developed a rather far-reaching and general potential theory for these spaces.
In particular, he introduced associated capacities and investigated the notion
of related quasi-continuous functions. However, the only examples given by
M. Pierre in [23] (see also [22]) are Dirichlet forms arising from strongly
parabolic differential operators of second order.

To our knowledge, only very recently, when Y. Oshima in [20] was able to
construct a Markov process associated with a time dependent or parabolic
Dirichlet space, these parabolic Dirichlet spaces attracted the attention of
probabilists. The proof of the existence of such a Markov process depends
much on the potential theory developed by M. Pierre. Moreover, in [21]
Y. Oshima proved that a lot of results valid for symmetric Dirichlet spaces
(see [7] as a standard reference) also hold for time dependent Dirichlet
spaces.

The purpose of this note is to give some concrete examples of time depen-
dent Dirichlet spaces which are generated by pseudo-differential operators
and therefore are non-local. In Section 1 we recall the basic definition of
a time dependent Dirichlet space and in Section 2 we give some auxiliary
results. Sections 3–5 are devoted to examples. In Section 3 we discuss
some spatially translation invariant operators. We do not really give there
any surprising examples, but we emphasize the relation to the theory of
balayage spaces. In Section 4 we consider time dependent Dirichlet spaces
constructed from a special class of symmetric pseudo-differential operators
analogous to those handled in our joint paper [9] with W. Hoh. Finally,
in Section 5 we construct time dependent generators of (symmetric) Feller
semigroups following [15]. The estimates used in this construction already
ensure that we get non-local time dependent Dirichlet spaces.

We would like to mention that non-local Dirichlet forms have recently
been investigated by U. Mosco [19] in his study of composite media.
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1. Time dependent symmetric Dirichlet spaces on Rn. Let
L2(Rn) be the usual space of real-valued measurable functions u : Rn → R
which are square integrable. The norm in L2(Rn) is denoted by ‖ · ‖0 with
the corresponding scalar product (·, ·)0. Let V ⊂ L2(Rn) be a dense sub-
space on which a norm ‖ · ‖V is defined turning V into a Hilbert space in
which the test functions C∞

0 (Rn) are dense. We assume that for all u ∈ V
the estimate ‖u‖0 ≤ c‖u‖V holds. As usual we identify L2(Rn) with its dual
space and hence we have

(1.1) V → L2(Rn) → V ′

with dense and continuous embeddings. Moreover, we have

(1.2) ‖u‖V ′ = sup
v∈V,v 6=0

|(u, v)0|
‖v‖V

.

We suppose further that u ∈ V always implies that v := (0 ∨ u) ∧ 1 ∈ V .
Now, for each τ ∈ R let a symmetric bilinear form E(τ) : V × V → R be
given which satisfies the following conditions:

D.1. For all u, v ∈ V the function τ 7→ E(τ)(u, v) is measurable on R.

D.2. For any c ≥ 0 the bilinear form E
(τ)
c (u, v) := E(τ)(u, v)+ c(u, v)0 is

uniformly continuous on V × V , i.e. there exists a constant M = M(c) such
that

(1.3) |E(τ)
c (u, v)| ≤M‖u‖V ‖v‖V

for all u, v ∈ V and all τ ∈ R.

D.3. There exist two constants c1 ≥ 0 and c0 > 0 such that

(1.4) E(τ)(u, u) ≥ c0‖u‖2V − c1‖u‖20
for all u ∈ V and all τ ∈ R.

D.4. For any v = (0 ∨ u) ∧ 1, u ∈ V ,

(1.5) E(τ)(v, v) ≤ E(τ)(u, u) .

R e m a r k 1.1. A. In [20] instead of (1.4) the estimate

(1.6) E(τ)(u, u) ≥ c0‖u‖2V
is required, but it is also mentioned that the weaker condition (1.4) is suffi-
cient for all considerations.
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B. In this paper we only want to handle symmetric forms E(τ). For this
reason we stated the contraction property D.4 in a form different from, but
in our case equivalent to, that stated in [20].

