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POLYHEDRAL SUMMABILITY OF MULTIPLE FOURIER SERIES
(AND EXPLICIT FORMULAS FOR DIRICHLET KERNELS ON Tn

AND ON COMPACT LIE GROUPS)

BY

GIANCARLO TRAVAGL IN I (TORINO)

We study polyhedral Dirichlet kernels on the n-dimensional torus and
we write a fairly simple formula which extends the one-dimensional iden-
tity

∑N
j=−N eijt = sin((N + 1

2 )t)/sin( 1
2 t). We prove sharp results for the

Lebesgue constants and for the pointwise boundedness of polyhedral Dirich-
let kernels; we apply our results and methods to approximation theory, to
more general summability methods and to Fourier series on compact Lie
groups, where we write an asymptotic formula for the Dirichlet kernels.

Introduction. Multiple Fourier series are usually summed either by
disks or by squares (or rectangles). The latter is the simplest way since
one can separate variables, thereby reducing several questions on the par-
tial sum operator to one-dimensional problems. In this paper we study the
polyhedral summability, which is naturally related to the square summabil-
ity, but cannot be handled by separating variables. Polyhedral sums have
already been considered for Lp problems (see [10], [12], [15]) and they are
partly motivated by the appearance of several papers on general summabil-
ity methods (see e.g. [2], [3], [5], [18], [19]). A specific interest comes also
from the study of Fourier series on compact Lie groups, which often gives
rise to problems on the maximal torus where one does not find square sums,
but rather polyhedral sums (which obey the complicated symmetries of the
Weyl group and no separation of variables is possible).

Another reason for studying Fourier summability through arbitrary poly-
hedra will appear at the end, since we shall see that polyhedral Dirichlet
kernels on Tn are exactly as good as the square ones. Indeed, we shall see
that
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(i) their Lebesgue constants grow as logn(N),
(ii) they are uniformly bounded away from certain hyperplanes perpen-

dicular to the edges and they are unbounded at any point of a dense subset
of the union of these hyperplanes.

The last result depends on a rather explicit formula for the Dirichlet
kernel, which in the one-dimensional case reduces to the elementary identity∑N

j=−N eijt = sin((N + 1
2 )t)/sin( 1

2 t).
Results as (i) and (ii) are useful for the L1 theory and we shall give some

applications. Then we shall consider more general summability methods
and apply our results to the theory of Fourier series on compact Lie groups,
where we shall write an asymptotic formula for the Dirichlet kernels.

We are happy to thank Leonardo Colzani for several helpful comments.

Polyhedral sums. Let p1, . . . ,pr be points with integral coordinates in
Rn; we call their convex hull P̃ in Rn a convex polyhedron. For any positive
integer N we define P̃N as the convex hull of the points Np1, . . . , Npr. Let
PN = P̃N ∩ Zn; we still call PN a polyhedron. The tilde over a symbol will
always indicate a subset of Rn and if Ã is such a set, we shall write A for
its restriction to Zn. A general reference for n-dimensional polyhedra is [4].

An (n − 1)-face of P̃ is called a facet . We say that P is simple if P̃
is simple, i.e. if any vertex of P̃ is contained in exactly n facets. If P̃ has
2n facets, each parallel to another one, we call P̃ and P parallelepipeds. A
1-face of P̃ is called an edge. A segment (or edge) with extremities a, b will
be denoted by [a,b].

Convexity (and even connectedness) will not be used in the sequel, and
we shall define a summability polyhedral set to be any finite union of nonover-
lapping (i.e. with disjoint interiors) convex polyhedra (in Rn) containing the
origin strictly in its interior. Observe that the above union is not unique;
however, if P̃(1), . . . , P̃(s) are nonoverlapping polyhedra and P̃ = P̃(1) ∪ . . .∪
P̃(s) is a summability polyhedral set, then P̃N = (P̃(1))N ∪ . . . ∪ (P̃(s))N

depends on P̃ but not on the P̃(j)’s. We write PN = P̃N ∩ Zn and since⋃∞
N=1 PN = Zn we can study the polyhedral Dirichlet kernel

DN (t) =
∑

m∈PN

eim·t

and the Nth Fourier polyhedral partial sum

SNf(t) = (DN ∗ f)(t) .

