VOL. LXV	1993	FASC. 1

FOURIER TRANSFORM OF CHARACTERISTIC FUNCTIONS
 AND LEBESGUE CONSTANTS FOR MULTIPLE FOURIER SERIES

LUCA BRANDOLINI (MILANO)

Introduction. The rate of decrease at infinity of the Fourier transform of the characteristic function χ of a compact set C has been studied by several authors under various regularity assumptions on ∂C (see [6], [7], [10] and [11]). If C is also convex, then there exist precise estimates, depending on the Gauss curvature, of the behavior of $\widehat{\chi}$ at infinity (see [6] and [11]). In this paper we consider the non-convex N-dimensional case. We produce an asymptotic estimate for $\widehat{\chi}(x)$ as $x \rightarrow \infty$. Such an estimate depends on the number of points of the boundary "having normal in the same direction". The estimate holds for a certain direction if that number is finite. More precisely, let $C \subset \mathbb{R}^{N}$ be a compact set which is the closure of its interior points and whose boundary ∂C is a manifold of class $[N / 2]+5$. Consider the normal map $\vec{n}: \partial C \rightarrow S_{N}$, where $S_{N}=\left\{\theta \in \mathbb{R}^{N}:|\theta|=1\right\}$, and an open set $A \subset S_{N}$. Suppose there exist q functions $\sigma_{j}: A \rightarrow \partial C$ of class [N/2]+4 such that:
(a) the sets $\sigma_{j}(A)$ are pairwise disjoint;
(b) for every $\theta \in A$ the Gauss curvature at $\sigma_{j}(\theta)$ is different from zero;
(c) for every $\theta \in A$ the points $\sigma_{1}(\theta), \ldots, \sigma_{q}(\theta)$ are the only points of ∂C having normal in direction θ.

Our main results are the following:
Theorem 1. Let C satisfy the above conditions. Let χ be the characteristic function of C and $\widehat{\chi}$ be its Fourier transform. Then, for every compact set $K \subset A, \theta \in K$ and $r>0$,

$$
\begin{align*}
\widehat{\chi}(r \theta)= & -\frac{1}{2 \pi i} r^{-(N+1) / 2} \tag{1}\\
& \times \sum_{j=1}^{q} \exp \left[-2 \pi i r \theta \sigma_{j}(\theta)+\Gamma\left(\sigma_{j}(\theta)\right) \pi i / 4\right] K^{-1 / 2}\left(\sigma_{j}(\theta)\right)+E_{r}
\end{align*}
$$

where $\Gamma\left(\sigma_{j}(\theta)\right)$ is the signature of the first fundamental form of the surface ∂C at $\sigma_{j}(\theta), K\left(\sigma_{j}(\theta)\right)$ is the absolute value of the Gauss curvature at $\sigma_{j}(\theta)$
and $\left|E_{r}\right| \leq M_{K} r^{-N / 2-1}$ for a suitable constant M_{K} depending on K but not on r and θ.

As a consequence of Theorem 1 we can obtain precise estimates for the Lebesgue constants, on the torus T^{N}, associated with C.

Theorem 2. Let C be a compact subset of \mathbb{R}^{N},

$$
D_{\tau}^{C}(x)=\sum_{m \in Z^{N} \cap \tau C} \exp [2 \pi i m x]
$$

be the Dirichlet kernel with respect to C and let

$$
L_{\tau}^{C}=\left\|D_{\tau}^{C}\right\|_{L^{1}\left(T^{N}\right)}=\int_{T^{N}}\left|\sum_{m \in Z^{N} \cap \tau C} \exp [2 \pi i m x]\right| d x
$$

be the Lebesgue constant with respect to C. Then if C satisfies the same assumptions as in Theorem 1, there exist positive constants C_{1} and C_{2} such that

$$
C_{1} \tau^{(N-1) / 2} \leq L_{\tau}^{C} \leq C_{2} \tau^{(N-1) / 2}
$$

for τ sufficiently large.
We use the method of stationary phase in the N-dimensional case for the estimate of oscillatory integrals. General references for this method are [4], [9] and [12].

