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Introduction. Throughout this paper X denotes a Banach space, C a
subset of X (not necessarily convex), and T : C → C a self-mapping of C.
There appear in the literature two definitions of asymptotically nonexpan-
sive mapping. The weaker definition (cf. Kirk [14]) requires that

lim sup
n→∞

sup
y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0

for every x ∈ C, and that TN be continuous for some N ≥ 1. The stronger
definition (cf. Goebel and Kirk [8]) requires that each iterate Tn be Lip-
schitzian with Lipschitz constants Ln → 1 as n → ∞. For our iteration
method we find it convenient to introduce a definition somewhere between
these two: T is asymptotically nonexpansive in the intermediate sense pro-
vided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0 .

Many papers on the weak convergence of iterates of asymptotically non-
expansive mappings have appeared recently; their setting is either a uni-
formly convex space with a Fréchet-differentiable norm or a uniformly con-
vex space with the Opial property. In this paper we are primarily interested
in a generalization of the second case. Our proofs are not only simpler, they
are more general: when τ is a Hausdorff linear topology and X satisfies the
uniform τ -Opial property, we prove that {Tnx} is τ -convergent if and only
if {Tnx} is τ -asymptotically regular, i.e.

Tn+1x− Tnx
τ→ 0 .

The τ -limit is a fixed point of T .
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In the second part of the paper we show how to construct (in uniformly
convex Banach spaces) a fixed point of a mapping which is asymptotically
nonexpansive in the intermediate sense as the τ -limit of a sequence {xi}
defined by an iteration of the form

xi+1 = αiT
nixi + (1− αi)xi ,

where {αi} is a sequence in (0, 1) bounded away from 0 and 1 and {ni} is
a sequence of nonnegative integers. Schu [25] has considered this iteration
for ni ≡ i, under the assumptions that X is Hilbert, C is compact, and Tn

has Lipschitz constant Ln ≥ 1 such that
∑

n(L2
n − 1) < +∞; our results

considerably generalize this result.
Recall the classical definition of the Opial property: whenever xn ⇀ x,

then

lim sup
n

‖xn − x‖ < lim sup
n

‖xn − y‖

for all y 6= x, where ⇀ denotes weak convergence. Henceforth we shall de-
note by τ a Hausdorff linear topology on X. The τ -Opial property is defined
analogously to the classical Opial property, replacing weak convergence by
τ -sequential convergence. We say that X has the uniform τ -Opial property
if for each c > 0 there exists r > 0 with the property that for each x ∈ X
and each sequence {xn} the conditions

xn
τ→ 0, 1 ≤ lim sup

n
‖xn‖ < +∞, ‖x‖ ≥ c

imply that lim supn ‖xn − x‖ ≥ 1 + r (cf. Prus [21]). Note that a uniformly
convex space which has the τ -Opial property necessarily has the uniform
τ -Opial property.

τ-Convergence of iterates. A common thread in each of our theorems
is the convergence of a sequence of real numbers. We separate out the
principle, but it is too trivial to offer a proof:

Lemma 1. Suppose {rk} is a bounded sequence of real numbers and
{ak,m} is a doubly-indexed sequence of real numbers which satisfy

lim sup
k

lim sup
m

ak,m ≤ 0, rk+m ≤ rk + ak,m for each k, m ≥ 1 .

Then {rk} converges to an r ∈ R; if ak,m can be taken to be independent of
k, ak,m ≡ am, then r ≤ rk for each k.

Theorem 1. Suppose X has the uniform τ -Opial property , C is a norm-
bounded , sequentially τ -compact subset of X , and T : C → C is asymp-
totically nonexpansive in the weak sense. If {yn} is a sequence in C such
that limn ‖yn −w‖ exists for each fixed point w of T , and if {yn − T kyn} is



NONEXPANSIVE MAPPINGS 171

τ -convergent to 0 for each k ≥ 1, then {yn} is τ -convergent to a fixed point
of T.

P r o o f. We shall begin by proving that if {yni
} is a subsequence such

that yni

τ→ z, then z = Tz. Define

rk = lim sup
i

‖T kyni − z‖, am = sup
y∈C

(‖Tmy − Tmz‖ − ‖y − z‖) .

By the Opial property

(1) rk+m = lim sup
i

‖T k+myni−z‖ ≤ lim sup
i

‖T k+myni−Tmz‖ ≤ rk +am ,

where lim supm am ≤ 0 by the weak definition of asymptotically nonexpan-
sive. By Lemma 1, therefore, limk rk = r exists and r ≤ rk for each k ≥ 1.
Thus, given ε > 0, (1) implies that for sufficiently large k and m,

r ≤ lim sup
i

‖T k+myni − Tmz‖ < r + ε .