We shall write c, c1, . . . for positive constants independent of N , which
may change from line to line.
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Lebesgue constants. The following theorem has been proved in [14].
Here we propose a different (perhaps more elementary) proof.

Theorem 1. For any polyhedral set P there are two positive constants
c1 and c2 (depending only on P ) such that

c1 logn(N) ≤ ‖DN‖L1(Tn) ≤ c2 logn(N) .

P r o o f. We start with the right hand side inequality. Let γ̃ be a hyper-
plane of dimension ≤ n− 1, determined by some of the vertices of P̃ . Then
γN = γ̃ ∩PN is a union of lower dimensional polyhedra and by an induction
argument we can suppose that∥∥∥ ∑

m∈γN

eim·t
∥∥∥

L1(Tn)
≤ c logn−1(N) .

Now we write P̃ as a union of nonoverlapping simple polyhedra. Because
of the previous remark we do not worry about the contribution of their
boundaries to the norm of the Dirichlet kernel. Thus we can assume P to
be a simple polyhedron.

Let now a1, . . . ,as be the vertices of the simple polyhedron P̃ and let
Na1, . . . , Nas be the vertices of P̃N . Let Φ1, . . . , Φs be nonnegative C∞(Rn)
functions with compact support such that, for any j:

(i) Φj(aj) = 1,
(ii) Φ(w) =

∑s
j=1 Φj(w) = 1 for any w ∈ P̃ ,

(iii) the support of Φj does not contain any point of the facets which do
not contain aj .

Let φ1, . . . , φs be Schwartz functions on Rn satisfying φ̂j = Φj for any j
and let Nφj(t) = Nnφj(Nt) for any positive integer N . Then ‖Nφj‖L1(Rn)

= ‖φj‖L1(Rn) and N φ̂j(w) = φ̂j(N−1w). Define

Nψj(t) =
∑

m∈Zn

Nφj(t + m)

on Tn. Then ‖Nψj‖L1(Tn) ≤ ‖φj‖L1(Rn) and by the Poisson summation
formula we have N ψ̂j(m) = φ̂j(N−1m). Then

‖DN‖L1(Tn) =
∥∥∥ s∑

j=1

Nψj ∗DN

∥∥∥
L1(Tn)

≤
s∑

j=1

‖Nψj ∗DN‖L1(Tn) .

Now let us fix j. By construction the support of (Nψj ∗DN )∧ contains
Naj and does not contain any point of the facets which do not contain
Naj . Therefore we can find a set QN ⊂ Zn which essentially coincides with
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a parallelepiped and such that

(1) Nψj ∗DN = Nψj ∗
( ∑

m∈QN

eim·t
)
.

The construction of QN is as follows. Assuming N large we can find a
parallelepiped Q̃ ⊂ P̃N admitting Naj as one of its vertices and such that if
σ̃1, . . . , σ̃n are the facets of Q̃ containing Naj and %̃1, . . . , %̃n are the facets
of P̃N containing Naj , then σ̃j ⊆ %̃j for all j. By changing sign of some
variables we can assume the points q−Naj to have nonnegative coordinates
for any q ∈ P̃N . Let Q̃∗ be obtained by deleting from Q̃ the n facets different
from σ̃1, . . . , σ̃n.

Now observe that there are n distinct points v1, . . . ,vn in Zn so that, for
any j = 1, . . . , n, σ̃j + vj is the facet of Q̃ opposite to σ̃j . If Q∗ = Q̃∗ ∩ Zn

we can write the disjoint union

QN =
KN⋃

h1,...,hn=0

(
Q∗ +

n∑
j=1

hjvj

)
.

By a suitable choice of the integer K we have QN ⊃ PN , hence (1) follows
from the definition of Φ.

It is now useful to decompose QN in a different way. Let q1, . . . ,qM be
all the elements in Q∗. Write

(2) QN =
M⋃
i=1

{qi + hjvj}KN
h1,...,hn=0 =

M⋃
i=1

Bi .