Next we will introduce certain function spaces on R × Rn, namely the
spaces

H := L2(R, L2(Rn)) ,(1.7)
V := L2(R, V )(1.8)

and
V′ := L2(R, V ′) ,(1.9)

which are equipped with the norms

‖u‖2H =
∫
R
‖u(τ, ·)‖20 dτ ,(1.10)

‖u‖2V =
∫
R
‖u(τ, ·)‖2V dτ(1.11)

and
‖u‖2V′ =

∫
R
‖u(τ, ·)‖2V ′ dτ ,(1.12)

respectively. Basic properties of these spaces can be found in [17].
Now, following Y. Oshima [20] we define the time dependent Dirichlet

space (F,E) associated with the family (E(τ))τ∈R by

(1.13) F :=
{
u ∈ V :

∂u

∂τ
∈ V′

}
, ‖u‖2F = ‖u‖2V +

∥∥∥∥∂u∂τ
∥∥∥∥2

V′

and

(1.14) E(u, v) =
∫
R
E(τ)(u(τ, ·), v(τ, ·)) dτ −

∫
R

(
∂u

∂τ
(τ, ·), v(τ, ·)

)
0

dτ

for u ∈ F and v ∈ V; for u ∈ V and v ∈ F we set

(1.15) E(u, v) =
∫
R
E(τ)(u(τ, ·), v(τ, ·)) dτ +

∫
R

(
∂v

∂τ
(τ, ·), u(τ, ·)

)
0

dτ .

Clearly (F, ‖ ·‖F) is a Hilbert space and by our assumptions C0(R×Rn)∩F
is dense in (F, ‖ · ‖F) as well as in (C0(R× Rn), ‖ · ‖∞).

2. Some auxiliary results. In the following the notion of a continuous
negative definite function will be central.
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Definition 2.1. A function ψ : Rn → C is said to be negative definite
if for all m ∈ N and all ξj ∈ Rn, 1 ≤ j ≤ m, the matrix (ψ(ξi) + ψ(ξj) −
ψ(ξi − ξj))i,j=1,...,m is positive Hermitian.

The basic properties of negative definite functions can be found in [2].
We will only consider real-valued continuous negative definite functions.
These functions are always non-negative. Without proof we state

Lemma 2.1. Let a2 : Rn → R be a continuous negative definite function.
Then

(2.1) 0 ≤ a2(ξ) ≤ ca(1 + |ξ|2) ;

(2.2) a2(ξ) = c+Q(ξ) +
∫

Rn

(1− cos(ξ, η))
1 + |η|2

|η|2
dσ(η) ,

where c is a non-negative constant , Q a non-negative quadratic form and σ
is a positive measure on Rn not charging the origin and having finite total
mass;

(2.3) |a2(ξ)− a2(η)| ≤ 4a(ξ)a(ξ − η) + a2(ξ − η) ;
(2.4) |a(ξ)− a(η)| ≤ a(ξ − η) .

R e m a r k 2.1. The estimate (2.1) can be found in [2], as well as the
Lévy–Khinchin formula (2.2). We have taken (2.3) from [11], and (2.4) is
due to W. Hoh [8].

For any continuous negative definite function a2 : Rn → R and any s ≥ 0
we introduce the Hilbert space

(2.5) Ha2,s(Rn) = {u ∈ L2(Rn) : ‖u‖s,a2 <∞} ,

where

(2.6) ‖u‖2s,a2 =
∫

Rn

(1 + a2(ξ))2s|û(ξ)|2 dξ .

Here û denotes the Fourier transform of u. Clearly Ha2,0(Rn) = L2(Rn)
and if we identify [L2(Rn)]∗ with L2(Rn) we have (see [14])

(2.7) [Ha2,s(Rn)]∗ = Ha2,−s(Rn) ,

where

Ha2,−s(Rn) = {u ∈ S′(Rn) : ‖u‖−s,a2 <∞}
and the “negative norm” is given on L2(Rn) by

‖u‖2−s,a2 =
∫

Rn

(1 + a2(ξ))−2s|û(ξ)|2 dξ = sup
0 6=v∈Ha2,s(Rn)

|(u, v)0|
‖v‖s,a2

.
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Later we will often assume that a2 also satisfies

(2.8) a2(ξ) ≥ cr|ξ|r

for some r > 0 and all ξ ∈ Rn, |ξ| ≥ % ≥ 0. In this case Ha2,s(Rn) is
continuously embedded in the usual Sobolev spaceHsr(Rn) and for sr > n/2
we find Ha2,s(Rn) ⊂ C∞(Rn) with a continuous embedding.

