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SOME EIGENVALUE ESTIMATES FOR WAVELET RELATED
TOEPLITZ OPERATORS

BY

KRZYSZTOF N O W A K (WROC LAW)

By a straightforward computation we obtain eigenvalue estimates for
Toeplitz operators related to the two standard reproducing formulas of the
wavelet theory. Our result extends the estimates for Calderón–Toeplitz op-
erators obtained by Rochberg in [R2].

In the first section we recall two standard reproducing formulas of the
wavelet theory, we define Toeplitz operators and discuss some of their prop-
erties. The second section contains precise statements of our results and
their proofs. At the end of the second section we include some comments
about the range of applicability of our estimates.

1. Introduction and preliminaries. The first reproducing formula
which we discuss is based on the Schrödinger representation of the Heisen-
berg group. We take any square integrable function φ with unit norm defined
on the d-dimensional Euclidean space. This function provides the following
resolution of the identity:

(1) I =
∫

Rd

∫
Rd

φpq ⊗ φpq dp dq .

We denote by φpq the action of the Schrödinger representation of the Heisen-
berg group on the function φ, i.e.

φpq(x) = e−πipq+2πipxφ(x− q) .

The symbol φpq ⊗ φpq stands for the orthogonal projection on the func-
tion φpq.

The second reproducing formula makes use of the standard action of
the “ax + b”-group by translations and dilations. It is called the Calderón
reproducing formula. Again we take a square integrable function ψ defined
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on the d-dimensional Euclidean space, but now we assume that it satisfies
the admissibility condition, i.e. for almost every ξ ∈ Rd,

∞∫
0

|ψ̂(sξ)|2 ds
s

= 1 ,

where ψ̂ is the Fourier transform of ψ, i.e.

ψ̂(ξ) =
∫

Rd

ψ(x)e−2πixξ dx .

Under the above assumption on ψ,

(2) I =
∫
G

ψζ ⊗ ψζ dζ .

The symbol G denotes the “ax+ b”-group, i.e.

G = {ζ = (v, t) : v ∈ Rd , t > 0} ,

dζ = t−d−1dv dt is the left invariant measure on G, and for ζ = (v, t),

ψζ(x) = t−d/2ψ

(
x− v

t

)
.

Both these formulas are understood in a weak sense and both are easily
checked by a direct Fourier transform computation. They are particular
cases of reproducing formulas related to square integrable representations.
The names “reproducing formulas” come from the interpretation of (1) and
(2) as the identities

f =
∫

Rd

∫
Rd

〈f, φpq〉φpq dp dq ,

f =
∫
G

〈f, ψζ〉ψζ dζ ,

valid for all square integrable functions f .
The standard function φ which appears in the formula (1) is well localized

near the origin and the same is true for its Fourier transform. In this case
the function φpq is localized near q while its Fourier transform is localized
near p.

A similar interpretation is valid for the function ψ(u,s) from the for-
mula (2). It is natural to take ψ localized near the origin with Fourier
transform concentrated in a neighborhood of the sphere |ξ| = 1. In this sit-
uation ψ(u,s) is localized near u while its Fourier transform is concentrated
in a neighborhood of the sphere |ξ| = s−1.
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For functions b(p, q) and b(ζ) (called symbol functions) defined on Rd ×
Rd and G respectively we define two corresponding Toeplitz operators

Tb =
∫

Rd

∫
Rd

b(p, q)φpq ⊗ φpq dp dq ,

Tb =
∫
G

b(ζ)ψζ ⊗ ψζ dζ .

These are integral operators acting on L2(Rd) and their kernels are

Kb(x, y) =
∫

Rd

∫
Rd

b(p, q)φ(x− q)e2πipxφ(y − q)e−2πipy dp dq ,

and

Kb(x, y) =
∞∫

0

∫
Rd

b(u, s)ψs(x− u)ψs(y − u) du
ds

s
,

where ψs(x) = s−dψ(x/s). These Toeplitz operators may be thought of
as perturbations of the corresponding reproducing formulas where a weight
has been attributed to each projection φpq ⊗ φpq, ψζ ⊗ ψζ . The operator
Tb is called a Calderón–Toeplitz operator . For more details and further
motivation we refer the reader to [R1], [D2], [F]. In our considerations we
restrict attention to compactly supported functions φ, ψ.