Then, for any i = 1, . . . ,M ,∥∥∥ ∑
m∈Bi

eim·t
∥∥∥

L1(Tn)
=

∥∥∥ KN∑
h1,...,hn=0

ei(h1v1+...+hnvn)·t
∥∥∥

L1(Tn)

=
∥∥∥ n∏

j=1

( KN∑
hj=0

eihjvj ·t
)∥∥∥

L1(Tn)
=

∥∥∥∥ n∏
j=1

sin((KN+1
2 )vj · t)

sin( 1
2vj · t)

∥∥∥∥
L1(Tn)

.

In order to estimate the last norm, cover the fundamental domain [−π, π)n

with a minimal union of (nonoverlapping) translates of the parallelepiped
with edges [0, 2π

KN v1], . . . , [0, 2π
KN vn] and observe that the polynomial in the

last norm has constant sign on any such parallelepiped. Then a computation
shows that ∥∥∥ ∑

m∈Bi

eim·t
∥∥∥

L1(Tn)
≤ c logn(N) ,

which, by (1) and (2), gives the right hand side inequality in the theorem.
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When P is a convex polyhedron, the left hand side inequality is a con-
sequence of a general result of Yudin [19]. When P is a polyhedral set, fix a
vertex a in P̃ and let Φ be a C∞(Rn) function with compact convex support,
attaining value 1 in a neighbourhood of a and such that the support of Φ
does not meet any facet of P̃ other than the facets containing a; let φ satisfy
φ̂ = Φ and let ψN (t) =

∑
m∈Zn φN (t + m). Then

‖DN‖L1(Tn) ≥ c‖ψN ∗DN‖L1(Tn) .

Now Yudin’s proof works for the polynomial ψN ∗DN with minor changes.

A formula for polyhedral Dirichlet kernels on Tn. Precise in-
formation on the pointwise boundedness of Dirichlet kernels is frequently
used in studying the convergence of Fourier series (e.g. in localization the-
orems). In the one-dimensional case the elementary identity

∑N
j=−N eijt =

sin((N + 1
2 )t)/sin( 1

2 t) is very useful for this and many other problems. We
now prove a similar identity for polyhedral sums (our Lemma is an extension
of the Lemma in [11]).

Lemma. Let P̃ = P̃(1)∪ . . .∪ P̃(s) be a summability polyhedral set written
as a union of convex polyhedra. Let [a1,b1], . . . , [av,bv] be a maximal set
of pairwise nonparallel edges of P̃(1), . . . , P̃(s). For any j, let mj ∈ Zn such
that [0,mj ] is a segment of minimal length parallel to [aj ,bj ]. Let

E(t) =
v∏

j=1

(1− eimj ·t) .

Then

DN (t) =
GN (t)
E(t)

,

where there exists c > 0, independent of N , such that the polynomial GN (t)
=

∑
ĜN (n)ein·t has the following property : for any n appearing in the above

sum (with nonzero coefficient) there exists a vertex a of one of the (P̃(j))N ’s
satisfying |a−n| ≤ c (in particular , the number of terms in GN is uniformly
bounded); moreover , the coefficients ĜN (n) are uniformly bounded integers:
|ĜN (n)| ≤ c.

Let us give an idea of the proof first. Consider T2 with variables (x, y)
and let P̃N be the triangle with vertices (−N,−N), (2N,−N), (0, 2N). Let
PN = P̃N ∩ Z2 and let DN (t) be the associated Dirichlet kernel. Observe
that D̂N is the characteristic function of PN and look at the passage from
DN to DN · (eix − 1): after the product, D̂N disappears but for some seg-
ments parallel and close to one of the nonhorizontal edges of PN . Two more
products are necessary to get the polynomial GN in the Lemma (once PN
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is given, squared paper is all we need in order to write out the coefficients
of GN in dimension two).

P r o o f o f t h e L e m m a. We can assume P to be a convex polyhedron.
Let d be a fixed integer satisfying d > |m1|+ . . .+ |mv|. Of course, for any
N there are a bounded number of points n ∈ Zn satisfying |a− n| ≤ 4d for
some vertex a of PN ; let AN be the complement of this set in Zn; we want
to prove that ĜN (n) = 0 for all n ∈ AN .