For later considerations it is useful to note that if a−2 ∈ L1
loc(Rn), then

Ha2,1/2(Rn) is a Dirichlet space with respect to the form

(2.9) Ba2
(u, v) =

∫
Rn

a2(ξ)û(ξ)v̂(ξ) dξ .

In particular, the form Ba2
satisfies D.1–D.4 with V = Ha2,1/2(Rn). More-

over, all translation invariant symmetric Dirichlet forms on L2(Rn) are of
this type (see [3] or [6]).

If a2 : Rn → R is a continuous negative definite function we can define
the pseudo-differential operator a2(D) on Ha2,1(Rn) by

(2.10) a2(D)u(x) = (2π)−n/2
∫

Rn

eix·ξa2(ξ)û(ξ) dξ .

3. Spatially translation invariant time dependent Dirichlet
forms. Let a2 : Rn → R be a continuous negative definite function such
that a−2 ∈ L1

loc(Rn). Further, let p : R× Rn → R be a continuous function
such that for each τ ∈ R the function p(τ, ·) : Rn → R is negative definite.
For p we assume that with two constants 0 < γ0 ≤ γ1,

(3.1) γ0(1 + a2(ξ)) ≤ 1 + p(τ, ξ) ≤ γ1(1 + a2(ξ))

for all τ ∈ R and ξ ∈ Rn. Now, for τ ∈ R we define on Ha2,1/2(Rn),

(3.2) E(τ)(u, v) =
∫

Rn

p(τ, ξ)û(ξ)v̂(ξ) dξ .

Clearly, for fixed u, v ∈ Ha2,1/2(Rn) the function τ 7→ E(τ)(u, v) is measur-
able and from (3.1) it follows immediately that

(3.3) |E(τ)(u, v)| ≤ c‖u‖1/2,a2‖v‖1/2,a2

and

(3.4) E(τ)(u, u) ≥ c0‖u‖21/2,a2 − c1‖u‖20 .

In particular, each E(τ) is a closed symmetric form. Moreover, by our as-
sumption that p(τ, ·) is a continuous negative definite function, it follows
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that E(τ) also has the contraction property D.4. Thus on

F =
{
u ∈ L2(R,Ha2,1/2(Rn)) :

∂u

∂τ
∈ L2(R,Ha2,−1/2(Rn))

}
we get the time dependent Dirichlet form

E(u, v) =
∫
R
E(τ)(u(τ, ·), v(τ, ·)) dτ −

∫
R

(
∂u

∂τ
(τ, ·), v(τ, ·)

)
0

dτ(3.5)

=
∫
R

∫
Rn

p(τ, ξ)û(τ, ξ)v̂(τ, ξ) dξ dτ

−
∫
R

∫
Rn

∂u

∂τ
(τ, x)v(τ, x) dx dτ ,

where u ∈ F and v ∈ L2(R,Ha2,1/2(Rn)). The case u ∈ L2(R,Ha2,1/2(Rn))
and v ∈ F gives the formula analogous to (1.15). Note that in (3.5), û(τ, ξ)
denotes the Fourier transform with respect to x only, i.e.

(3.6) û(τ, ξ) = (2π)−n/2
∫

Rn

e−ix·ξu(τ, x) dx.

