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SOME APPLICATIONS OF DECOMPOSABLE
FORM EQUATIONS TO RESULTANT EQUATIONS

BY

K. GY ŐRY (DEBRECEN)

1. Introduction. The purpose of this paper is to establish some general
finiteness results (cf. Theorems 1 and 2) for resultant equations over an
arbitrary finitely generated integral domain R over Z. Our Theorems 1
and 2 improve and generalize some results of Wirsing [25], Fujiwara [6],
Schmidt [21] and Schlickewei [17] concerning resultant equations over Z.
Theorems 1 and 2 are consequences of a finiteness result (cf. Theorem 3)
on decomposable form equations over R. Some applications of Theorems
1 and 2 are also presented to polynomials in R[X] assuming unit values at
many given points in R (cf. Corollary 1) and to arithmetic progressions of
given order, consisting of units of R (cf. Corollary 2). Further applications
to irreducible polynomials will be given in a separate paper.

Our Theorem 3 seems to be interesting in itself as well. It is deduced
from some general results of Evertse and the author [3] on decomposable
form equations. Since the proofs in [3] depend among other things on the
Thue–Siegel–Roth–Schmidt method and its p-adic generalization, all results
of the present paper are ineffective.

2. Finiteness theorems for resultant equations and decompos-
able form equations. Let P (X) be a polynomial of degree m with integer
coefficients and without multiple zeros, and let a be a non-zero integer.
Consider those polynomials Q(X) with integer coefficients for which

(1) Res(P,Q) = a ,

where Res(P,Q) denotes the resultant of P and Q. Equation (1) is called
a resultant equation. It can be considered as a polynomial diophantine
equation in the coefficients of Q. It follows from a theorem of Wirsing [25]

1991 Mathematics Subject Classification: 11D57, 11E76.
Research supported in part by Grant 1641 from the Hungarian National Foundation

for Scientific Research.



268 K. GYŐRY

that if n is a positive integer such that

(2) 2n

(
1 +

1
3

+ . . . +
1

2n− 1

)
< m ,

then there are only finitely many polynomials Q ∈ Z[X] of degree n which
satisfy (1). Fujiwara [6] proved (but did not express it in this way) that if
P is irreducible over Q and

(3) 2n < m

then equation (1) has only finitely many solutions in polynomials Q ∈ Z[X]
of degree n. By a theorem of Schmidt [21], the irreducibility of P can here
be replaced by the weaker condition that P has no non-constant factor of
degree ≤ n in Z[X]. Further, Schmidt showed that assumption (3) is already
best possible in the sense that his result concerning (1) does not remain valid
in general for 2n = m.

Let now R be a subring of Q which is a finitely generated extension ring
of Z, and let a be a non-zero element of R. As a generalization of Schmidt’s
result, Schlickewei [17] showed that if m,n are positive integers satisfying
(3) and P ∈ R[X] is a polynomial of degree m without multiple zeros which
has no non-constant factor of degree ≤ n in R[X] then, up to a proportional
factor from (1) R∗, there are only finitely many polynomials Q ∈ R[X] of
degree n which satisfy

(4) Res(P,Q) ∈ a ·R∗ .

It should be remarked that Wirsing, Schmidt and Schlickewei obtained
their results in a more general form, for resultant inequalities in place of (1)
and (4). Further, we note that recently equations (1) and (4) have also been
studied in Győry [7], [9], [10] and Evertse and Győry [5] in the case when
both P and Q are unknown, but their splitting fields are fixed. Finally,
under certain additional assumptions (e.g. P,Q monic, deg(Q) = 3, Q(0)
fixed) Pethő [14]–[16] has developed a method for determining or describing
all solutions of (1) in Q(X).

In what follows, we consider equations (1) and (4) in the following more
general situation. Let K be a finitely generated extension field of Q, and R
a finitely generated extension ring of Z in K. Then the unit group R∗ of R
is finitely generated (see e.g. [11]).

Theorem 1. Let m and n be positive integers with m > 2n, and let a
be a non-zero element of K. Further , let P (X) be a polynomial of degree
m with coefficients in K and without multiple zeros. Then there are only

(1) For any integral domain A, we denote by A∗ the unit group of A, i.e. the multi-
plicative group of invertible elements of A.
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finitely many polynomials Q(X) with degree n and coefficients in R which
satisfy (1).

For equation (4), we have the following result.

Theorem 2. Let m,n, a and P be as in Theorem 1. Then up to a
proportional factor from R∗, there are only finitely many polynomials Q(X)
with degree n and coefficients in R which satisfy (4).

If, in Theorem 2, we consider monic polynomials Q(X) only, the condi-
tion m > 2n can be repalaced by m ≥ 2n.