The purpose of this paper is to show the relation between the eigenvalues
of Toeplitz operators with nonnegative compactly supported symbols and
the squares of the absolute values of the Fourier coefficients of the function
φ or ψ. In the time-frequency representation Toeplitz operators with non-
negative compactly supported symbols localize functions on which they act
to the region which is essentially the support of the symbol. For this rea-
son Toeplitz operators with pairwise disjoint supports of their symbols may
be thought of as pairwise orthogonal. On the other hand, Toeplitz oper-
ators with nonnegative compactly supported symbols form building blocks
for Toeplitz operators with general symbols.

The eigenvalue estimates for Calderón–Toeplitz operators based on the
Haar function obtained by Rochberg in [R2] provide the motivation for our
study. The result of Rochberg asserts that the eigenvalues of Calderón–
Toeplitz operators with nonnegative, bounded, compactly supported sym-
bols decay no faster than 1/n2 and that this estimate determines the cut-
off at p = 1/2 in the scale of the Schatten ideals Sp. In the same paper
Rochberg asks the question about the relationship between the properties
of the wavelet function and the cut-off for the operator. Our results provide
a partial solution of that problem and the analogous problem for Toeplitz
operators based on the Schrödinger representation. Although our approach
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is a straightforward computation it provides a precise description of the be-
havior of the eigenvalues for some classes of functions φ, ψ. In particular,
we get two-sided estimates by comparable sequences for convolution powers
of the Haar function taken as ψ.

The problem of studying the cut-off in the behavior of certain classes
of operators depending on symbol functions has recently attracted some
attention. Some references dealing with this and related problems are [AFP],
[BS], [D1], [DP], [JW], [PRW], [R2], [RS], [RT], [S]. Very often the cut-off is
described in terms of Schatten or Schatten–Lorentz ideals. In some cases it
is possible to get the estimates of the eigenvalues themselves. In this note
we follow the second direction.

2. The main results. We start this section by recalling a standard
proposition dealing with eigenvalue estimates.

Proposition. Let T be a compact , positive operator defined on a Hilbert
space H and let sn, n = 0, 1, 2, . . . , denote its eigenvalues written in nonin-
creasing order. Suppose that VN and VN+1 are, respectively , N -dimensional
and (N + 1)-dimensional subspaces of H.

(i) If

(3) 〈Tw,w〉 ≤ bN ||w||2 for w ∈ V ⊥N ,

then

sN ≤ bN .

(ii) If

(4) 〈Tw,w〉 ≥ aN ||w||2 for w ∈ VN+1 ,

then

sN ≥ aN .

Although our results are stated for symbols having the form of a product
they also apply to general nonnegative, continuous, compactly supported
symbols. We justify this statement for Toeplitz operators based on the
Schrödinger representation. For Calderón–Toeplitz operators the argument
goes along the same lines.

For a general nonnegative, continuous, compactly supported symbol b
we take smooth, nonnegative, compactly supported functions b01, b

0
2, b

1
1, b

1
2

which satisfy

b01(p)b
0
2(q) ≤ b(p, q) ≤ b11(p)b

1
2(q) .

The map b→ Tb is positivity preserving, so

Tb01⊗b02
≤ Tb ≤ Tb11⊗b12

.
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The estimate from below for Tb01⊗b02
and the estimate from above for Tb11⊗b12

apply to Tb.
First we present estimates for Toeplitz operators based on the Schrö-

dinger representation. Next we state their analogues for Calderón–Toeplitz
operators.

Theorem 1. Let the square integrable function φ have compact support
and let the symbol function b have the form

b(p, q) = b1(p)b2(q) .

Assume that both b1 and b2 are nonnegative and compactly supported , and
that b1 is integrable and b2 is smooth (it is enough to assume that the Fourier
transform of b2 is integrable).

Take any box B = [x1
1, x

1
2] × . . . × [xd

1, x
d
2] containing the algebraic sum

supp b2 + suppφ in its interior. For m = (m1, . . . ,md), where all mj are
integers, and γj = (xj

2 − xj
1)
−1, let

mB = (γ1m
1, . . . , γdm

d) .

Let sn denote the nonincreasing rearrangement of the eigenvalues of the
operator Tb and for any positive integer M let aM

n be the nonincreasing
rearrangement of the sequence

(5)
∫

Rd

b1(p) |φ̂(MmB − p)|2 dp .

Under the above assumptions there are positive constants c, C and a
natural number M such that for all natural N ,

caM
N ≤ sN ≤ Ca1

N .