In particular, the example covers the case p(τ, ξ) = a2(ξ). In [10] it was
proved that if (2.8) holds, then a2(D) generates a balayage space in the
sense of [4]. Moreover, in [5] M. Brzezina showed that under the same
conditions on a2 the operators ∂/∂t+a2(D) and ∂/∂t−a2(D) also generate
a balayage space. But the time dependent Dirichlet form E associated with
the family E(τ)(u, v) =

∫
Rn a

2(ξ)û(ξ)v̂(ξ) dξ is generated by the operator
∂/∂t− a2(D), namely

E(u, v) = −
∫
R

∫
Rn

[
∂u

∂τ
(τ, x)− a2(D)u(τ, x)

]
v(τ, x) dx dτ

for u ∈ L2(R,Ha2,1(Rn)) ∩ F and v ∈ L2(R,Ha2,1/2(Rn)). Thus it seems
reasonable to conjecture that also each of the operators p(τ,D) − ∂/∂τ
generates a balayage space.

In [1] non-symmetric translation invariant Dirichlet spaces were charac-
terized by complex-valued continuous negative definite functions ψ, which
have the property that for all ξ ∈ Rn the estimate |Imψ(ξ)| ≤ cReψ(ξ)
holds. It is an easy exercise to construct as above time dependent spa-
tially translation invariant non-symmetric and non-local Dirichlet spaces by
starting with this characterization.

4. Non-local time dependent Dirichlet forms with variable co-
efficients. I. We will closely follow our joint paper with W. Hoh [9]. For
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this reason let a2
j : R → R, 1 ≤ j ≤ n, be a continuous negative definite

function which has the representation

(4.1) a2
j (ξj) =

∫
R

(1− cos(ηjξj)) µ̃j(dηj) .

Further, let bj : R × Rn → R, (τ, x) 7→ bj(τ, x), 1 ≤ j ≤ n, be a function
satisfying the following conditions:

(4.2) bj is independent of xj ;
(4.3) bj(τ, ·) is bounded and measurable;
(4.4) τ 7→ bj(τ, x) is a continuous function;
(4.5) bj(τ, x) ≥ d0 > 0 for all (τ, x) ∈ R× Rn and 1 ≤ j ≤ n .

On C∞
0 (Rn) we consider the family of pseudo-differential operators

(4.6) L(τ)(x,D)u(x) =
n∑

j=1

bj(τ, x)a2
j (Dj) .

We can associate with L(τ)(x,D) the bilinear form

E(τ)(u, v) =
∫

Rn

L(τ)(x,D)u(x) · v(x) dx(4.7)

=
n∑

j=1

(bj(τ, ·)aj(Dj)u, aj(Dj)v)0 .

Now let

(4.8) a2(ξ) =
n∑

j=1

a2
j (ξj) .

Then a2 is a continuous negative definite function on Rn, and the space
Ha2,1/2(Rn) is well defined. Using (4.2)–(4.5) we get, as in [9],

Proposition 4.1. For all u, v ∈ Ha2,1/2(Rn),

(4.9) |E(τ)(u, v)| ≤ c‖u‖1/2,a2‖v‖1/2,a2

and

(4.10) E(τ)(u, u) ≥ d0‖u‖21/2,a2 − d0‖u‖20 .

Clearly for all u, v ∈ Ha2,1/2(Rn) the function τ 7→ E(τ)(u, v) is measur-
able. As in [9], Proposition 3.1, we find, for u, v ∈ Ha2,1/2(Rn),

(4.11) E(τ)(u, v)

=
1
2

∫
Rn

∫
Rn

(u(x+ y)− u(x))(v(x+ y)− v(x))
n∑

j=1

bj(τ, x)µj(dy) dx ,
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where µj is the image of µ̃j under the mapping Tj : R → Rn, ξj 7→
(0, . . . , 0, ξj , 0, . . . , 0), i.e. ξj is in the jth position. But (4.11) implies D.4.
Thus

(4.12) E(u, v) =
1
2

∫
R

∫
Rn

∫
Rn

(u(τ, x+ y)− u(τ, x))(v(τ, x+ y)− v(τ, x))

×
n∑

j=1

bj(τ, x)µj(dy) dx dτ −
∫
R

∫
Rn

∂u

∂τ
(τ, x) · v(τ, x) dx dτ

defined for u ∈ {w ∈ L2(R,Ha2,1/2(Rn)) : ∂w/∂τ ∈ L2(R,Ha2,−1/2(Rn))}
and v ∈ L2(R,Ha2,1/2(Rn)) gives a time dependent Dirichlet form. (We have
to make the usual modification in the case that u ∈ L2(R,Ha2,1/2(Rn)) and
v ∈ {w ∈ L2(R,Ha2,1/2(Rn)) : ∂w/∂τ ∈ L2(R,Ha2,−1/2(Rn))}.)