For K = Q and R = Z, Theorem 1 gives the result of Wirsing on equa-
tion (1) in an improved form, under assumption (3) instead of (2). Further,
for K = Q, Theorems 1 and 2 imply the results of Fujiwara, Schmidt and
Schlickewei concerning (1) and (4), without any condition on the factors of
the polynomial P .

Theorem 1 follows from Theorem 2. Indeed, every solution Q of (1)
satisfies (4). But if Q and cQ are solutions of (1) for some c ∈ R∗ then
cm = 1 and hence Theorem 2 implies the finiteness of the number of solutions
Q of (1). Conversely, Theorem 2 follows from Theorem 1 by observing that
R∗/(R∗)m is finite, whence that (4) can be reduced to a finite number of
equations of type (1). Thus Theorems 1 and 2 are in fact equivalent.

We remark that if in Theorem 1 or 2, P has all its coefficients in R then
the number of polynomials Q under consideration can be bounded above by
a number which depends on m,n, a,R and the splitting field of P over K, but
not on the coefficients of P . Moreover, when K is an algebraic number field,
such a bound can be given explicitly in terms of each parameter. Bounds
of this type can be derived from quantitative versions of our Lemma 1 (cf.
Section 4) on decomposable form equations. We shall not work these out
here.

Finally, we note that Theorems 1 and 2 can be adapted to the case
when, in (1) and (4), P and Q are binary forms with coefficients in K and
R, respectively. For results of this type we refer to the papers [5] and [10].

The polynomial P (X) ∈ K[X] can be written in the form

P (X) = a0(X − α1) . . . (X − αm) ,

where a0 ∈ K\{0} and α1, . . . , αm are distinct elements of a finite extension,
say L, of K. If Q(X) = x0X

n + x1X
n−1 + . . . + xn is a polynomial in R[X]

then

Res(P,Q) = an
0

m∏
i=1

(x0α
n
i + x1α

n−1
i + . . . + xn) .

It is easy to see that this is a decomposable form in x0, . . . , xn with co-
efficients in K. Hence (1) leads to a decomposable form equation, i.e. an
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equation of the form

(5) F (x0, x1, . . . , xn) = a

in x0, x1, . . . , xn ∈ R, where F is a homogeneous polynomial with coefficients
in K which factorizes into linear forms over L.

For K = Q, Schmidt’s result on equation (1) follows from the following
theorem [21]. Let F (X) = F (X0, . . . , Xn) (n ≥ 1) be a decomposable form
of degree m with coefficients in Q such that for some integer k with n+1 ≤ k
and m > 2(k − 1), F is not divisible by a rational form of degree less than
k and that any k linear factors in the factorization F (X) = l1(X) . . . lm(X)
into linear forms have rank n + 1. Then equation (5) has only finitely many
solutions in x0, . . . , xn ∈ Z for every non-zero a ∈ Z. Later, Schlickewei [17]
extended this theorem to the solutions x0, . . . , xn of (5) in an arbitrary
finitely generated subring R of Q. We note that Schmidt and Schlickewei
established their results in a more general form, for inequalities concerning
decomposable forms instead of (5).

We shall deduce Theorem 1 from Theorem 3 below. We recall that K is
a finitely generated extension field of Q, R is a finitely generated extension
ring of Z in K, and a denotes a non-zero element of K.

Theorem 3. Let F (X0, X1, . . . , Xn) (n ≥ 1) be a decomposable form
of degree m with coefficients in K. Suppose that there is an integer k with
n ≤ k−1 and m > 2(k−1) such that any k linear factors in the factorization
of F have rank n + 1. Then equation (5) has only finitely many solutions
in x0, . . . , xn ∈ R.

For K = Q, our Theorem 3 implies an improved version of the above-
quoted results of Schmidt and Schlickewei on equation (5).

In Section 4, we shall deduce Theorem 3 from a general finiteness crite-
rion (cf. Lemma 1 in Section 4) of Evertse and the author [3] on decom-
posable form equations. The finiteness condition in Theorem 3 is simpler
than that of [3], especially when k = n + 1. This may be useful for some
applications. For n = 1 and k = 2, Theorem 3 gives a well-known finiteness
result on Thue equations (see e.g. Lang [11]).

We remark that if F has all its coefficients in R, then the number of
solutions of (5) considered in Theorem 3 can be bounded above by a number
which depends only on m,n, a,R and the splitting field of F over K, but not
on the coefficients of F . Further, if K is an algebraic number field then such
a bound can be given explicitly in terms of each parameter. These follow
from some quantitative versions of the criterion in [3] mentioned above (see
the Remark after the statement of Lemma 1 in Section 4).

