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SOME SOLVED AND UNSOLVED PROBLEMS IN
COMBINATORIAL NUMBER THEORY, II

BY

P. ERD Ő S AND A. S ÁRK ÖZY (BUDAPEST)

In an earlier paper [9], the authors discussed some solved and unsolved
problems in combinatorial number theory. First we will give an update of
some of these problems. In the remaining part of this paper we will discuss
some further problems of the two authors.

1. Remarks on an earlier paper. In this section we will give a survey
of the recent results related to the problems discussed in [9]. Throughout
this paper, the counting function of a set A of positive integers will be
denoted by A(n):

A(n) =
∑

a≤n,a∈A

1 .

Problem 1 in [9] was the following: Show the existence of an infinite
sequence A of positive integers a1 < a2 < . . . such that it is a Sidon set, i.e.,
all the sums ai + aj (with i ≤ j) are distinct, and

lim inf
n→∞

A(n)
n1/3

= ∞ .

The existence of such a sequence A was shown by Ajtai, Komlós and Sze-
merédi [1]. In fact, they proved that there is an infinite Sidon set A such
that

A(n) > 10−3(n log n)1/3 for n > n0 .

However, this seems to be far from the truth, and almost certainly, for all
ε > 0 there is an infinite Sidon set A such that

A(n) > n1/2−ε for n > n0(ε) .

See Erdős and Freud [4] for further related problems.
In Problem 2, we discussed the following question: If A = {a1, . . . , aN}

(with a1 < . . . < aN ) is a sequence of positive integers and t is a positive
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integer, then let f(N,A, t) denote the number of solutions of
N∑

i=1

εiai = t where εi = 0 or 1 .

Improving on a result of Erdős and Moser, Sárközy and Szemerédi proved
that

f(N,A, t) < c
2N

N3/2
.

In Problem 2, we asked for the best possible value of this constant c. This
question has been settled by Stanley [33] and, in fact, he has shown that
for fixed N , f(N,A, t) is maximal if and only if the elements of A form an
arithmetic progression and t = 1

2

∑N
i=1 ai.

In Problem 5, we asked for the proof of the existence of sequences A ⊂
{1, . . . , N} such that

(1) a− a′ = p− 1, a ∈ A, a′ ∈ A, p prime,

cannot be solved and we have
A(N)
log N

→∞ as N →∞ .

This question was settled by the authors in [8] where we showed the existence
of sequences A ⊂ {1, . . . , N} such that (1) cannot be solved and

(2)
A(N)
log N

� log2N log4N

(log3N)2

(where logkN denotes the k-fold logarithm), and Ruzsa [32] improved (2)
to

A(N) � exp
(

(1− ε) log 2
log N

log2N

)
.

In Problem 9, we asked the following question: Let a1 < . . . < an be a
sequence of positive integers which contains the first k positive integers:

(3) a1 = 1, a2 = 2, . . . , ak = k .

What can be said on the number of distinct products of the form
∏n

i=1 aεi
i

(where εi = 0 or 1 for i = 1, . . . , n)? For fixed n and k, let F (n, k) denote
the minimal number of the distinct products (the minimum taken over all
sequences a1, . . . , an satisfying (3)). We asked whether for all ω > 0, there
is a k0(ω) such that

F (n, k) > n2kω for k > k0(ω) .

Moreover, we conjectured that for k > k1,

n2 exp(c1k/ log k) < F (n, k) < n2 exp(c2k/ log k) .
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In [10], the authors proved the slightly weaker inequality

n2 exp(c1k/(log k)2) < F (n, k) < n2 exp(c2k/ log k) .

In Problem 10, we studied the following problem: Let N be a positive
integer. Let EN denote the set of the 2N sequences ε = {ε1, . . . , εN}, where
εi = −1 or +1 for i = 1, . . . , N . Let

F (N) = min
ε∈EN

max
k,n,q

1≤n≤n+(k−1)q≤N

∣∣∣k−1∑
i=0

εn+iq

∣∣∣ .

By a result of Roth [31] we have

F (N) � N1/4 ,

and in [9] we proved that

F (N) � N1/3(log N)2/3 .

The problem was to tighten the gap between these bounds. Moreover, we
conjectured that for ε > 0, N > N0(ε) we have

F (N) � N1/4+ε .