Proof of the theorems. Let \mathbb{R}^{n} denote the n-dimensional euclidean space and T^{n} the n-dimensional torus. If Ω is an open set in \mathbb{R}^{n} and X a subset of \mathbb{R}^{k} we denote by $\mathcal{C}^{m}(\Omega, X)$ the set of all functions from $\Omega \times X$ to some \mathbb{R}^{h} having m continuous derivatives with respect to the first n variables. $\mathcal{C}_{\mathrm{c}}^{m}(\Omega, X)$ will denote the set of all functions in $\mathcal{C}^{m}(\Omega, X)$ with compact support in $\Omega \times X$. If f is a twice differentiable function, let $H_{f}(x)$ denote the matrix $\left[\partial^{2} f(x) / \partial x_{i} \partial x_{j}\right.$] and let $\delta_{f}(x)$ denote the signature of the quadratic form associated with $H_{f}(x)$.

LEMMA 1. Let $\theta_{0} \in \mathbb{R}^{k}, U\left(\theta_{0}\right)$ be a neighborhood of $\theta_{0}, f \in \mathcal{C}^{m}\left(\Omega, U\left(\theta_{0}\right)\right)$ and $g \in \mathcal{C}_{\mathrm{c}}^{m-1}\left(\Omega, U\left(\theta_{0}\right)\right.$) (we suppose $m \geq 1$). If $\left\|\nabla_{x} f(x, \theta)\right\|$ is bounded away from zero for every $(x, \theta) \in \operatorname{supp} g$, then there exists a constant M independent of θ and λ such that

$$
\begin{equation*}
\left|\int_{\Omega} \exp [-2 \pi i \lambda f(x, \theta)] g(x, \theta) d x\right| \leq M \lambda^{-m+1} \tag{2}
\end{equation*}
$$

for every θ in a suitable neighborhood $\widetilde{U}\left(\theta_{0}\right)$.
Lemma 2. Let $\theta_{0} \in \mathbb{R}^{k}, U\left(\theta_{0}\right)$ be a neighborhood of $\theta_{0}, g \in \mathcal{C}_{\mathrm{c}}^{m}\left(\mathbb{R}^{n}, U\left(\theta_{0}\right)\right)$ and $m=[(n+|l|) / 2]+1$, where l is a multi-index. Then there exists a
constant M independent of θ and λ such that

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{n}} \exp \left[-2 \pi i \lambda \sum \pm x_{j}^{2}\right] x^{l} g(x, \theta) d x\right| \leq M \lambda^{-(n+|l|) / 2} \tag{3}
\end{equation*}
$$

for every θ in a suitable neighborhood $\widetilde{U}\left(\theta_{0}\right)$.
Proofs for Lemmas 1 and 2 when the functions involved are independent of the parameter θ can be found in the literature. See for example [12] (Proposition 4, p. 316 for Lemma 1, and p. 320, formula (2.4) for Lemma 2). A careful reading of the proofs shows that the estimates are uniform with respect to the parameter θ.

Lemma 3 (Morse's lemma). Let $U\left(\theta_{0}\right)$ be a neighborhood of $\theta_{0} \in \mathbb{R}^{k}$, $m \geq 2, \Omega$ be an open subset of \mathbb{R}^{n} containing the origin and let $f \in$ $\mathcal{C}^{m}\left(\Omega, U\left(\theta_{0}\right)\right)$ be such that $\nabla_{x} f(0, \theta)=0$ for every $\theta \in U\left(\theta_{0}\right)$. Suppose moreover that the matrix $H_{f}(0, \theta)$ is non-singular. Then there exist neighborhoods $V(0)$ and $\widetilde{U}\left(\theta_{0}\right)$ and a diffeomorphism $F: V(0) \times \widetilde{U}\left(\theta_{0}\right) \rightarrow \Omega$, $F \in \mathcal{C}^{m-2}\left(V(0), \widetilde{U}\left(\theta_{0}\right)\right)$, depending on the parameter θ, such that