Let N be large and let m ∈ PN ∩ AN . Let B(m, 2d) be the ball with
center m and radius 2d; for any r ∈ PN ∩B(m, 2d) there exists at least one
direction [0,mk] such that

{r + jmk}2d
j=−2d ⊂ PN .

Let
H(t) = DN (t)(1− eimk·t) .

Then for any n ∈ B(m, 2d) we have Ĥ(n) = 0. Now we write

GN (t) = H(t)
∏
j 6=k

(1− eimj ·t) .

By the choice of d we have ĜN (n) = 0 for all n ∈ B(m, d). This proves that
ĜN (n) = 0 when n ∈ AN . Thus the first part of the Lemma is proved, the
second being obvious.

R e m a r k. The above Lemma works under more general hypotheses.
Indeed, the previous proof only needed the following two assumptions: (i)
the faces of the polyhedra are parallel, (ii) the lengths of the edges of the
polyhedra diverge (we could omit (ii) too, but in this case it would be
complicated to give the statement of the Lemma). Anyhow, the Lemma
can be restated as follows (we write out the statement for convex polyhedra
only).

Lemma∗. Let YN be a sequence of convex polyhedra in Zn satisfying the
following conditions:

(i) if σ1, . . . , σv are the faces of Y1, then any YN has (as only) faces
σN

1 , . . . , σ
N
v with σN

j parallel to σj for any j;
(ii) any edge of YN has length ≥ cN .

Let [a1,b1], . . . , [av,bv] be a maximal set of pairwise nonparallel edges of
Y1. For any j, let mj ∈ Zn such that [0,mj ] is a segment of minimal length
parallel to [aj ,bj ]. Let E and GN be as in the Lemma. Then the conclusion
of the Lemma holds.

Observe that the passage from the Lemma to Lemma∗ is similar to the
passage from square sums to rectangular sums. Lemma∗ will be useful when
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dealing with compact Lie groups, where we shall work with a sequence of
polyhedra which are not exactly dilates of each other.

Pointwise boundedness of Dirichlet kernels. The above Lemma
implies the following

Theorem 2. Let P be a summability polyhedral set and let [0,m1], . . .
. . . , [0,mv] be as in the statement of the Lemma. For j = 1, . . . , v consider
the hyperplane Ẽj = {x ∈ Rn : x ·mj = 0} orthogonal to mj and let

Ẽ =
⋃

m∈Zn

(
2πm +

v⋃
j=1

Ẽj

)
.

Being periodic, Ẽ defines a set E in Tn (e.g. let E be the intersection of Ẽ
with the fundamental domain [−π, π)n ; observe that E may be larger than
[−π, π)n ∩

⋃v
j=1 Ẽj). Then for any closed set F ⊂ Tn disjoint from E we

have
|DN (t)| ≤ cF

for all t ∈ F (cF being independent of N).

The above theorem is best possible in the following sense.

Theorem 3. Let P and E be as in Theorem 2. Then

sup
N∈N

|DN (x)| = ∞

for x in a dense subset of E.

P r o o f. Let x ∈ E and let DN (x) = GN (x)/E(x) as in the Lemma;
clearly GN (x) = E(x) = 0; thus supN∈N |DN (x)| = ∞ by the de l’Hopital
theorem provided we find a direction v such that supN∈N |(∂/∂v)GN (x)|
= ∞.

Let P = P1 ∪ . . . ∪ Ps . To prove the above we recall (see the Lemma)
that the support of ĜN consists of points close to a vertex of one of the
(P̃(j))N ’s. Then we fix a direction v not parallel to any face of the P̃(j)’s
and such that v ·a 6= 0 for any vertex a of one of the P̃(j)’s . Now, because of
the properties of GN in the Lemma, we have |v · n| ≥ c|n| ≥ c1N whenever
ĜN (n) 6= 0. Let

(GN )v(x) =
∂

∂v
GN (x) =

∂

∂v

∑
ĜN (n)ein·x = i

∑
v · n ĜN (n)ein·x .