This conjecture has been proved by Beck [2] who showed that

F (N) � N1/4(log N)5/2 .

In Problems 15–17, we studied sets of points in the n-dimensional Eu-
clidean space such that for every pair of distinct points P , Q selected from
the given set, the distance between P and Q is “far” from the closest inte-
ger. No progress has been made in connection with these problems. Here
we would like to add a further related problem.

Problem 1. Denote the area of the triangle PQR by A(P,Q,R), and de-
note the distance from the real number x to the closest integer by ‖x‖ so that
‖x‖ = min(x− [x], [x] + 1−x). Does there exist a positive number ε and an
infinite sequence of points P1, P2, . . . in the plane so that ‖A(Pi, Pj , Pk)‖ > ε
for all (1 ≤) i < j < k? Moreover, for ε > 0 and N → ∞, estimate the
maximal number t = t(ε, N) of points P1, . . . , Pt in a circle of radius N with
the property that ‖A(Pi, Pj , Pk)‖ > ε for all 1 ≤ i < j < k ≤ t. Note that
this problem is closely related to a problem of Heilbronn; see [29] and [30].

2. Additive problems. If A is a set of positive integers, then let
R1(n), R2(n), R3(n) denote the number of solutions of

a + a′ = n, a, a′ ∈ A,

a + a′ = n, a, a′ ∈ A, a < a′ ,

and
a + a′ = n, a, a′ ∈ A, a ≤ a′,
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respectively. In [16], [17], and [21]–[23], Erdős, Sárközy and T. Sós studied
the functions R1(n), R2(n) and R3(n). We have not been able to settle the
following problems:

Problem 2. Put

B(A, n) =
∑

a≤n,a−1 6∈A,a∈A

1 .

In [21] we proved that

(i) if A is an infinite set such that

lim
n→∞

B(A, n)
n1/2

= ∞ ,

then |R1(n + 1)−R1(n)| cannot be bounded;
(ii) for all ε > 0, there exists an infinite sequence A such that

B(A, n) � N1/2−ε

and R1(n) is bounded so that also |R1(n + 1)−R1(n)| is bounded;
(iii) there exists an infinite sequence A such that

lim sup
n→∞

B(A, n)
n1/2

> 0

and |R1(n + 1)−R1(n)| is bounded.

The problem is to show that (i) can be sharpened in the following way:
If A is an infinite set such that

lim sup
n→∞

B(A, n)
n1/2

= ∞

or

lim inf
n→∞

B(A, n)
n1/2

> 0

(perhaps, it suffices to assume that lim infn→∞B(A, n)(log n)/n1/2 = ∞),
then |R1(n + 1)−R1(n)| cannot be bounded.

Problem 3. In [22], Erdős, Sárközy and T. Sós proved that if A is an
infinite set such that

(4) A(n) = o(n/ log n) ,

then the function R2(n) cannot be increasing (from a certain point on). On
the other hand, we showed that there is an infinite set A such that

(5) A(n) < n− cn1/2

and R2(n) is increasing. The problem is to tighten the gap between (4) and
(5). The latter seems to be closer to truth, and, in fact, we conjecture that
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if R2(n) is increasing, then

A(n) ∼ n

must hold.

Problem 4. Erdős, Sárközy and T. Sós [23] proved that if A is an
infinite set such that R3(n) is increasing from a certain point on, then

lim
n→∞

n−A(n)
log n

= ∞

cannot hold. We conjecture that R3(n) is increasing from a certain point
on if and only if A contains all the integers from a certain point on:

A ∩ {n0, n0 + 1, n0 + 2, . . .} = {n0, n0 + 1, n0 + 2, . . .}

for some positive integer n0. The problem is to prove this conjecture.

Problem 5. Let A be a finite or infinite Sidon set (see Section 1),
and let b1 < b2 < . . . denote the integers that can be represented in the
form a + a′ = bi with a, a′ ∈ A. The problem is to estimate the function
F (A, n) = maxbi≤n(bi+1 − bi). Note that it follows from a result of Erdős
(see [34]) that for infinite Sidon sets A we have

lim sup
n→∞

F (A, n)
log n

> 0 .