$$
\begin{equation*}
f(F(v, \theta), \theta)=\sum \pm v_{j}^{2}+f(0, \theta) \tag{4}
\end{equation*}
$$

for every $v \in V$ and $\theta \in \widetilde{U}\left(\theta_{0}\right)$. Moreover, the Jacobian of the diffeomorphism F at the point $(0, \theta)$ is given by $\left|\operatorname{det} H_{f}(0, \theta)\right|^{-1 / 2}$ and the quadratic form on the right hand side of (4) has the same signature as the matrix $H_{f}(0, \theta)$.

In the original version of Morse's lemma the function f does not depend on the parameter θ. Using the original version we can only ensure that, for every fixed θ, there exist a neighborhood $V(0)$ and a function F defined on $V(0)$, both depending on θ, such that (4) holds. But the local inverse theorem implies that the neighborhood in which the inverse function exists depends continuously on the derivative of the function. A careful reading of the proof of Morse's lemma shows that, if θ belongs to a suitable neighborhood $\widetilde{U}\left(\theta_{0}\right)$, then $V(0)$ can be chosen independent of θ, and $F \in \mathcal{C}^{m-2}$. For the proof of Morse's lemma see for example [8], p. 6.

Lemma 4. Let $U\left(\theta_{0}\right)$ be a neighborhood of $\theta_{0} \in \mathbb{R}^{k}, \Omega$ be an open subset of $\mathbb{R}^{n}, f \in \mathcal{C}^{m}\left(\Omega, U\left(\theta_{0}\right)\right)$ and $g \in \mathcal{C}_{\mathrm{c}}^{m-1}\left(\Omega, U\left(\theta_{0}\right)\right)$, with $m \geq[(n+1) / 2]+5$. Suppose that there exists a continuous function $\phi: U\left(\theta_{0}\right) \rightarrow \Omega$ such that for every $\theta \in U\left(\theta_{0}\right)$:

1) $\nabla_{x} f(\phi(\theta), \theta)=0$ and the matrix $H_{f}(\phi(\theta), \theta)$ is non-singular;
2) $\nabla_{x} f(x, \theta) \neq 0$ for $x \neq \phi(\theta)$.

Then there exist a constant M, independent of θ and λ, and a neighborhood
$\widetilde{U}\left(\theta_{0}\right)$ such that

$$
\begin{aligned}
I= & \int_{\Omega} \exp [-2 \pi i \lambda f(x, \theta)] g(x, \theta) d x \\
= & \lambda^{-n / 2} \exp \left[-2 \pi i \lambda f(\phi(\theta), \theta)+\delta_{f}(\phi(\theta), \theta) \pi i / 4\right] \\
& \times g(\phi(\theta), \theta)\left|\operatorname{det} H_{f}(\phi(\theta), \theta)\right|^{-1 / 2}+E_{\lambda}
\end{aligned}
$$

where $\left|E_{\lambda}\right| \leq M \lambda^{-(n+1) / 2}$ for every θ in $\widetilde{U}\left(\theta_{0}\right)$.
Proof. Let $B(\phi(\theta), r) \subset \Omega$ be the ball of center $\phi(\theta)$ and radius r. By a proper choice of r and $U\left(\theta_{0}\right)$ we may assume that $B(\phi(\theta), r) \subset \Omega$ for every $\theta \in U\left(\theta_{0}\right)$. Let $\xi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\xi(x)=1$ for $|x| \leq r / 2$ and $\xi(x)=0$ for $|x| \geq r$. Then $I=I_{1}+I_{2}$ where

$$
I_{1}=\int_{B(\phi(\theta), r)} \exp [-2 \pi i \lambda f(x, \theta)] g(x, \theta) \xi(x-\phi(\theta)) d x
$$

and

$$
I_{2}=\int_{\Omega} \exp [-2 \pi i \lambda f(x, \theta)] g(x, \theta)[1-\xi(x-\phi(\theta))] d x
$$