3. Applications. Throughout this section, let again K be a finitely
generated extension field of Q, R a finitely generated extension ring of Z
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in K, and a a non-zero element of R. Further, let {r1, . . . , rm} be a finite
set in R with m ≥ 3 elements, and consider those non-constant polynomials
Q(X) in R[X] for which

(6) Q(ri) ∈ a ·R∗ for i = 1, . . . ,m .

If Q(X) satisfies (6) then so does c · Q(X) for every c ∈ R∗. Putting now
P (X) = (X − r1) . . . (X − rm), (6) implies

Res(P,Q) ∈ am ·R∗

and hence Theorem 2 immediately gives the following.

Corollary 1. Up to a proportional factor from R∗, there are only
finitely many non-constant polynomials Q(X) in R[X] with degree less than
m/2 for which (6) holds.

Here the bound m/2 is already best possible in general. Indeed, suppose
that m = 2n, and let d be a positive integer for which m

√
d is of degree

m over Q. Denote by r1, . . . , rm the conjugates of m
√

d over Q, by K the
algebraic number field Q(r1, . . . , rm) and by R the ring of integers of K.
Then there are infinitely many pairwise non-proportional pairs of rational
integers x0, xn such that x0

√
d + xn ∈ R∗ and −x0

√
d + xn ∈ R∗. Con-

sequently, there are infinitely many pairwise non-proportional polynomials
Q(X) = x0X

n + xn of degree n with rational coefficients for which

Q(ri) ∈ R∗ for i = 1, . . . ,m .

The next application is concerned with arithmetic progressions consisting
of units. In [12] (see also [13]), Newman proved that an algebraic number
field of degree n ≥ 4 can contain at most n units in arithmetic progression,
and that this bound is sharp. In the more general situation of the present
paper, a weaker but explicit upper bound can be derived from Theorem 1 of
[2] for the maximal length of arithmetic progressions in R∗. From Corollary
1 we shall deduce a general finiteness result for arithmetic progressions of a
given order and given length in R∗.

Corollary 2. Let m and n be positive integers with m > 2n. Up
to a proportional factor from R∗, there are only finitely many arithmetic
progressions of length m and order n which consist of elements of R∗.

In particular, for n = 1 there are only finitely many three-term arithmetic
progressions in R∗, apart from a proportional factor from R∗. We note that
in the number field case an explicit upper bound can be given for the number
of arithmetic progressions considered in Corollary 2.

4. Proofs. We keep the notation of Sections 2 and 3. Let K denote
a finitely generated extension field of Q, and F (X) = F (X0, . . . , Xn)
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∈ K[X0, . . . , Xn] a decomposable form which factorizes into linear forms
l1(X), . . . , lm(X) over a finite extension, say L, of K. Denote by L0 a max-
imal subset of pairwise linearly independent linear forms in {l1, . . . , lm}
over L. A non-zero K-linear subspace V of Kn+1 is said to be L0-non-
degenerate or L0-degenerate according as L0 does or does not contain a
subset of at least three linear forms whose restrictions to V are linearly
dependent, but pairwise linearly independent over L. Further, V is called
L0-admissible if no form in L0 vanishes identically on V .

Lemma 1. The following two statements are equivalent :

(i) Every L0-admissible K-linear subspace V of Kn+1 of dimension
≥ 2 is L0-non-degenerate;

(ii) For every a ∈ K∗ and every subring R of K which is finitely gener-
ated over Z, equation (5) has only finitely many solutions x0, . . . , xn in R.

P r o o f. This is Theorem 1 of Evertse and the author [3].

R e m a r k. For some quantitative versions of Lemma 1, see Evertse,
Gaál and the author [1] and the author [8]. When R contains a and the
coefficients of F , these quantitative results provide upper bounds for the
number of solutions of (5) and these bounds depend only on m,n, a,R, K
and L, but not on the coefficients of F . Further, in the case when K is an
algebraic number field, completely explicit upper bounds of this kind are
given in [8]. In the proofs of these results of [1] and [8] some quantitative
finiteness theorems of Evertse and the author [4] and Schlickewei [19] are
used on unit equations which depend, among other things, on Schlickewei’s
p-adic generalization [18] of Schmidt’s Subspace Theorem [22] and their
recent quantitative versions (cf. [23], [20]). We note that, in the number
field case, some improvements of the above-mentioned quantitative results
have recently been obtained by Evertse (private communication).

For any system M of linear forms with coefficients in K, let VK(M)
denote the K-vector space generated by the forms of M.

Lemma 2. Let K,L0 and L be the same as in Lemma 1, and suppose
that L = K. Then the following two statements are equivalent :

(i) Every L0-admissible K-linear subspace V of Kn+1 of dimension
≥ 2 is L0-non-degenerate;

(ii) The forms in L0 have rank n + 1 over K and for each proper non-
empty subset L1 of L0, we have

(VK(L1) ∩ VK(L0 \ L1)) ∩ L0 6= ∅ .