Problem 6. Let A be an infinite Sidon set, define b1, b2, . . . as in Prob-
lem 5, write B(A) = {b1, b2, . . .}, and let G(A, n) denote the number of pos-
itive integers k such that k ≤ n and 2k ∈ B(A) but 2k + 1 6∈ B(A). Erdős,
Sárközy and T. Sós proved that G(A, n) →∞ and, in fact, G(A, n) � A(n).
The problem is to estimate G(A, n) (in terms of A(n)), in particular, to de-
cide whether G(A, n)/A(n) →∞ must hold.

In the next three problems, we shall use the following notations: If S is
a given set and A1, . . . ,Ak are subsets of S with

S =
k⋃

i=1

Ai, Ai ∩ Aj = ∅ for i 6= j ,

then {A1, . . . ,Ak} is called a k-partition (or k-colouring) of S, and the
subsets A1, . . . ,Ak are referred to as classes. If f(x1, . . . , xt) is a given
function of t variables and

(6) f(a1, . . . , at) = n

with a1, . . . , at belonging to the same class, then this is called a monochro-
matic representation of n in the form (6). If N is a positive integer and
Pk = {A1, . . . ,Ak} is a k-partition of {1, . . . , N}, then let F (Pk, N) denote
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the number of even integers not exceeding N that have a monochromatic
representation in the form

a1 + a2 = n with a1 6= a2 .

Problem 7. Erdős, Sárközy and T. Sós [24] proved that for every posi-
tive integer N and every 2-partition P2 of {1, . . . , N} we have

F (P2, N) >
N

2
− c log N ;

moreover, for every positive integer N , every integer k > 2 and every k-
partition Pk of {1, . . . , N} we have

(7) F (Pk, N) >
N

2
− cN1−2k−1

;

finally, for every positive integer N and every integer k ≥ 2 there is a
k-partition Pk of {1, . . . , N} such that

F (Pk, N) <
N

2
− ck log N .

The problem is to improve on (7); in fact, we guess that for every integer
k ≥ 2 there is an α(k) such that for every positive integer N > N0(k) and
every k-partition Pk of {1, . . . , N} we have

F (Pk, N) >
N

2
− (log N)α(k) .

Problem 8. Let f(x) be a polynomial with integer coefficients such that
2 is a prime divisor of it. Is it true that for any k-partition of the set of
positive integers there is a positive integer x (or there are infinitely many
positive integers x) such that

a1 + a2 = f(x)

has a monochromatic solution with a1 6= a2? (Some further problems can
be found in [24].)

3. Multiplicative problems

Problem 9. In [18], the authors studied multiplicative analogues of the
problems studied in [24]. In particular, we proved that for every ε > 0 there
is a 3-partition {A1,A2,A3} of the set of positive integers such that the lower
asymptotic density of the sequence of distinct monochromatic products aa′

is less than ε. On the other hand, we have not been able to decide whether
it is necessary to take three classes here. In other words, the problem is to
decide whether for every ε > 0, there is a 2-partition {A1,A2} of the set of
positive integers such that the lower asymptotic density of the sequence of
distinct monochromatic products aa′ is less than ε.
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Problem 10. Let A be a finite or infinite sequence of positive integers,
and write

f(A, x) =
∑

a∈A,a≤x

1
a

,

d(A, n) =
∑

a∈A,a|n

1 , D(A, x) = max
n≤x

d(A, n) .

In [12]–[15] the authors estimated D(A, x) in terms of f(A, x). Next we
shall discuss three related problems that we have not been able to settle.
The first problem:

In [14] we proved that for all ω > 0 and for x > x0(ω),

(8) f(A, x) > (log log x)20

implies that
D(A, x) > ωf(A, x) .

Is it true that for x > x0(ε, ω), (8) can be replaced by

f(A, x) > (log log x)1+ε?

Problem 11. It follows from Theorem 2 in [14] that if A is an infinite
sequence such that

lim inf
x→∞

f(A, x)
log log log x

> 22 ,

then we have

(9) lim
x→∞

D(A, x)
f(A, x)

= ∞ .

On the other hand, we showed that there is an infinite sequence A such that

lim inf
x→∞

f(A, x)
log log log x

≥ c (> 0)

(we did not compute c explicitly) and

lim
x→∞

D(A, x)
f(A, x)

< ∞ .

