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Introduction. The rate of decrease at infinity of the Fourier transform
of the characteristic function χ of a compact set C has been studied by
several authors under various regularity assumptions on ∂C (see [6], [7], [10]
and [11]). If C is also convex, then there exist precise estimates, depending
on the Gauss curvature, of the behavior of χ̂ at infinity (see [6] and [11]). In
this paper we consider the non-convex N -dimensional case. We produce an
asymptotic estimate for χ̂(x) as x → ∞. Such an estimate depends on the
number of points of the boundary “having normal in the same direction”.
The estimate holds for a certain direction if that number is finite. More
precisely, let C ⊂ RN be a compact set which is the closure of its interior
points and whose boundary ∂C is a manifold of class [N/2] + 5. Consider
the normal map ~n : ∂C → SN , where SN = {θ ∈ RN : |θ| = 1}, and an open
set A ⊂ SN . Suppose there exist q functions σj : A→ ∂C of class [N/2] + 4
such that:

(a) the sets σj(A) are pairwise disjoint;
(b) for every θ ∈ A the Gauss curvature at σj(θ) is different from zero;
(c) for every θ ∈ A the points σ1(θ), . . . , σq(θ) are the only points of ∂C

having normal in direction θ.

Our main results are the following:

Theorem 1. Let C satisfy the above conditions. Let χ be the character-
istic function of C and χ̂ be its Fourier transform. Then, for every compact
set K ⊂ A, θ ∈ K and r > 0,

χ̂(rθ) = − 1
2πi

r−(N+1)/2(1)

×
q∑

j=1

exp[−2πirθσj(θ) + Γ (σj(θ))πi/4]K−1/2(σj(θ)) + Er

where Γ (σj(θ)) is the signature of the first fundamental form of the surface
∂C at σj(θ), K(σj(θ)) is the absolute value of the Gauss curvature at σj(θ)
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and |Er| ≤ MKr
−N/2−1 for a suitable constant MK depending on K but

not on r and θ.

As a consequence of Theorem 1 we can obtain precise estimates for the
Lebesgue constants, on the torus TN , associated with C.

Theorem 2. Let C be a compact subset of RN ,

DC
τ (x) =

∑
m∈ZN∩τC

exp[2πimx]

be the Dirichlet kernel with respect to C and let

LC
τ = ‖DC

τ ‖L1(T N ) =
∫

T N

∣∣∣ ∑
m∈ZN∩τC

exp[2πimx]
∣∣∣ dx

be the Lebesgue constant with respect to C. Then if C satisfies the same
assumptions as in Theorem 1, there exist positive constants C1 and C2 such
that

C1τ
(N−1)/2 ≤ LC

τ ≤ C2τ
(N−1)/2

for τ sufficiently large.

We use the method of stationary phase in the N -dimensional case for
the estimate of oscillatory integrals. General references for this method are
[4], [9] and [12].

Proof of the theorems. Let Rn denote the n-dimensional euclidean
space and Tn the n-dimensional torus. If Ω is an open set in Rn and X a
subset of Rk we denote by Cm(Ω,X) the set of all functions from Ω × X
to some Rh having m continuous derivatives with respect to the first n
variables. Cm

c (Ω,X) will denote the set of all functions in Cm(Ω,X) with
compact support in Ω×X. If f is a twice differentiable function, let Hf (x)
denote the matrix [∂2f(x)/∂xi∂xj ] and let δf (x) denote the signature of the
quadratic form associated with Hf (x).

Lemma 1. Let θ0 ∈ Rk, U(θ0) be a neighborhood of θ0, f ∈ Cm(Ω,U(θ0))
and g ∈ Cm−1

c (Ω,U(θ0)) (we suppose m ≥ 1). If ‖∇xf(x, θ)‖ is bounded
away from zero for every (x, θ) ∈ supp g, then there exists a constant M
independent of θ and λ such that

(2)
∣∣∣ ∫

Ω

exp[−2πiλf(x, θ)]g(x, θ) dx
∣∣∣ ≤Mλ−m+1

for every θ in a suitable neighborhood Ũ(θ0).