Then |(GN )∧v(n)| ≥ cN if ĜN (n) 6= 0 (ĜN (n) being an integer). Since
x is (say) in the hyperplane Ej , the above expression is a trigonometric
polynomial (in the (n− 1)-dimensional variable x) with a bounded number
of coefficients, any of them with absolute value ≥ cN . Indeed, observe that
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the restriction (GN )v|Ej cannot be identically zero for any chosen v, since
this would imply ∇GN |Ej ≡ 0 and, as a consequence (since GN |Ej ≡ 0) we
would deduce GN/E|Ej ≡ DN |Ej ≡ 0, then DN (0) = 0, which is impossible.
Then, if H is a fixed relatively open subset of Ej , an argument of Zygmund
(see [20, p. 370], [13, Lemma 8.14]) shows that∫

H

|(GN )v(x)|2 dx ≥ cH
∑

|(GN )∧v(n)|2 ≥ cHN
2

(dx being the (n− 1)-dimensional Lebesgue measure) and therefore (GN )v
cannot be bounded on H.

An analogue of Theorem 3 will be considered at the end of the next
section.

More general Dirichlet kernels. The arguments of the above sections
apply to Dirichlet kernels defined through sets which coincide only locally
with a polyhedron. We are able to deal with the case n = 2 and the precise
definitions are as follows.

Let Ṽ be a compact set, the closure of an open set in R2, containing the
origin strictly in its interior and such that ∂Ṽ has finite upper Minkowski
measure. Suppose there exists an angle W̃ with a vertex a and a disk B(a, ε)
such that W̃ ∩ B(a, ε) = Ṽ ∩ B(a, ε). Then we call Ṽ a partially polygonal
set. We define ṼN through dilation and VN = ṼN ∩ Z2. In this section DN

denotes the (partially polygonal) Dirichlet kernel

DN (t) =
∑

m∈VN

eim·t .

The Lebesgue constants of DN range from log2(N) to N1/2 (see the
proof of Theorem 1 and [18]) and the “polygonal piece” inside Ṽ seems to
play no role in the computation of the Lebesgue constants. The situation is
perhaps more interesting if we study the pointwise boundedness of DN .

On the one hand, we may have supN |DN (t)| = ∞ for almost every t
(choose Ṽ to be the union of the upper closed unitary semidisk K̃ centered
at (0, 0) and the closed triangle T̃ with vertices (−1, 0), (0,−1), (1, 0), then
apply [16, p. 274] and Theorem 2).

On the other hand, we are going to show that DN always keeps the
“singularities” carried by the polygonal part of Ṽ .

Theorem 4. Let Ṽ and W̃ be as above and let [0,m1] and [0,m2] be
segments parallel to the edges of W̃ . Let

Ẽ =
⋃

m∈Z2

(
2πm +

( 2⋃
j=1

{x ∈ R2 : x ·mj = 0}
))
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and E = Ẽ ∩ [−π, π)2. Then for any open set G ⊂ T2 intersecting E we
have

sup
N∈N,t∈G

|DN (t)| = ∞ .

P r o o f. The proof is by contradiction. Suppose there exists a small disk
B = B(x0, %) with x0 ∈ E such that supN∈N,t∈B |DN (t)| ≤ c. Following
the notation in Theorem 2 we can assume x0 ∈ E1 and B ∩ E2 = ∅. Since
supN∈N,t∈B |Re(DN (t))| ≤ c and supN∈N,t∈B |Im(DN (t))| ≤ c, it follows
that |DN (t)| is also uniformly bounded on −B = B(−x0, %) . Let H =
−B ∪B. Then

(3) sup
N∈N,t∈H

|DN (t)| ≤ c .

Let N0 be a fixed large number and write Ṽ = ṼN0 . Now let [a,b] and
[a, c] be the edges of W̃ , [a,b] being parallel to [0,m1], and b, c ∈ B(a, ε)
(see the definition above). We want to modify the angle W so that it turns
into a right angle. This can be done (thanks to the fixed dilation N0) by
adding or subtracting a suitable triangle R̃ (with vertices a, c, d such that
d ∈ B(a, ε), while [a,d] and [a,b] are perpendicular and [c,d] is not parallel

to [a,b]). Then we get a set of the form Ĩ = Ṽ \ R̃ or Ĩ = Ṽ ∪ R̃ and there
exists a disk B(a, δ) and a square S̃ such that Ĩ ∩B(a, δ) = S̃ ∩B(a, δ).