Since $\nabla_{x} f(x, \theta)$ is bounded away from zero on the support of $g(x, \theta)[1-$ $\xi(x-\phi(\theta))]$, applying Lemma 1 to I_{2}, we obtain $I_{2} \leq M_{1} \lambda^{-m+1}$. Let us consider the integral I_{1}. By the change of variable $z=x-\phi(\theta)$ we obtain

$$
I_{1}=\int_{B(0, r)} \exp [-2 \pi i \lambda f(z+\phi(\theta), \theta)] g(z+\phi(\theta), \theta) \xi(z) d z
$$

Since $\nabla_{x} f(\phi(\theta), \theta)=0$ we can apply Lemma 3 to the function f. If we choose r and $U\left(\theta_{0}\right)$ sufficiently small, then setting $z=F(v), I_{1}$ becomes

$$
\begin{aligned}
I_{1}= & \exp [-2 \pi i \lambda f(\phi(\theta), \theta)] \\
& \times \int_{G(\theta)} \exp \left[-2 \pi i \lambda \sum \pm v_{j}^{2}\right] g(\phi(\theta)+F(v), \theta) \xi(F(v)) J(F) d v
\end{aligned}
$$

where $G(\theta)=F^{-1}(B(0, r), \theta)$ and $J(F)$ is the Jacobian of F. Let $h(x, \theta)=$ $g(\phi(\theta)+F(v), \theta) \xi(F(v)) J(F)$ and observe that $h \in \mathcal{C}_{\mathrm{c}}^{m-3}\left(G(\theta), U\left(\theta_{0}\right)\right)$. Since $G(\theta)$ depends continuously on θ we may suppose, provided that we restrict $U\left(\theta_{0}\right)$, that $G(\theta) \subset Q(0, \varrho)$, where $Q(0, \varrho)$ is a cube of side 2ϱ centered at the origin and ϱ is independent of θ. Let

$$
I_{3}=\int_{Q(0, \varrho)} \exp \left[-2 \pi i \lambda \sum \pm v_{j}^{2}\right] h(v, \theta) d v
$$

Then $I_{1}=\exp [-2 \pi i f(\phi(\theta), \theta)] I_{3}$. We choose $\beta \in C_{0}^{\infty}(\mathbb{R})$ such that $\beta(t)=1$ for $|t| \leq \varrho / 2$ and $\beta(t)=0$ for $|t| \geq \varrho$ and $B(v)=\beta\left(v_{1}\right) \beta\left(v_{2}\right) \ldots \beta\left(v_{n}\right)$. So
we can write $I_{3}=I_{4}+I_{5}$ where

$$
I_{4}=\int_{Q(0, \varrho)} \exp \left[-2 \pi i \lambda \sum \pm v_{j}^{2}\right] h(v, \theta) B(v) d v
$$

and

$$
I_{5}=\int_{Q(0, \varrho)} \exp \left[-2 \pi i \lambda \sum \pm v_{j}^{2}\right] h(v, \theta)[1-B(v)] d v .
$$

Lemma 1 is applicable to the integral I_{5} and so $\left|I_{5}\right| \leq M_{2} \lambda^{-m+1}$. For the integral I_{4} we write $h(x, \theta)=h(0, \theta)+\sum_{k} v_{k} h_{k}(v, \theta)$, for suitable $h_{j} \in \mathcal{C}^{m-4}$, and we split I_{4} into the sum $I_{4}=h(0, \theta) I_{6}+\sum_{k} I_{k}^{\prime}$ where

$$
I_{6}=\int_{Q(0, \varrho)} \exp \left[-2 \pi i \lambda \sum \pm v_{j}^{2}\right] B(v) d v
$$

and

$$
I_{k}^{\prime}=\int_{Q(0, \varrho)} \exp \left[-2 \pi i \lambda \sum \pm v_{j}^{2}\right] v_{k} h_{k}(v, \theta) B(v) d v .
$$