Lemma 2. Let θ0∈Rk, U(θ0) be a neighborhood of θ0, g ∈ Cm
c (Rn, U(θ0))

and m = [(n+ |l|)/2] + 1, where l is a multi-index . Then there exists a
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constant M independent of θ and λ such that

(3)
∣∣∣ ∫

Rn

exp
[
− 2πiλ

∑
±x2

j

]
xlg(x, θ) dx

∣∣∣ ≤Mλ−(n+|l|)/2

for every θ in a suitable neighborhood Ũ(θ0).

Proofs for Lemmas 1 and 2 when the functions involved are independent
of the parameter θ can be found in the literature. See for example [12]
(Proposition 4, p. 316 for Lemma 1, and p. 320, formula (2.4) for Lemma
2). A careful reading of the proofs shows that the estimates are uniform
with respect to the parameter θ.

Lemma 3 (Morse’s lemma). Let U(θ0) be a neighborhood of θ0 ∈ Rk,
m ≥ 2, Ω be an open subset of Rn containing the origin and let f ∈
Cm(Ω,U(θ0)) be such that ∇xf(0, θ) = 0 for every θ ∈ U(θ0). Suppose
moreover that the matrix Hf (0, θ) is non-singular. Then there exist neigh-
borhoods V (0) and Ũ(θ0) and a diffeomorphism F : V (0) × Ũ(θ0) → Ω,
F ∈ Cm−2(V (0), Ũ(θ0)), depending on the parameter θ, such that

(4) f(F (v, θ), θ) =
∑

±v2
j + f(0, θ)

for every v ∈ V and θ ∈ Ũ(θ0). Moreover , the Jacobian of the diffeomor-
phism F at the point (0, θ) is given by |detHf (0, θ)|−1/2 and the quadratic
form on the right hand side of (4) has the same signature as the matrix
Hf (0, θ).

In the original version of Morse’s lemma the function f does not depend
on the parameter θ. Using the original version we can only ensure that,
for every fixed θ, there exist a neighborhood V (0) and a function F defined
on V (0), both depending on θ, such that (4) holds. But the local inverse
theorem implies that the neighborhood in which the inverse function exists
depends continuously on the derivative of the function. A careful reading of
the proof of Morse’s lemma shows that, if θ belongs to a suitable neighbor-
hood Ũ(θ0), then V (0) can be chosen independent of θ, and F ∈ Cm−2. For
the proof of Morse’s lemma see for example [8], p. 6.

Lemma 4. Let U(θ0) be a neighborhood of θ0 ∈ Rk, Ω be an open subset
of Rn, f ∈ Cm(Ω,U(θ0)) and g ∈ Cm−1

c (Ω,U(θ0)), with m ≥ [(n+ 1)/2]+5.
Suppose that there exists a continuous function φ : U(θ0) → Ω such that for
every θ ∈ U(θ0):

1) ∇xf(φ(θ), θ) = 0 and the matrix Hf (φ(θ), θ) is non-singular ;
2) ∇xf(x, θ) 6= 0 for x 6= φ(θ).

Then there exist a constant M , independent of θ and λ, and a neighborhood
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Ũ(θ0) such that

I =
∫
Ω

exp[−2πiλf(x, θ)]g(x, θ) dx

= λ−n/2 exp[−2πiλf(φ(θ), θ) + δf (φ(θ), θ)πi/4]

× g(φ(θ), θ) |detHf (φ(θ), θ)|−1/2 + Eλ

where |Eλ| ≤Mλ−(n+1)/2 for every θ in Ũ(θ0).