We shall use this fact to split a neighbourhood of the vertex a from Ṽ
via a smooth function, but first we must turn to the Dirichlet kernel and
show that changing Ṽ into Ĩ does not affect the property (3).

Indeed, define the dilated set ĨN and IN = ĨN ∩ Z2. Passing from VN

to IN we have added or deleted a triangle (less an edge) which does not
contain any edge parallel to [0,m1]. Thus, by Theorem 2, the polynomial∑

m∈VN

eim·t −
∑

m∈IN

eim·t

is bounded on H, independently of N and then D#
N (t) =

∑
m∈IN

eim·t

satisfies (3).
Now let Φ be a C∞(R2) function with compact support, equal to 1 in

a neighbourhood of the origin. We shall fix more conditions on Φ later
on. Let φ be the Schwartz function on R2 satisfying φ̂ = Φ and let, for
any positive integer N , φN (t) = N2φ(Nt). Again, let ψN be the function
on T2 defined by ψN (t) =

∑
m∈Z2 φ(t + m). Then ψ̂N (m) = Φ(N−1m)

and ‖ψN‖L1(T2) ≤ c. Let gN (t) = ψN (t)e−it·a; by a suitable choice of Φ
we can suppose that the support of ĝN is contained in B(Na, Nδ). Write
gN = hN +kN , with hN = gNχB(0,%/2) (characteristic function), and observe
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that ‖kN‖L∞(T2) ≤ c. Then split D#
N = rN + sN , with rN = D#

NχH . Write

FN = D#
N ∗ gN = rN ∗ gN + sN ∗ hN + sN ∗ kN .

Let H1 = B(x0, %/2) ∪ B(−x0, %/2). The previous construction and [18]
yield

‖rN ∗ gN‖L∞(T2) ≤ ‖rN‖L∞(T2)‖gN‖L1(T2) ≤ c ,

(supp(sN ∗ hN )) ∩H1 = ∅ ,
‖sN ∗ kN‖L∞(T2) ≤ ‖sN‖L1(T2)‖kN‖L∞(T2) ≤ cN1/2 .

Therefore

(4) sup
t∈H1

|FN (t)| ≤ cN1/2 .

Now we consider the support of F̂N as part of a square (let us call it UN )
and we want to use copies of F̂N to recover the characteristic function of
UN (let a, a2, a3, a4 be the vertices of UN ); we shall choose later the length
of the edges of this square. Let Oj (j = 2, 3, 4) be a transformation of T2

sending the edges containing a into the edges containing aj . Let 1FN = FN

and jFN = FN ◦Oj (j = 2, 3, 4). Observe that the Oj ’s consist of reflections
and—on the Fourier transform side—of translations. Therefore, they do not
modify the symmetric set H1 and all the polynomials jFN satisfy (4).

Now we fix the length of UN and the C∞(R2) function Φ in such a way
that ∑

j

jF̂N (t) =
∑

n∈UN

ein·t ( = DU
N (t))

(i.e. we construct a partition of unity through Φ). So far we have got a
dilating sequence of cubes such that the associated Dirichlet kernel DU

N

satisfies

(5) sup
t∈B(x0,%/2)

|DU
N (t)| ≤ cN1/2

where x0 belongs to the line E perpendicular to an edge of the square. Now
we can either appeal to the proof of Theorem 3, which shows that the left
hand side in (5) grows as N , or we can decompose UN as we did at the end
of the proof of Theorem 1 and then separate variables.

R e m a r k. The previous theorem is obviously a variant of Theorem 3 for
the case n = 2. However, if we apply Theorem 1 in place of [18] in the proof
of Theorem 4, we can easily state and prove an analogue of Theorem 3 for
any dimension n.