5. Non-local time dependent Dirichlet forms with variable coef-
ficients. II. In a series of papers [12]–[15] we constructed Feller semigroups
starting with certain pseudo-differential operators. The most general case
was treated in [15]. If these pseudo-differential operators are symmetric
on L2(Rn), we also get certain non-local Dirichlet spaces. It turns out that
we can make the whole construction also time dependent. The result will
be handled in this section while the proofs, which are essentially based on
the proofs in [15], are sketched in the appendix.

Let p : R × Rn × Rn → R be a continuous function such that for fixed
τ ∈ R and fixed x ∈ Rn the function p(τ, x, ·) : Rn → R is negative definite.
Further, suppose that for some x0 ∈ Rn we have

(5.1) p(τ, x, ξ) = p(τ, x0, ξ)+(p(τ, x, ξ)−p(τ, x0, ξ)) = p1(τ, ξ)+p2(τ, x, ξ) .

For p1 and p2 we impose the following assumptions:

P.1. There exists a continuous negative definite function a2 : Rn → R
satisfying (2.8) such that

(5.2) |p1(τ, ξ)| ≤ γ1(1 + a2(ξ))

for all ξ ∈ Rn and all τ ∈ R.

P.2. Let a2 be as in P.1. For some q ∈ N the function x 7→ p2(τ, x, ξ) is
q times differentiable and for any α ∈ Nn

0 , |α| ≤ q, there exists a function
ϕα ∈ L1(Rn) such that

(5.3) |∂α
x p2(τ, x, ξ)| ≤ ϕα(x)(1 + a2(ξ)) .

P.3. For all ξ ∈ Rn, |ξ| ≥ % ≥ 0,

(5.4) p1(τ, ξ) ≥ γ0a
2(ξ)

for all τ ∈ R.
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P.4. Define

(5.5) γb = caγ̃q

∑
|α|≤q

‖ϕα‖L1

∫
Rn

(1 + |y|2)(1−q)/2 dy , q > n+ 1 ,

where γ̃q is a constant such that

(1 + |ξ|2)q/2 ≤ γ̃q

∑
|α|≤q

|ξα| .

Then for some ε, 0 < ε < 1, we require the estimate

(5.6) γb ≤ (1− ε)γ0 .

P.5. Let γ0 be as in P.3 and set

(5.7) γc = γ̃q

∑
|α|≤q

‖ϕα‖L1

∫
Rn

(1 + |y|2)−q/2 dy , q > n .

Then we assume

(5.8) γc ≤ γ0/
√

24 .

P.6. The operator p(τ, x,D) is symmetric, i.e. for all u, v ∈ C∞
0 (Rn) and

any fixed τ ∈ R we have

(5.9)
∫

Rn

p(τ, x,D)u(x) · v(x) dx =
∫

Rn

u(x) · p(τ, x,D)v(x) dx .

In [16], Lemma 2.1, we gave an easy sufficient condition for p(τ, x,D) to
be symmetric if τ is fixed.

Theorem 5.1. Suppose that P.1–P.6 hold for some sufficiently large q.
Then for each fixed τ ∈ R the operator −p(τ, x,D) extends to a generator
of a symmetric Feller semigroup. Further , for each τ ∈ R it is possible to
associate with the operator −p(τ, x,D) a Dirichlet form E(τ) with domain
Ha2,1/2(Rn). The family (E(τ))τ∈R gives a time dependent Dirichlet space
in the sense of Y. Oshima and M. Pierre.

As mentioned before, the proof of the theorem will be sketched in the
appendix.