The problem is to determine the smallest constant c such that

lim inf
x→∞

f(A, x)
log log log x

> c

implies (9).

Problem 12. Is it true that for all ω > 0, there exist constants c = c(ω)
and x0 = x0(ω) such that x > x0 and

f(A, x) > c
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imply that

D(A, x2) > (f(A, x))ω?

Problem 13. Let k and x be positive integers such that k ≤ x, and
consider all the sets A such that A ⊂ {1, . . . , x} and if a1 < . . . < ak,
a1 ∈ A, . . . , ak ∈ A, then the product a1 . . . ak is never a square. Let F (k, x)
denote the maximum of the cardinalities of these sets A. The function
F (k, x) was studied by Erdős, Sárközy and T. Sós in [25]. In particular, we
proved that for x →∞ we have

F (2, x) =
(

6
π2

+ o(1)
)

x ,

x− x

(log x)c1
< F (3, x) < x− x

(log x)c2
,

F (2k, x) = o(x) for k ≥ 2

and

F (2k + 1, x) ≥ (log 2 + o(1))x for k ≥ 2 .

The most interesting problem that we have not been able to settle is the
following: Is it true that

lim
x→∞

F (2k + 1, x)
x

= 1

for k ≥ 2 (as for k = 1)?

4. Arithmetic functions. ω(n) denotes the number of distinct prime
factors of n, and ϕ(n) denotes Euler’s function. Erdős, Pomerance and
Sárközy [5]–[7] studied the solvability of the equation

x + ω(x) = y + ω(y)

and other related questions. The most interesting related unsolved problems
are the following:

Problem 14. Show that for infinitely many positive integers n the
equation

x + ω(x) = n

has at least 3 solutions.

Problem 15. Show that for every positive integer k there are infinitely
many positive integers n such that the equation

x + ω(x) = n + i

has at least 2 solutions for each i = 1, . . . , k.
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Problem 16. Show that for all K > 0 there is a positive integer n such
that the equation

x + ϕ(x) = n

has more than K solutions.

5. Miscellaneous problems

Problem 17. Let mk denote the smallest positive integer m such that

ω

((
m

k

))
> k

(where ω(n) denotes the number of distinct prime factors of n). In [11] the
authors proved that for k > k0(ε) we have

mk > k2(log k)4/3−ε ,

and it follows from results of Erdős and Selfridge [28] that

mk < ke+ε .

The problem is to show that there is a positive constant c such that

mk � k2+c .

Problem 18. Denote the greatest prime factor of n by P (n), and let nk

denote the smallest integer n for which

P (n + i) > k for all 1 ≤ i ≤ k .

In [11] we proved that
nk � k5/2

and Erdős [3] showed that

(10) nk < klog k/ log log k .

The problem is to show that for all t we have

nk > kt if k > k0(t) .

(In fact, (10) seems to be close to the “truth”.)

Problem 19. If k, n are positive integers, then let Fk(n) denote the
cardinality of the largest subset of {1, . . . , n} which does not contain k pair-
wise coprime integers. The function Fk(n) was studied by Erdős, Sárközy
and Szemerédi in [26], [27] and [19], and these papers contain many related
unsolved problems. The most interesting unsolved problem is the following
conjecture: if Gk(n) denotes the number of those integers not exceeding
n which are multiples of at least one of the first k primes, then we have
Fk(n) = Gk(n).
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Problem 20. If A is a finite set of positive integers, then let P(A)
denote the set of subset sums, i.e., the set of distinct positive integers n
that can be represented in the form n =

∑
a∈A εaa where εa = 0 or 1 for all

a. In [20] the authors studied the occurrence of arithmetic progressions in
P(A). The most interesting related problem that we have not been able to
settle is the following: If N is an integer with N ≥ 3, then let t(N) denote
the least integer t such that for every A ⊂ {1, . . . , N} with |A| ≥ t the set
P(A) contains three consecutive multiples of a positive integer. We have
proved that

t(N) ≥
[
log N

log 3

]
+ 2

but we do not have any reasonable upper bound for t(N). The problem is
to give a good upper bound and possibly an asymptotics for t(N).

REFERENCES
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[3] P. Erd ő s, Problems and results on consecutive integers, Publ. Math. Debrecen 23
(1976), 271–282.
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