Applications to approximation theory and localization. Sharp
estimates of Lebesgue constants are a main ingredient for results in approx-



FOURIER SERIES 113

imation theory (see [1], [6], [15]). Applying Theorem 1 and arguing as in [6]
one proves the following

Theorem 5. Let b be either the space C(Tn) or L1(Tn). Suppose that for
some positive k the k-th modulus of continuity of a function f ∈ b satisfies
ωk(s, f) = o(|log(s)|−n) as s → 0. Then the polyhedral partial sums of f
converge to f in the norm of b. The result is false if we replace the small o
with the big O.

The following result is a consequence of Theorem 2. The proof runs as
for the Riemann localization theorem.

Theorem 6. Let f ∈ L1(Tn) be a function whose support does not inter-
sect the set E defined in Theorem 2. Then, if SN denotes the N-th polyhedral
partial sum, SNf(0) vanishes as N goes to infinity.

On the other hand, a duality argument and Theorem 3 prove

Theorem 7. For any open set F intersecting E there exists a function
f ∈ L1(Tn) such that SNf(0) does not converge to zero.

If we apply Theorem 4 in place of Theorem 3 we can extend the previous
result to partially polygonal sets in Z2.

Applications to Fourier series on compact Lie groups. Some of
the previous results may be applied to Fourier Analysis on compact Lie
groups. We need to fix the notation first.

With every integrable function f on a compact, simply connected, simple
Lie group G it is possible to associate its Fourier series

f ≈
∑

λ

dλχλ ∗ f ,

where dλ and χλ are the dimension and the character of the irreducible
unitary representation λ respectively. No analogue of square Fourier par-
tial sums is possible and the best convergence results are obtained through
polyhedral sums. To define them we must identify the irreducible unitary
representations with the dominant weights.

Let T be a maximal torus of G , and t and g be the Lie algebras of T and
G respectively. We choose a positive system Φ+ in the set of roots of G, and
let {α1, . . . , αl} be the associated system of simple roots. We denote by W
the Weyl group generated by the reflections σj in the hyperplanes αj(H) = 0
(j = 1, . . . , R), and we consider W acting both on t and on the dual t∗. The
Killing form B defines a positive definite inner product (·, ·) = −B(·, ·) in t.
For every λ ∈ it∗ there exists a unique Hλ ∈ t such that λ(H) = i(Hλ,H)
for every H ∈ t. The vectors Hj = 4πiHαj

/αj(Hαj
) generate the lattice

Ker(exp). The elements of the set Λ = {λ ∈ it∗ : λ(H) ∈ 2πiZ, ∀H ∈
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Ker(exp)} are called the weights of G, and the fundamental weights are
defined by the relations λj(Hk) = 2πiδjk, j, k = 1, . . . , l.

The set Σ = {λ ∈ Λ : λ =
∑l

j=1mjλj , mj ∈ N} of dominant weights
can be naturally identified with the set of equivalence classes of unitary
irreducible representations of G. A dominant weight λ is non-singular if
mj > 0 for every j = 1, . . . , l. If ξ is a character of T, there exists a unique
λ ∈ it∗ such that

ξ ◦ expH = eλ(H) = ei(Hλ,H) , H ∈ t .

For λ ∈ Σ and t = expH in T we define the alternating sum and the
symmetric sum

A(λ)(t) =
∑
σ∈W

det(σ)eσ(λ)(H) , S(λ)(t) =
∑

eσ(λ)(H)

where the last sum is over the orbit of λ under the action of the Weyl group.
For the character χλ and the dimension dλ of the representation corre-

sponding to the dominant weight λ we have the Weyl formulas:

χλ(t) = (∆(t))−1A(λ+ β)(t) , dλ =
∏

α∈Φ+

(λ+ β, α)
(β, α)

where β = 1
2

∑
α∈Φ+ α and

(6) ∆(t) = A(β)(t) = (−2i)|Φ
+|

∏
α∈Φ+

sin(iα(H)/2)

(|Φ+| denotes the cardinality of Φ). A reference for the theory is [17].
Let ω be a dominant weight, and let P ′(ω) be the set of all the dominant

λ’s such that (λj , λ) ≤ (λj , ω) for every j = 1, . . . , l. The polyhedron P (ω)
is the union of the saturated hulls of the dominant weights λ ∈ P ′(ω) :
P (ω) =

⋃
σ∈W σ(P ′(ω)). Let N be a positive integer. We denote by DN

the polyhedral Dirichlet kernel
DN =

∑
λ∈P ′(Nω)

dλχλ .