By the uniform τ -Opial property, limm Tmz = z. Since TN is continuous,
z is therefore a fixed point of TN , and since

z = lim
j

T jN+1z = lim
j

TT jNz = Tz ,

z is also a fixed point of T .
We have proved that τ -subsequential limits of {yn} must be fixed points

of T . Opial’s classical argument [20] can now be followed to deduce that
{yn} is τ -convergent to a fixed point of T ; for otherwise, by the sequential
τ -compactness of C, there must exist z1 6= z2 and subsequences {yni} and
{ymi} such that yni

τ→ z1 and ymi

τ→ z2. By the Opial property,

lim sup
i

‖yni − z1‖ < lim sup
i

‖yni − z2‖

and
lim sup

i
‖ymi − z2‖ < lim sup

i
‖ymi − z1‖.

But this is impossible; the sequences {‖yn − z1‖} and {‖yn − z2‖} both
converge, so the limsup’s over subsequences are actually limits over the full
sequence.

Theorem 2. Suppose the Banach space X has the uniform τ -Opial prop-
erty , and let C be a nonempty , norm-bounded , sequentially τ -compact subset
of X. If T : C → C is asymptotically nonexpansive in the weak sense and
x ∈ C, then {Tnx} is τ -convergent if and only if it is τ -asymptotically
regular. The τ -limit of {Tnx} is a fixed point of T.

P r o o f. It is obvious that if {Tnx} is τ -convergent, then Tn+1x− Tnx
τ→ 0. Conversely, suppose that Tn+1x− Tnx

τ→ 0.
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If w is a fixed point of T , define

rk = ‖T kx− w‖, am = sup
y∈C

(‖Tmy − w‖ − ‖y − w‖) ,

so that rk+m ≤ rk + am. By the asymptotic nonexpansiveness of T ,
lim supm am ≤ 0, hence by Lemma 1, {rn} converges. We have proved that
{‖Tnx − w‖} converges for each fixed point w of T . By the τ -asymptotic
regularity of T ,

Tnx− T kTnx
τ→ 0 as n →∞

for each integer k ≥ 1. Theorem 1 now shows that {Tnx} is τ -convergent to
a fixed point of T . (In particular, this proves that T has a fixed point.)

R e m a r k 1. In the case X is a Hilbert space and τ is its weak topology,
Theorem 1 was proved by Bruck in [4]. In this case the result also follows
from the nonlinear mean ergodic theorem [1, 22, 23]. See [2, 5, 10, 11,
19, 24, 26, 28] for more recent results and a comprehensive and updated
bibliography.

R e m a r k 2. There is still another definition of “asymptotically nonex-
pansive” mapping which appears in the literature:

lim sup
n

‖Tnx− Tny‖ ≤ ‖x− y‖ for each x, y ∈ C .

However, this is unsatisfactory from the point of view of fixed point theory:
Tingley [27] has constructed an example of a bounded closed convex C
in Hilbert space and a continuous but fixed-point-free T : C → C which
actually satisfies

lim
n
‖Tnx− Tny‖ = 0 for each x, y ∈ C .

In his example it is even true that {Tne1} is weakly convergent to 0, but of
course 0 is not a fixed point.

The proof of Theorem 1 can also be applied to asymptotically nonex-
pansive commutative semigroups. Let C be a nonempty subset of a Ba-
nach space X. Let T = {T (t) : t ≥ 0} be a family of mappings from C
into itself. T is called an asymptotically nonexpansive semigroup on C if
T (t+ s) = T (t)T (s) for all s, t ≥ 0, T (t0) is continuous for some t0 > 0, and
for each x ∈ C,

lim sup
t→+∞

sup
y∈C

(‖T (t)x− T (t)y‖ − ‖x− y‖) ≤ 0 .

Theorem 3. In the setting of Theorem 1, a trajectory {T (t)x} of an
asymptotically nonexpansive semigroup T on C is τ -convergent as t → +∞
iff T (t+s)x−T (t)x τ→ 0 as t → +∞ for each s ≥ 0. The limit is a common
fixed point of T .
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R e m a r k 3. Theorems 2 and 3 can be easily generalized to metric spaces
(X, d).