We have

$$
I_{6}=\prod_{j=1}^{n} \int_{-\varrho}^{\varrho} \exp \left[\pm 2 \pi i \lambda t^{2}\right] \beta(t) d t
$$

but

$$
\begin{aligned}
& \int_{-\varrho}^{\varrho} \exp \left[\pm 2 \pi i \lambda t^{2}\right] \beta(t) d t \\
&=\int_{-\varrho}^{\varrho} \exp \left[\pm 2 \pi i \lambda t^{2}\right] d t \int_{-\varrho}^{\varrho} \exp \left[\pm 2 \pi i \lambda t^{2}\right][1-\beta(t)] d t \\
&=\frac{1}{\sqrt{2 \lambda}} \exp [\pm \pi i / 4]+O\left(\lambda^{-1}\right)
\end{aligned}
$$

(see [1] for details) and so

$$
I_{6}=2^{-n / 2} \lambda^{-n / 2} \exp \left[\delta_{f}(\phi(\theta), \theta) \pi i / 4\right]+O\left(\lambda^{-(n+1) / 2}\right)
$$

(remember that the quadratic form $\sum \pm x_{j}^{2}$ has the same signature as the matrix $\left.H_{f}(\phi(\theta), \theta)\right)$. Applying Lemma 2 to the integrals I_{k}^{\prime} we obtain $\left|I_{k}^{\prime}\right| \leq$ $M_{3} \lambda^{-(n+1) / 2}$. Finally,

$$
I_{1}=2^{-n / 2} \lambda^{-n / 2} \exp \left[-2 \pi i \lambda f(\phi(\theta), \theta)+\delta_{f}(\phi(\theta), \theta) \pi i / 4\right] h(0, \theta)+E_{\lambda}
$$

where $\left|E_{\lambda}\right| \leq M_{4} \lambda^{-(n+1) / 2}$ for a suitable constant M_{4} independent of λ and θ.

Proof of Theorem 1. Clearly it suffices to prove the estimate (1) in a suitable neighborhood of every $\theta \in A$. We choose $\theta_{0} \in A$ and consider a
neighborhood $U\left(\theta_{0}\right)$. Let $h \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be such that $h(x)=1$ for $|x| \leq a / 2$ and $h(x)=0$ for $|x| \geq a$. If $h_{j}(x, \theta)=h\left(x-\sigma_{j}(\theta)\right)$ we can choose a and $U\left(\theta_{0}\right)$ so that the supports of h_{j} are pairwise disjoint. Set $h_{0}(x, \theta)=$ $1-\sum_{j=1}^{q} h_{j}(x, \theta)$. Then, by the divergence theorem,

$$
\begin{aligned}
\widehat{\chi}(r \theta) & =\int_{C} \exp [-2 \pi i r \theta x] d x=-\frac{1}{2 \pi i r} \int_{\partial C} \exp [-2 \pi i r \theta x] \theta \vec{n}(x) d S \\
& =-\frac{1}{2 \pi i r} \sum_{j=0}^{q} \int_{\partial C} \exp [-2 \pi i r \theta x] \theta \vec{n}(x) h_{j}(x, \theta) d S
\end{aligned}
$$

Let

$$
I_{j}=\int_{\partial C} \exp [-2 \pi i r \theta x] \theta \vec{n}(x) h_{j}(x, \theta) d S
$$