P r o o f. Let B(φ(θ), r) ⊂ Ω be the ball of center φ(θ) and radius r. By a
proper choice of r and U(θ0) we may assume that B(φ(θ), r) ⊂ Ω for every
θ ∈ U(θ0). Let ξ ∈ C∞

0 (Rn) such that ξ(x) = 1 for |x| ≤ r/2 and ξ(x) = 0
for |x| ≥ r. Then I = I1 + I2 where

I1 =
∫

B(φ(θ),r)

exp[−2πiλf(x, θ)]g(x, θ)ξ(x− φ(θ)) dx

and

I2 =
∫
Ω

exp[−2πiλf(x, θ)]g(x, θ)[1− ξ(x− φ(θ))] dx .

Since ∇xf(x, θ) is bounded away from zero on the support of g(x, θ)[1 −
ξ(x − φ(θ))], applying Lemma 1 to I2, we obtain I2 ≤ M1λ

−m+1. Let us
consider the integral I1. By the change of variable z = x− φ(θ) we obtain

I1 =
∫

B(0,r)

exp[−2πiλf(z + φ(θ), θ)]g(z + φ(θ), θ)ξ(z) dz .

Since ∇xf(φ(θ), θ) = 0 we can apply Lemma 3 to the function f . If we
choose r and U(θ0) sufficiently small, then setting z = F (v), I1 becomes

I1 = exp[−2πiλf(φ(θ), θ)]

×
∫

G(θ)

exp
[
− 2πiλ

∑
±v2

j

]
g(φ(θ) + F (v), θ)ξ(F (v))J(F ) dv

where G(θ) = F−1(B(0, r), θ) and J(F ) is the Jacobian of F . Let h(x, θ) =
g(φ(θ) + F (v), θ)ξ(F (v))J(F ) and observe that h ∈ Cm−3

c (G(θ), U(θ0)).
Since G(θ) depends continuously on θ we may suppose, provided that we re-
strict U(θ0), that G(θ) ⊂ Q(0, %), where Q(0, %) is a cube of side 2% centered
at the origin and % is independent of θ. Let

I3 =
∫

Q(0,%)

exp
[
− 2πiλ

∑
±v2

j

]
h(v, θ) dv .

Then I1 = exp[−2πif(φ(θ), θ)]I3. We choose β ∈ C∞
0 (R) such that β(t) = 1

for |t| ≤ %/2 and β(t) = 0 for |t| ≥ % and B(v) = β(v1)β(v2) . . . β(vn). So
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we can write I3 = I4 + I5 where

I4 =
∫

Q(0,%)

exp
[
− 2πiλ

∑
±v2

j

]
h(v, θ)B(v) dv

and
I5 =

∫
Q(0,%)

exp
[
− 2πiλ

∑
±v2

j

]
h(v, θ)[1−B(v)] dv .

Lemma 1 is applicable to the integral I5 and so |I5| ≤ M2λ
−m+1. For the

integral I4 we write h(x, θ) = h(0, θ)+
∑

k vkhk(v, θ), for suitable hj ∈ Cm−4,
and we split I4 into the sum I4 = h(0, θ)I6 +

∑
k I

′
k where

I6 =
∫

Q(0,%)

exp
[
− 2πiλ

∑
±v2

j

]
B(v) dv

and
I ′k =

∫
Q(0,%)

exp
[
− 2πiλ

∑
±v2

j

]
vkhk(v, θ)B(v) dv .

We have

I6 =
n∏

j=1

%∫
−%

exp[±2πiλt2]β(t) dt

but
%∫

−%

exp[±2πiλt2]β(t) dt

=
%∫

−%

exp[±2πiλt2] dt
%∫

−%

exp[±2πiλt2][1− β(t)] dt

=
1√
2λ

exp[±πi/4] +O(λ−1)

(see [1] for details) and so

I6 = 2−n/2λ−n/2 exp[δf (φ(θ), θ)πi/4] +O(λ−(n+1)/2)

(remember that the quadratic form
∑
±x2

j has the same signature as the
matrix Hf (φ(θ), θ)). Applying Lemma 2 to the integrals I ′k we obtain |I ′k| ≤
M3λ

−(n+1)/2. Finally,

I1 = 2−n/2λ−n/2 exp[−2πiλf(φ(θ), θ) + δf (φ(θ), θ)πi/4]h(0, θ) + Eλ

where |Eλ| ≤ M4λ
−(n+1)/2 for a suitable constant M4 independent of λ

and θ.