P r o o f. The operator Tb may be viewed as acting on L2(B). This is
because Kb(x, y) = 0 if either x or y is outside B. The functions e2πimBx

form an orthogonal basis of L2(B). We expand Kb(x, y) in a Fourier series
and we get

Kb(x, y) = cB
∑
m,n

b̂2(mB − nB)

×
∫

Rd

b1(p)φ̂(mB − p)φ̂(nB − p) dp e2πimBxe−2πinBy .

Let

WM
N =

{ ∑
m∈V M

N

λme
2πimBx

}
, where

V M
N = {Mm0, . . . ,MmN−1},

∫
Rd

b1(p)|φ̂(M(mj)B − p)|2 dp = aM
j .
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Take w ∈ (W 1
N )⊥; then

〈Tbw,w〉 = cB
∑

m,n 6∈V 1
N

b̂2(mB − nB)

×
∫

Rd

b1(p)φ̂(mB − p)φ̂(nB − p) dp λnλm

≤ C
∫

Rd

b1(p)
∑

m6∈V 1
N

|φ̂(mB − p)|2|λm|2dp ≤ Ca1
N ||w||2 .

The above shows that the estimate (3) is satisfied, thus

sN ≤ Ca1
N .

To get the estimate from below we take a natural number M so large
that

b̂2(0) >
∑
m6=0

|̂b2(MmB)| .

The above condition guarantees that the operator of convolution by the
sequence b̂2(MmB) is invertible.

Take w ∈WM
N+1; then

〈Tbw,w〉 = cB
∑

m,n∈V M
N+1

b̂2(mB − nB)

×
∫

Rd

b1(p)φ̂(mB − p)φ̂(nB − p) dp λnλm

≥ c
∫

Rd

b1(p)
∑

m∈V M
N+1

|φ̂(mB − p)|2|λm|2dp ≥ caM
N ||w||2 .

This shows that the estimate (4) holds, therefore also

sN ≥ caM
N .

Theorem 2. Let ψ be a compactly supported , square integrable function
satisfying the admissibility condition. Let the symbol function b have the
form

b(u, s) = b1(u)b2(s) ,

where b1 is smooth, nonnegative, and compactly supported , and b2 is inte-
grable, nonnegative, and compactly supported in (0,∞).

Take any box B = [x1
1, x

1
2]× . . .× [xd

1, x
d
2] such that the support of Kb is

contained in the interior of B ×B.
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Let sn denote the nonincreasing rearrangement of the eigenvalues of the
operator Tb and let aM

n be the nonincreasing rearrangement of the sequence

(6)
∞∫

0

b2(s) |ψ̂(sMmB)|2 ds
s
.

Under the above assumptions there are positive constants c, C and a
natural number M such that for all natural N ,

caM
N ≤ sN ≤ Ca1

N .

P r o o f. The proof follows the same pattern as the proof of Theorem 1
and we omit it.

Comments. (1) We are primarily interested in two-sided estimates by
comparable sequences. The estimates obtained in Theorems 1 and 2 are of
that sort if for some constants c1, c2,

a1
N ≤ c1a

M
N and a1

N ≤ c2aM
N

for all natural N .
If we take the function

φ = cχ∗k1
[0,1] ⊗ . . .⊗ χ∗kd

[0,1] , i.e.

φ̂(ξ) = c

(
1− e−2πiξ1

ξ1

)k1

. . .

(
1− e−2πiξd

ξd

)kd

,

k1, . . . , kd ∈ {1, 2, . . .}, ξ = (ξ1, . . . , ξd), then the sequences a1
N , aM

N obtained
from the formula (5) are comparable. The same happens for the sequences
a1

N , aM
N defined in (6) if ψ = ch∗k, where h is the Haar function, i.e.

h(x) = c

{ 1 for 0 < x < 1,
−1 for −1 < x < 0,
0 elsewhere.

In this case
cM N−2k ≤ aM

N ≤ CM N−2k

and the estimates in Theorem 2 extend the result of Rochberg in [R2].
There are some more examples of φ and ψ for which the explicit formulas

for the Fourier transforms make it easy to show that a1
N , aM

N and a1
N , aM

N

are comparable. We do not know a general description of the classes of
functions φ, ψ for which such properties hold.

(2) The assumption that φ and ψ have compact supports is essential
for our proofs. In the case of Toeplitz operators based on the Schrödinger
representation it is enough to assume that φ̂ is compactly supported. We
simply observe that taking the Fourier transform of the kernel function Kb

does not change its form.
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