We shall estimate separately I_{0} and I_{j} for $j>0$. Let ξ_{k} be a partition of unity such that the support of every ξ_{k} lies in a part of the surface with a representation $\phi: \Omega \subset \mathbb{R}^{N-1} \rightarrow \mathbb{R}^{N}$. Let $h_{0 k}=h_{0} \xi_{k}$ and consider the integral

$$
I_{0 k}=\int_{\Omega} \exp [-2 \pi i r \theta x] h_{0 k}(\phi(u), \theta) \theta \vec{n}(\phi(u)) \frac{\partial S}{\partial u} d u
$$

where $\partial S / \partial u$ is the surface element of ∂C. Applying Lemma 1 we obtain $I_{0 k} \leq M_{1} r^{-(N+1) / 2}$ and so $I_{0} \leq M_{2} r^{-(N+1) / 2}$. Consider now the integrals I_{j}. We may suppose, by a suitable choice of the parameter a in the definition of the function h, that the support of h_{j} lies in a part of the surface having a representation $\phi: \Omega \subset \mathbb{R}^{N-1} \rightarrow \mathbb{R}^{N}$. So

$$
I_{j}=\int_{\Omega} \exp [-2 \pi i r \theta \phi(u)] h_{j}(\phi(u), \theta) \theta \vec{n}(\phi(u)) \frac{\partial S}{\partial u} d u
$$

Let us observe that Lemma 4 is applicable to the integrals I_{j} since $\nabla_{u} \theta \phi(u)$ $=0$ means that θ has the same direction as the normal to the surface ∂C at $\phi(u)$. Moreover, the condition of $H_{\theta \phi}$ being non-singular is satisfied since the Gauss curvature is not zero. So

$$
\begin{aligned}
I_{j}= & r^{-(N-1) / 2} \exp \left[-2 \pi i r \theta \sigma_{j}(\theta)+\Gamma\left(\sigma_{j}(\theta)\right) \pi i / 4\right] \frac{\partial S}{\partial u} \\
& \times\left|\operatorname{det} \theta H_{\phi}\left(\phi^{-1}\left(\sigma_{j}(\theta)\right)\right)\right|^{-1 / 2}+E_{r}
\end{aligned}
$$

where $\left|E_{r}\right| \leq M_{3} r^{-N / 2}$ for every $\theta \in U\left(\theta_{0}\right)$. Since $\left(\operatorname{det} \theta H_{\phi}\right)[\partial S / \partial u]^{-2}$ is the Gauss curvature we obtain (1).

Using Theorem 1 we can now extend Theorem 1 of [1] to the N-dimensional case.

Lemma 5. Let $C \subset \mathbb{R}^{N}$ satisfy the same assumptions as in Theorem 1. Then if $\widehat{\psi}_{\tau}$ is the Fourier transform of the characteristic function of τC, there exist a measurable set $F_{\varepsilon} \subset T^{N}$ and positive constants M_{ε} (depending on ε), M_{1} and M_{2} (independent of ε) such that

1) $\int_{F_{\varepsilon}}\left|\widehat{\psi_{\tau}}(x)\right| d x \geq M_{1} \varepsilon^{(N-1) / 2} \tau^{(N-1) / 2}-M_{\varepsilon} \tau^{N / 2-1}$,
2) meas $F_{\varepsilon} \leq M_{2} \varepsilon^{N}$.

Proof. Let $U\left(\theta_{0}\right)$ be a neighborhood in which Theorem 1 is applicable and $x=|x| \theta$ be such that $\theta \in U\left(\theta_{0}\right)$. Then

$$
\begin{aligned}
\widehat{\psi}_{\tau}(x)= & \int_{\tau C} \exp [-2 \pi i x y] d y=\tau^{N} \int_{C} \exp [-2 \pi i \tau x y] d y \\
= & -\frac{1}{2 \pi i} \tau^{(N-1) / 2}|x|^{-(N+1) / 2} \\
& \times \sum_{j=1}^{q} \exp \left[-2 \pi i \tau x \theta \sigma_{j}(\theta)+\Gamma\left(\sigma_{j}(\theta)\right) \pi i / 4\right] K^{-1 / 2}\left(\sigma_{j}(\theta)\right)+\tau^{N} E_{\tau|x|}
\end{aligned}
$$