Finally, let us indicate how to get further time dependent Dirichlet spaces
from the examples already given. Let Ω ⊂ Rn be an open set. Then
C∞

0 (Ω) ⊂ Ha2,1/2(Rn) for any a2 under consideration. Clearly all estimates
also hold for this subspace. Since the contraction property needs only to be
checked on a dense subspace (see [18]) we conclude that if E(τ) is a symmetric
Dirichlet form on Ha2,1/2(Rn), then it is also a symmetric Dirichlet form
on H

a2,1/2
0 (Ω), the closure of C∞

0 (Ω) in Ha2,1/2(Rn). Thus we can apply
our previous results. However, the spaces Ha2,1/2(Rn) and Ha2,−1/2(Rn) in
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the definition of F must be substituted by H
a2,1/2
0 (Ω) and its dual space

[Ha2,1/2
0 (Ω)]′.

Appendix. In order to prove Theorem 5.1 we have to inspect the time
dependence in the key steps of the proof of Theorem 5.2 in [15].

Lemma I. Suppose that P.1–P.5 hold for q sufficiently large.

A. Define p̂2(τ, η, ξ) by

p̂2(τ, η, ξ) = (2π)−n/2
∫

Rn

e−ix·ηp2(τ, x, ξ) dx .

Then

(A.1) |p̂2(τ, η, ξ)| ≤ γ̃q

∑
|α|≤q

‖ϕα‖L1(1 + |η|2)−q/2(1 + a2(ξ)) .

B. For all u ∈ Ha2,s+t+1/2(Rn),

(A.2) ‖[(1 + a2(D))s, p2(τ, x,D)]u‖t,a2 ≤ c‖u‖s+t+1/2,a2

holds if q > n+ 2s+ 2|t|+ 4N + 4, where N ∈ N satisfies 0 < s−N ≤ 1.
C. For all t > 0 and all u ∈ Ha2,t+1(Rn),

(A.3) ‖p(τ, x,D)u‖t,a2 ≤ c‖u‖t+1,a2 .

D. Let E(τ)(u, v) = (p(τ, x,D)u, v)0. Then for all u, v ∈ Ha2,1/2(Rn),

(A.4) |E(τ)(u, v)| ≤ c‖u‖1/2,a2‖v‖1/2,a2

and

(A.5) E(τ)(u, u) ≥ εγ0‖u‖21/2,a2 − c0‖u‖20 .

P r o o f. A. For α ∈ Nn
0 , |α| ≤ q, we have∣∣∣ηα

∫
Rn

e−ix·ηp2(τ, x, ξ) dx
∣∣∣ =

∣∣∣ ∫
Rn

e−ix·η∂α
x p2(τ, x, ξ) dx

∣∣∣
≤
∫

Rn

ϕα(x)(1 + a2(ξ)) dx ,

which gives (A.1).
B. We have

|([(1 + a2(D))s, p2(τ, x,D)]u, v)0|
≤
∫

Rn

∫
Rn

|p̂2(τ, ξ − η, η)| · |(1 + a2(ξ))s − (1 + a2(η))s| · |û(η)| · |v̂(ξ)| dη dξ

and (A.1) immediately implies that the proof of Theorem 2.1 of [15] applies.
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C. Since for p1(τ,D) the estimate is trivial and by part B we have

‖p2(τ, x,D)u‖t,a2 ≤ ‖p2(τ, x,D)(1 + a2(D))tu‖0
+ ‖[(1 + a2(D))t, p2(τ, x,D)]u‖0 ,

we only have to prove ‖p2(τ, x,D)u‖0 ≤ c‖u‖1,a2 . For u ∈ Ha2,1(Rn) and
v ∈ L2(Rn) we find

(A.6) |(p2(τ, x,D)u, v)0| =
∣∣∣ ∫

Rn

p̂2(τ, ξ − η, η)û(η)v̂(ξ) dη dξ
∣∣∣

≤ γ̃q

∑
|α|≤q

‖ϕα‖L1

∫
Rn

∫
Rn

(1 + |ξ − η|2)−q/2(1 + a2(η))|û(η)| · |v̂(ξ)| dη dξ ,

which gives (A.3).
D. Clearly it suffices to prove (A.4) and (A.5) for u, v ∈ C∞

0 (Rn). First
we prove (A.4). For this note that

|E(τ)(u, v)| = |(p(τ, x,D)u, v)0|

≤
∣∣∣ ∫

Rn

p̂1(τ, ξ)û(ξ)v̂(ξ) dξ
∣∣∣

+
∣∣∣ ∫

Rn

p̂2(τ, ξ − η, η)û(η)v̂(ξ) dη dξ
∣∣∣ ,

which implies the estimate by our previous considerations. In order to get
(A.5) note first that