R e m a r k 4. Theorems 2 and 3 can be proved in the nonexpansive case
under the weaker assumption that X has the Opial property and τ is “locally
metrizable” (see Dye, Kuczumow, Lin and Reich [6] and Kuczumow [15]).

An averaging iteration of Schu. J. Schu [25] considered the averaging
iteration

xi+1 = αiT
ixi + (1− αi)xi

when T : C → C is asymptotically nonexpansive in the stronger, Lip-
schitzian sense. Here {αi} is a sequence in (0, 1) which is bounded away
from 0 and 1. We shall consider, instead, the more general iteration

(2) xi+1 = αiT
nixi + (1− αi)xi ,

where {ni} is a sequence of nonnegative integers (which need not be increas-
ing). A strictly increasing sequence {mi} of positive integers will be called
quasi-periodic if the sequence {mi+1−mi} is bounded (equivalently, if there
exists b > 0 so that any block of b consecutive positive integers must contain
a term of the sequence).

Theorem 4. Suppose X is a uniformly convex Banach space, C is a
bounded convex subset of X , and T : C → C is asymptotically nonexpansive
in the intermediate sense. Put

cn = max(0, sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖)) ,

so that limn cn = 0. Suppose {ni} is a sequence of nonnegative integers such
that ∑

i

cni < +∞

and such that
O = {i : ni+1 = 1 + ni}

is quasi-periodic. Then for any x1 ∈ C and {xi} generated by (2) for i ≥ 1,
we have limi ‖xi−Txi‖ = 0. If , in addition, τ is a Hausdorff linear topology
such that C is sequentially τ -compact and X has the τ -Opial property , then
{xi} is τ -convergent to a fixed point of T.

P r o o f. We have not assumed C is closed, but since T is uniformly
continuous it (and its iterates) can be extended to the (norm) closure C
with the same modulus of uniform continuity and the same constants cn, so
it does no harm to assume C itself is closed. By a theorem of Kirk [14], T
has at least one fixed point w in C.
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We begin by showing that for a fixed point w, the limits limi ‖xi − w‖
and limi ‖Tnixi − w‖ exist and are equal. From (2) we have

‖xk+1 − w‖ ≤ αk‖Tnkxk − w‖+ (1− αk)‖xk − w‖
= αk‖Tnkxk − Tnkw‖+ (1− αk)‖xk − w‖
≤ αk(‖xk − w‖+ cnk

) + (1− αk)‖xk − w‖ ≤ ‖xk − w‖+ cnk
,

and hence that

(3) ‖xk+m − w‖ ≤ ‖xk − w‖+
k+m−1∑

i=k

cni .

Applying Lemma 1 with rk = ‖xk − w‖ and ak,m =
∑k+m−1

i=k cni , we see
that limi ‖xi − w‖ = r exists for each fixed point w of T .

If r = 0 then we immediately obtain

‖Txi − xi‖ ≤ ‖Txi − w‖+ ‖w − xi‖ = ‖Txi − Tw‖+ ‖w − xi‖ ,

and hence by the uniform continuity of T , that limi ‖xi−Txi‖ = 0. There-
fore we must also have

‖Tnixi − w‖ = ‖Tnixi − Tniw‖ ≤ cni + ‖xi − w‖ → 0

as i →∞.
If r > 0, we shall prove that limi ‖Tnixi − w‖ = r by showing that for

any increasing sequence {ij} of positive integers for which limj ‖Tnij xij−w‖
exists, it follows that the limit is r. Without loss of generality we may
assume that the corresponding subsequence {αij

} converges to some α; we
shall have α > 0 because {αi} is assumed to be bounded away from 0.

Thus we have
r = lim

i
‖xi − w‖ = lim

j
‖xij+1 − w‖

= lim
j
‖αij

Tnij xij
+ (1− αij

)xij
− w‖

≤ α lim inf
j

‖Tnij xij
− w‖+ (1− α)r

≤ α lim sup
j

‖Tnij xij − w‖+ (1− α)r

≤ α lim sup
j

(‖xij − w‖+ cnij
) + (1− α)r

≤ α lim sup
j

‖xij − w‖+ (1− α)r = r .

This completes the proof that

lim
i
‖xi − w‖ = r = lim

i
‖Tnixi − w‖ .

Let δ : [0, 2] → [0, 1] be the modulus of uniform convexity of X, so that
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whenever 0 < α < 1 and at least one of u, v is not zero, then

2 min(α, 1− α)δ
(

‖u− v‖
max(‖u‖, ‖v‖)

)
≤ 1− ‖αu + (1− α)v‖

max(‖u‖, ‖v‖)
.