Set $A_{j}=K^{-1 / 2}\left(\sigma_{j}(\theta)\right)$ and $B_{j}=\exp \left[-2 \pi i \tau|x| \theta \sigma_{j}(\theta)+\Gamma\left(\sigma_{j}(\theta)\right) \pi i / 4\right]$. Then

$$
\widehat{\psi}_{\tau}(x)=\frac{\tau^{(N-1) / 2}}{2 \pi i}|x|^{-(N+1) / 2}\left\{A_{1} \exp \left[B_{1}\right]+\ldots+A_{q} \exp \left[B_{q}\right]\right\}+\tau^{N} E_{\tau|x|}
$$

Let Γ be the cone with vertex at the origin such that $\Gamma \cap S_{N}=U\left(\theta_{0}\right)$. We choose a cube $F \subset \Gamma$ with sides parallel to the axes and set $F_{\varepsilon}=\varepsilon F$. Since $|x| \leq M_{3} \varepsilon$ for all $x \in F_{\varepsilon}$, we have

$$
\begin{aligned}
\int_{F_{\varepsilon}}\left|\widehat{\psi}_{\tau}(x)\right| d x \geq & M_{4} \tau^{(N-1) / 2} \varepsilon^{-(N-1) / 2} \\
& \times \int_{F_{\varepsilon}}\left|A_{1} \exp \left[B_{1}\right]+\ldots+A_{q} \exp \left[B_{q}\right]\right| d x-M_{\varepsilon} \tau^{N / 2-1}
\end{aligned}
$$

Arguing as in [1] (p. 238) we claim that there exists a positive constant M_{5} such that for every $\varepsilon>0$ sufficiently small and for every τ sufficiently large

$$
\int_{F_{\varepsilon}}\left|A_{1} \exp \left[B_{1}\right]+\ldots+A_{q} \exp \left[B_{q}\right]\right| d x \geq M_{5} \text { meas } F_{\varepsilon}
$$

Let ε_{n} and τ_{n} be as in [1]. The proof follows in the same way as in [1] if we can show that

$$
\frac{1}{\text { meas } F_{\varepsilon_{n}}} \int_{F_{\varepsilon_{n}}} A_{j} \exp \left[B_{j}-B_{1}\right] d x
$$

tends to zero. If we change variable and put

$$
G(y)=y\left[\sigma_{j}(\theta)-\sigma_{1}(\theta)\right]
$$

the integral becomes
(5) $\frac{1}{\operatorname{meas} F} \int_{F} A_{j} \exp \left[-2 \pi i \tau_{n} \varepsilon_{n} G(y)+\Gamma\left(\sigma_{j}(\theta)\right) \pi i / 4-\Gamma\left(\sigma_{1}(\theta)\right) \pi i / 4\right] d x$.

Observe that

$$
\frac{\partial G}{\partial y_{k}}=e_{k}\left(\sigma_{j}(\theta)-\sigma_{1}(\theta)\right)+y \frac{\partial \sigma_{j}}{\partial y_{k}}-y \frac{\partial \sigma_{1}}{\partial y_{k}}
$$

where $\left\{e_{k}\right\}$ is the standard basis of \mathbb{R}^{N}. But $y \partial \sigma_{j} / \partial y_{k}=y \partial \sigma_{1} / \partial y_{k}=0$ since y is normal to the surface and the $\partial \sigma_{j} / \partial y_{k}$ are tangent. So $\partial G / \partial y_{k}=$ $e_{k}\left(\sigma_{j}(\theta)-\sigma_{1}(\theta)\right)$. Since $\sigma_{j}(\theta) \neq \sigma_{1}(\theta)$ we may suppose $\nabla G \neq 0$. Integration by parts shows that (5) tends to zero.