P r o o f o f T h e o r e m 1. Clearly it suffices to prove the estimate (1) in
a suitable neighborhood of every θ ∈ A. We choose θ0 ∈ A and consider a
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neighborhood U(θ0). Let h ∈ C∞
0 (RN ) be such that h(x) = 1 for |x| ≤ a/2

and h(x) = 0 for |x| ≥ a. If hj(x, θ) = h(x − σj(θ)) we can choose a
and U(θ0) so that the supports of hj are pairwise disjoint. Set h0(x, θ) =
1−

∑q
j=1 hj(x, θ). Then, by the divergence theorem,

χ̂(rθ) =
∫
C

exp[−2πirθx] dx = − 1
2πir

∫
∂C

exp[−2πirθx]θ~n(x) dS

= − 1
2πir

q∑
j=0

∫
∂C

exp[−2πirθx]θ~n(x)hj(x, θ) dS .

Let

Ij =
∫

∂C

exp[−2πirθx]θ~n(x)hj(x, θ) dS .

We shall estimate separately I0 and Ij for j > 0. Let ξk be a partition of
unity such that the support of every ξk lies in a part of the surface with
a representation φ : Ω ⊂ RN−1 → RN . Let h0k = h0ξk and consider the
integral

I0k =
∫
Ω

exp[−2πirθx]h0k(φ(u), θ) θ~n(φ(u))
∂S

∂u
du

where ∂S/∂u is the surface element of ∂C. Applying Lemma 1 we obtain
I0k ≤ M1r

−(N+1)/2 and so I0 ≤ M2r
−(N+1)/2. Consider now the inte-

grals Ij . We may suppose, by a suitable choice of the parameter a in the
definition of the function h, that the support of hj lies in a part of the
surface having a representation φ : Ω ⊂ RN−1 → RN . So

Ij =
∫
Ω

exp[−2πirθφ(u)]hj(φ(u), θ)θ~n(φ(u))
∂S

∂u
du.

Let us observe that Lemma 4 is applicable to the integrals Ij since ∇uθφ(u)
= 0 means that θ has the same direction as the normal to the surface ∂C at
φ(u). Moreover, the condition of Hθφ being non-singular is satisfied since
the Gauss curvature is not zero. So

Ij = r−(N−1)/2 exp[−2πirθσj(θ) + Γ (σj(θ))πi/4]
∂S

∂u

× |det θHφ(φ−1(σj(θ)))|−1/2 + Er

where |Er| ≤ M3r
−N/2 for every θ ∈ U(θ0). Since (det θHφ)[∂S/∂u]−2 is

the Gauss curvature we obtain (1).

Using Theorem 1 we can now extend Theorem 1 of [1] to the N -dimen-
sional case.
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Lemma 5. Let C ⊂ RN satisfy the same assumptions as in Theorem 1.
Then if ψ̂τ is the Fourier transform of the characteristic function of τC,
there exist a measurable set Fε ⊂ TN and positive constants Mε (depending
on ε), M1 and M2 (independent of ε) such that

1)
∫

Fε

|ψ̂τ (x)| dx ≥M1ε
(N−1)/2τ (N−1)/2 −Mετ

N/2−1,

2) measFε ≤M2ε
N .