Take u = Tnixi − w and v = xi − w; then

2 min(αi, 1− αi)δ
(
‖Tnixi − xi‖
max(‖u‖, ‖v‖)

)
≤ 1− ‖αiu + (1− αi)v‖

max(‖u‖, ‖v‖)

= 1− ‖xi+1 − w‖
max(‖Tnixi − w‖, ‖xi − w‖)

.

Since ‖Tnixi−w‖, ‖xi−w‖ and ‖xi+1−w‖ all converge to r > 0 as i →∞,
and since {αi} remains bounded away from 0 and 1, we conclude that

lim
i

δ(‖Tnixi − xi‖/r) = 0 .

Therefore

(4) lim
i
‖Tnixi − xi‖ = 0 .

This is equivalent to

(5) lim
i
‖xi − xi+1‖ = 0 .

We claim that xj − Txj → 0 as j → ∞ through O. Indeed, since
nj+1 = 1 + nj for such j, we have

‖xj − Txj‖ ≤ ‖xj − xj+1‖+ ‖xj+1 − Tnj+1xj+1‖(6)
+ ‖Tnj+1xj+1 − Tnj+1xj‖+ ‖TTnj xj − Txj‖

≤ ‖xj+1 − xj‖+ ‖xj+1 − Tnj+1xj+1‖
+ ‖xj+1 − xj‖+ cnj+1 + ‖TTnj xj − Txj‖ .

By (4)–(6) and the uniform continuity of T , we conclude that ‖xj−Txj‖ → 0
as j →∞ through O.

But since O is quasi-periodic, there exists a constant b > 0 such that for
each positive integer i we can find ji ∈ O with |ji− i| ≤ b. Thus (5) and the
uniform continuity of I −T imply xi−Txi → 0 as i →∞ through all of N.

If X has the τ -Opial property and C is τ -sequentially compact, the strong
convergence of ‖xi − Txi‖ to 0 implies xi − Txi

τ→ 0. Applying Theorem 1,
we conclude that {xi} is τ -convergent to a fixed point of T .

R e m a r k 5. Schu [25] assumed that X is Hilbert and that the iterates
Tn have Lipschitz constants Ln ≥ 1 such that

∑
n(L2

n− 1) converges. Even
for Schu’s original iteration (ni ≡ i), Theorem 4 is more general, since the
convergence of

∑
n(L2

n − 1) implies that of
∑

n(Ln − 1), which in turn
assures the convergence of our

∑
n cn.
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We can always choose a sequence {ni} satisfying the conditions of The-
orem 4: since limn cn = 0, we can choose a subsequence {cmi} such that∑

i cmi < +∞ and
∑

i c1+mi < +∞, then put n2i = mi and n2i+1 = 1+mi.
If T is nonexpansive we can take n2i = 1, n2i+1 = 0, recovering a well-

known result on the iteration of averaged mappings (although it is not as
general as the theorems of Ishikawa [13] and Edelstein and O’Brien [7] on
asymptotic regularity).

Theorem 4 would be more satisfying if we had no condition of quasi-
periodicity on {ni}, but we do not know whether such a result is true.

The uniform Opial property. We conclude by recalling a few exam-
ples of spaces with the uniform Opial property.

Example 1. If X is a Banach space with a weakly sequentially continu-
ous duality map JΦ associated with a gauge function Φ which is continuous,
strictly increasing, with Φ(0) = 0 and limt→+∞ Φ(t) = +∞, then X has
the uniform Opial property with respect to the weak topology (cf. Gossez
and Lami-Dozo [12]). In particular, `p has the uniform Opial property with
respect to the weak topology for 1 < p < +∞.

Example 2. `1 = c∗0 has the uniform Opial property with respect to the
weak-∗ topology (cf. Goebel and Kuczumow [9], Lim [18]).

Example 3. The James Tree JT = B∗ (B is generated by the biorthog-
onal functionals {fn,i} corresponding to the basis {en,i}) has the uniform
Opial property with respect to its weak-∗ topology. This is also true for the
James space J = I∗ (I is generated by the biorthogonal functionals {fi}
corresponding to the basis {e1 + . . . + en}). See Kuczumow and Reich [16]
for details.