E(τ)(u, u) ≥
∫

Rn

p̂1(τ, ξ)|û(ξ)|2 dξ − |(p2(τ, x,D)u, u)0|

≥ γ0‖u‖21/2,a2 − c‖u‖20 − |(p2(τ, x,D)u, u)0|
and the definition of γb implies by (A.6) that

|(p2(τ, x,D)u, u)0| ≤ γb‖u‖21/2,a2 ,

which together with (5.6) gives the required estimate.
Now fix τ ∈ R. Then we find that for each λ ≥ c0, c0 given as in (A.5),

the representation problem:

Find u ∈ Ha2,1/2(Rn) such that for a given f ∈ L2(Rn),

(A.7) E(τ)(u, v) + λ(u, v)0 = (f, v)0

holds for all v ∈ Ha2,1/2(Rn),

has a unique solution.
We need further regularity properties for this solution.

Lemma II. Suppose that P.1–P.5 hold. Further , let t ≥ 0 and q > n +
2|t|+ 4N + 4, 0 < t−N ≤ 1.
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A. For all u ∈ Ha2,1/2(Rn) we have the estimate

(A.8) ‖u‖t+1,a2 ≤ γ(‖p(τ, x,D)u‖t,a2 + ‖u‖0) .

B. If u ∈ Ha2,1/2(Rn) is a solution of the representation problem (A.7),
then f ∈ Ha2,t(Rn), t ≥ 0, implies u ∈ Ha2,t+1(Rn).

P r o o f. A. By P.3 we have

‖p1(τ,D)u‖2t,a2 ≥ 1
2γ0‖u‖2t+1,a2 − c(%, t, a2)‖u‖20

and from (A.3) we get for any ε ∈ (0, 1),

‖p2(τ, x,D)u‖2t,a2 ≤ 2(1 + ε)2γ2
c‖u‖2t+1,a2 + c̃ ‖u‖20 .

Both estimates suffice in order to use the proof of Theorem 4.2 of [15] for
the new situation.

B. Once we have proved that

‖[Jε, p2(τ, x,D)]u‖t,a2 ≤ c‖u‖t+1/2,a2 ,

where Jε denotes the Friedrichs mollifier, we can use the proof of Theo-
rem 4.5 of [15]. But for u, v ∈ C∞

0 (Rn) we find

|([Jε, p2(τ, x,D)]u, v)0| =
∣∣∣ ∫

Rn

∫
Rn

p̂2(τ, η − ξ, ξ)r1(ξ, η, ε)û(ξ)v̂(η) dξ dη
∣∣∣ ,

where r1(ξ, η, ε) denotes the remainder in the Taylor expansion of the func-
tion ĵ(ε·), when j defines the mollifier, i.e. we have

ĵ(εξ) = ĵ(εη) + r1(ξ, η, ε) .

But now, by (A.1), it is clear that our estimates will be independent of τ .

Now, since p(τ, x,D) is symmetric, we can conclude from Lemmas I
and II that for each fixed τ a Dirichlet form E(τ) is defined on Ha2,1/2(Rn)
by

E(τ)(u, v) =
∫

Rn

p1(τ, ξ)û(ξ)v̂(ξ) dξ +
∫

Rn

∫
Rn

p̂2(τ, ξ − η, η)û(η)v̂(ξ) dη dξ .

Indeed, from Lemmas I and II it follows that for each fixed τ ∈ R the oper-
ator −p(τ, x,D) extends to the generator of a symmetric Feller semigroup,
which gives the contraction property for E(τ).
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[23] —, Représentant précis d’un potentiel parabolique, in: Sém. Théorie du Potentiel,
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