Proof of Theorem 2. The upper estimate is contained in [15]. As for the lower estimate, arguing as in [1] and [2] and using Lemma 5 we have

$$
\begin{aligned}
L_{\tau}^{C} & \geq \int_{F_{\varepsilon}}\left|\widehat{\psi}_{\tau}(x)\right| d x-\left(\text { meas } F_{\varepsilon}\right)^{1 / 2}\left(\int_{\mathbb{R}^{N}}|\widehat{\chi}(x)|^{2} d x\right)^{1 / 2} \\
& \geq M_{1} \varepsilon^{(N-1) / 2} \tau^{(N-1) / 2}-M_{\varepsilon} \tau^{N / 2-1}-M_{2} \varepsilon^{N / 2}\left(\int_{\mathbb{R}^{N}}|\widehat{\chi}(x)|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

and, since the Minkowski upper measure of ∂C is bounded (see [15] for a definition),

$$
\begin{aligned}
L_{\tau}^{C} & \geq M_{1} \varepsilon^{(N-1) / 2} \tau^{(N-1) / 2}-M_{\varepsilon} \tau^{N / 2-1}-M_{3} \varepsilon^{N / 2} \tau^{(N-1) / 2} \\
& =\tau^{(N-1) / 2} \varepsilon^{(N-1) / 2}\left(M_{1}-M_{3} \varepsilon^{1 / 2}\right)-M_{\varepsilon} \tau^{N / 2-1} .
\end{aligned}
$$

Choosing ε such that $M_{1}-M_{3} \varepsilon^{1 / 2}>0$ for τ sufficiently large we have
$L_{\tau}^{C} \geq M_{4} \tau^{(N-1) / 2}-M_{5} \tau^{N / 2-1}=\tau^{(N-1) / 2}\left(M_{4}-M_{5} \tau^{-1 / 2}\right) \geq M_{6} \tau^{(N-1) / 2}$.
An analogous extension is possible for Theorem 2 of [1] (see also Theorem A of [3]).

Remark. Only recently have I found, in the Proceedings of the Steklov Institute of Mathematics 180 (1989), 176-177, the announcement, with no proof, of a sharper version of Theorem 2 due to I. R. Liflyand.

REFERENCES

[1] L. Brandolini, Estimates for Lebesgue constants in dimension two, Ann. Mat. Pura Appl. (4) 156 (1990), 231-242.
[2] M. Carenini and P. M. Soardi, Sharp estimates for Lebesgue constants, Proc. Amer. Math. Soc. 89 (1983), 449-452.
[3] D. I. Cartwright and P. M. Soardi, Best conditions for the norm convergence of Fourier series, J. Approx. Theory 38 (1983), 344-353.
[4] E. T. Copson, Asymptotic Expansions, The University Press, Cambridge 1965.
[5] S. Giulini and G. Travaglini, Sharp estimates for Lebesgue constants on compact Lie groups, J. Funct. Anal. 68 (1986), 106-110.
[6] C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81-92.
[7] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
[8] J. Milnor, Morse Theory, Princeton University Press, 1963.
[9] F. W. J. Olver, Introduction to Asymptotics and Special Functions, Academic Press, New York 1974.
[10] B. Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271-278.
[11] - , On the asymptotic behavior of the Fourier transform of the indicator function of a convex set, ibid., 279-285.
[12] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud. 112, Princeton University Press, 1986, 307-355.
[13] -, Problems in harmonic analysis related to curvature and oscillatory integrals, in: Proc. Internat. Congress Math. 1986, Vol. I, 196-221.
[14] A. A. Yudin and V. A. Yudin, Discrete imbedding theorems and Lebesgue constants, Math. Notes 22 (1977), 702-711.
[15] V. A. Yudin, Behavior of Lebesgue constants, ibid. 17 (1975), 233-235.

DIPARTIMENTO DI MATEMATICA DELL'UNIVERSITÀ
VIA C. SALDINI, 50
20133 MILANO, ITALY