P r o o f. This is the Proposition in [3].
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Proof of Theorem 3. Let K, R, a and F be as in Theorem 3. Then
F can be written in the form

F (X) = a0l
b1
1 (X) . . . lbr

r (X) ,

where a0 ∈ K∗, b1, . . . , br are positive integers and l1, . . . , lr are pairwise
linearly independent linear forms with coefficients in a finite extension, say
L, of K. Put L0 = {l1, . . . , lr}, and let L′

0 be the system of linear forms
l1, . . . , lr counted with multiplicities b1, . . . , br, respectively. Then L′

0 has
cardinality m. Consider a proper non-empty subset L1 = {li1 , . . . , lit} of L0,
and denote by L′

1 the subsystem of L′
0 consisting of li1 , . . . , lit counted with

multiplicities bi1 , . . . , bit , respectively. By assumption, there is an integer k
with n ≤ k − 1 and m > 2(k − 1) such that any k linear forms in L′

0 have
rank n + 1 over L. Hence L0 also has rank n + 1 over L. Further, in view
of m > 2(k − 1), at least one of L′

1 and L′
0 \ L′

1, say L′
1, has cardinality

≥ k. Thus L′
1 has rank n + 1 and hence L1 also has rank n + 1 over L.

Consequently, L0 \ L1 ⊆ VL(L1) and so

L0 \ L1 ⊂ (VL(L1) ∩ VL(L0 \ L1)) ∩ L0 .

If L′
0 \ L′

1 is of cardinality ≥ k then in a similar way we get

L1 ⊂ (VL(L1) ∩ VL(L0 \ L1)) ∩ L0 .

It now follows from Lemmas 2 and 1 that equation (5) has only a finite
number of solutions in every finitely generated subring of L over Z. This
completes the proof of Theorem 3.

Proof of Theorem 1. Let K, R, a,m, n and P be as in Theorem 1.
We write P (X) = a0(X − α1) . . . (X − αm), where α1, . . . , αm are distinct
elements of the splitting field, say L, of P over K. Let Q(X) = x0X

n +
x1X

n−1 + . . .+xn be an arbitrary polynomial with degree n and coefficients
in R which satisfies (1). Then (1) can be written in the form

(7) F (x0, x1, . . . , xn) = a in x0, x1, . . . , xn ∈ R

where

F (X0, X1, . . . , Xn) = an
0

m∏
i=1

(X0α
n
i + X1α

n−1
i + . . . + Xn)

is a decomposable form of degree m with coefficients in K. Put

l1(X) = an
0 (X0α

n
1 + X1α

n−1
1 + . . . + Xn) ,

li(X) = X0α
n
i + X1α

n−1
i + . . . + Xn for i = 2, . . . ,m ,

and L0 = {l1, . . . , lm}. Since, by assumption, the zeros of P are distinct,
any n + 1 of the linear forms in L0 have rank n + 1. But m > 2n, hence
Theorem 3 can be applied to equation (7) with the choice k = n + 1, and
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it follows that (7) has only finitely many solutions in x0, . . . , xn ∈ R. This
proves Theorem 1.

Proof of Corol lary 2. Let m and n be positive integers with m > 2n,
R a finitely generated extension ring of Z in K and a1, . . . , am an arithmetic
progression of order n consisting of elements of R∗. We may assume with-
out loss of generality that this arithmetic progression contains at least two
different terms. We define

a2 − a1 = ∆a1, a3 − a2 = ∆a2, . . . , am − am−1 = ∆am−1

and, recursively,

∆la2 −∆la1 = ∆l+1a1, ∆la3 −∆la2 = ∆l+1a2, . . .

for l = 1, . . . , n− 1. Set

f(X) = a1 + ∆a1(X − 1)

+
∆2a1

2!
(X − 1)(X − 2) + . . . +

∆na1

n!
(X − 1) . . . (X − n) .

Then, as is known (see e.g. [24]), we have

ai = f(i) for i = 1, . . . ,m .

By the assumptions made on the elements a1, . . . , am, Q(X) := n!f(X) is
a non-constant polynomial of degree at most n with coefficients in R and
Q(i) ∈ n! ·R∗ for i = 1, . . . ,m. Our arithmetic progression is uniquely deter-
mined by Q(X). Further, for proportional arithmetic progressions of order
n in R∗, the corresponding polynomials Q(X) differ only by a proportional
factor from R∗. Hence Corollary 2 follows from Corollary 1 with the choice
a = n! and ri = i for i = 1, . . . ,m.
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