Example 4. It is known that Lp[0, 1] does not have the Opial property
for 1 ≤ p ≤ +∞ and p 6= 2 (Opial [20]). Nevertheless, if (Ω,Σ, µ) is a
positive σ-finite measure space, then for 1 ≤ p < +∞ the space Lp(µ) does
have the uniform Opial property with respect to the topology of convergence
locally in measure (cf. Brezis and Lieb [3], Lennard [17]).
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Added in proof. It seems worthwhile to point out that Schu’s iteration is valid in
the class of spaces in which the nonlinear mean ergodic theorem is usually set:

THEOREM 5. If , in Theorem 4, τ is the weak topology , then the conclusion remains
valid if the hypothesis that X has the τ -Opial property is replaced by the hypothesis that
X has Fréchet differentiable norm, and the assumption that T is asymptotically nonex-
pansive in the intermediate sense is strengthened to the strong (Lipschitzian) asymptotic
nonexpansiveness of T .

We sketch the proof: first, as in Theorem 4 we have limi ‖xi − Txi‖ = 0. Xu [28] has
proved that I − T is demiclosed, which in our context means:

(7) All weak subsequential limits of {xi} are fixed points of T.

To prove the uniqueness of the weak subsequential limit we use an “orthogonality”
relationship between fixed points, as in the proof of the nonlinear mean ergodic theorem.
The idea is adapted from S. Reich [Weak convergence theorems for nonexpansive mappings
in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274–276].
Put Si = αiT

ni + (1 − αi)I and, for k ≥ j, S(k, j) = Sk−1Sk−2 . . . Sj , so that
xk = S(k, j)xj . Let Lkj denote the Lipschitz constant of S(k, j). The condition of Theorem
4 that

∑
cni < +∞ implies that

(8) lim
j→∞

sup
k≥j
Lkj = 1.

The proof of Theorem 4 that {‖xi − w‖} converges for each fixed point w of T is still
valid, but we need a stronger result:

(9) {‖txi + (1− t)w1 − w2‖} converges for all fixed points w1, w2 and all 0 < t < 1.

It follows from R. E. Bruck [A simple proof of the mean ergodic theorem for nonlinear
contractions in Banach spaces, Israel J. Math. 32 (1979), 107–116] that there exists a
strictly increasing, continuous convex function γ : [0,+∞)→ [0,+∞) with γ(0) = 0 such
that for each S : C → C with Lipschitz constant L,

‖S(tu1 + (1− t)u2)− tSu1 − (1− t)Su2‖ ≤ Lγ−1
(
‖u1 − u2‖ −

1
L
‖Su1 − Su2‖

)
for all u1, u2 ∈ C and 0 < t < 1. Applying this to u1 = xj , u2 = w1, a fixed point of T ,
and S = S(k, j) for k ≥ j, we see by virtue of (8) and the convergence of {‖xi−w1‖} that

(10) lim
j→∞

sup
k≥j
‖S(k, j)(txj + (1− t)w1)− txk − (1− t)w1‖ = 0.

Since

‖txk + (1− t)w1 − w2‖ ≤ ‖txk + (1− t)w1 − S(k, j)(txj + (1− t)w1)‖

+ ‖S(k, j)(txj + (1− t)w1)− w2‖

≤ ‖txk + (1− t)w1 − S(k, j)(txj + (1− t)w1)‖

+ Lkj‖txj + (1− t)w1 − w2‖ ,

(9) follows from (8) and (10) by first taking the lim sup as k → ∞ and then taking the
lim inf as j →∞.
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Put gi(t) = (1/2)‖txi + (1 − t)w1 − w2‖2. We have proved that limi gi(t) exists. By
the hypothesis of Fréchet differentiability of the norm,

lim
t→0+

gi(t)− gi(0)
t

= 〈xi − w1, J(w1 − w2)〉

exists uniformly in i, where J is the normalized duality map of X (the gradient of
(1/2)‖ · ‖2). It is an elementary exercise in analysis that if a sequence {gi} of functions is
pointwise convergent and equidifferentiable from the right at a point, then the sequence
of derivatives converges at the point; thus

(11) lim
i→∞
〈xi − w1, J(w1 − w2)〉 exists for any fixed points w1, w2 of T.

In particular, if w1 and w2 are weak subsequential limits of {xi}, then when we first
let i → ∞ through a subsequence so xi ⇀ w1, then through a subsequence such that
xi ⇀ w2, the resulting subsequential limits in (11) must be equal, i.e.

0 = 〈w1 − w1, J(w1 − w2)〉 = 〈w2 − w1, J(w1 − w2)〉 = −‖w1 − w2‖2.

This proves the uniqueness of weak subsequential limits of {xi} and completes the proof
that {xi} converges weakly.
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