P r o o f. Let U(θ0) be a neighborhood in which Theorem 1 is applicable
and x = |x|θ be such that θ ∈ U(θ0). Then

ψ̂τ (x) =
∫

τC

exp[−2πixy] dy = τN
∫
C

exp[−2πiτxy] dy

= − 1
2πi

τ (N−1)/2|x|−(N+1)/2

×
q∑

j=1

exp[−2πiτxθσj(θ)+Γ (σj(θ))πi/4]K−1/2(σj(θ))+τNEτ |x| .

Set Aj = K−1/2(σj(θ)) and Bj = exp[−2πiτ |x|θσj(θ)+Γ (σj(θ))πi/4]. Then

ψ̂τ (x) =
τ (N−1)/2

2πi
|x|−(N+1)/2{A1 exp[B1] + . . .+Aq exp[Bq]}+ τNEτ |x| .

Let Γ be the cone with vertex at the origin such that Γ ∩ SN = U(θ0). We
choose a cube F ⊂ Γ with sides parallel to the axes and set Fε = εF . Since
|x| ≤M3ε for all x ∈ Fε, we have∫

Fε

|ψ̂τ (x)| dx ≥M4τ
(N−1)/2ε−(N−1)/2

×
∫

Fε

|A1 exp[B1] + . . .+Aq exp[Bq]| dx−Mετ
N/2−1 .

Arguing as in [1] (p. 238) we claim that there exists a positive constant M5

such that for every ε > 0 sufficiently small and for every τ sufficiently large∫
Fε

|A1 exp[B1] + . . .+Aq exp[Bq]| dx ≥M5 measFε .

Let εn and τn be as in [1]. The proof follows in the same way as in [1] if we
can show that

1
measFεn

∫
Fεn

Aj exp[Bj −B1] dx

tends to zero. If we change variable and put

G(y) = y[σj(θ)− σ1(θ)]
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the integral becomes

(5)
1

measF

∫
F

Aj exp[−2πiτnεnG(y) + Γ (σj(θ))πi/4− Γ (σ1(θ))πi/4] dx .

Observe that
∂G

∂yk
= ek(σj(θ)− σ1(θ)) + y

∂σj

∂yk
− y

∂σ1

∂yk

where {ek} is the standard basis of RN . But y∂σj/∂yk = y∂σ1/∂yk = 0
since y is normal to the surface and the ∂σj/∂yk are tangent. So ∂G/∂yk =
ek(σj(θ)−σ1(θ)). Since σj(θ) 6= σ1(θ) we may suppose ∇G 6= 0. Integration
by parts shows that (5) tends to zero.

P r o o f o f T h e o r e m 2. The upper estimate is contained in [15]. As
for the lower estimate, arguing as in [1] and [2] and using Lemma 5 we have

LC
τ ≥
∫

Fε

|ψ̂τ (x)| dx− (measFε)1/2
( ∫

RN

|χ̂(x)|2 dx
)1/2

≥M1ε
(N−1)/2τ (N−1)/2 −Mετ

N/2−1 −M2ε
N/2

( ∫
RN

|χ̂(x)|2 dx
)1/2

and, since the Minkowski upper measure of ∂C is bounded (see [15] for a
definition),

LC
τ ≥M1ε

(N−1)/2τ (N−1)/2 −Mετ
N/2−1 −M3ε

N/2τ (N−1)/2

= τ (N−1)/2ε(N−1)/2(M1 −M3ε
1/2)−Mετ

N/2−1 .

Choosing ε such that M1 −M3ε
1/2 > 0 for τ sufficiently large we have

LC
τ ≥M4τ

(N−1)/2 −M5τ
N/2−1 = τ (N−1)/2(M4 −M5τ

−1/2) ≥M6τ
(N−1)/2 .

An analogous extension is possible for Theorem 2 of [1] (see also Theorem
A of [3]).

R e m a r k. Only recently have I found, in the Proceedings of the Steklov
Institute of Mathematics 180 (1989), 176–177, the announcement, with no
proof, of a sharper version of Theorem 2 due to I. R. Liflyand.
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