In [7], [9], [11] several results have been proved for polyhedral Dirichlet
kernels defined through reflections of a non-singular dominant weight. The
Lemma in this paper allows us to drop the non-singularity hypothesis and
therefore extend these results. Here we are not interested in this, but rather
in extending an idea from [7] and writing an asymptotic formula for polyhe-
dral Dirichlet kernels on compact Lie groups. Since DN is central we only
consider DN (t), t = expH ∈ T; then (see [8, p. 154])

DN (t) =
∑

λ∈P ′(Nω)

dλ(∆(t))−1A(λ+ β)(t)

= (∆(t))−1
∏

α∈Φ+

Dα

( ∑
λ∈P ′(Nω+β)

S(λ)(t)
)
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where Dα denotes the partial derivative with respect to the tangent vector
Hα. Observe that

∑
λ∈P ′(Nω+β) S(λ)(t) is not a polyhedral Dirichlet kernel

on Tl according to the definition in this paper, since the translation +β
damages the dilation. We then apply Lemma∗ in place of the Lemma; now
the definition of the Weyl group implies that any edge of P (Nω + β) is
parallel to a root, hence ∑

λ∈P ′(Nω+β)

S(λ) = GN/∆

where GN satisfies the properties in the Lemma. Then

DN (t) = (∆(t))−1
∏

α∈Φ+

Dα(GN (t)/∆(t))

= (∆(t))−1
∑

R⊆Φ+

∏
α∈R

Dα(GN (t))
∏

α∈Φ+\R

Dα(∆−1(t)) .

Now, by the Weyl dimension formula dNω ≈ N |Z| where Z = {α ∈ Φ+ :
(α, ω) 6= 0} (observe that Z = Φ+ when ω is non-singular). Then by ap-
plying the argument we used in the proof of Theorem 3 we have (almost
everywhere)

DN (t) = (∆(t))−1
∑
R⊆Z

∏
α∈R

Dα(GN (t))
∏

α∈Φ+\R

Dα(∆−1(t))

+ (∆(t))−1
∑

R\Z 6=∅

∏
α∈R

Dα(GN (t))
∏

α∈Φ+\R

Dα(∆−1(t))

= (∆(t))−1
∑
R⊆Z

dNωG
∗
N (t)

∏
α∈Φ+\R

Dα(∆−1(t)) + o(N |Z|)

where G∗
N (t) = d−1

Nω

∏
α∈RDα(GN (t)) =

∑
aλe

λ(H) satisfies the following
conditions: either aλ = 0 or c1 ≤ |aλ| ≤ c2 and for any λ with aλ 6= 0 there
exists σ ∈W such that |λ− σ(Nω)| ≤ c.

REFERENCES

[1] S. A. Al imov, V. A. I l ’ in and E. M. Nik i sh in, Convergence problems for multiple
trigonometric series and spectral decomposition, Russian Math. Surveys 31 (1976),
29–86.

[2] L. Brandol in i, Estimates for Lebesgue constants in dimension two, Ann. Mat.
Pura Appl. 156 (1990), 231–242.

[3] —, Fourier transform of characteristic functions and Lebesgue constants for multiple
Fourier series, this volume, 51–59.

[4] A. Brondsted, An Introduction to Convex Polytopes, Springer, New York 1983.
[5] M. Caren in i and P. M. Soard i, Sharp estimates for Lebesgue constants, Proc.

Amer. Math. Soc. 89 (1983), 449–452.



116 G. TRAVAGLINI

[6] D. I. Cartwr ight and P. M. Soard i, Best conditions for the norm convergence of
Fourier series, J. Approx. Theory 38 (1983), 344–353.

[7] F. Cazzaniga and G. Travag l in i, On pointwise convergence and localization for
Fourier series on compact Lie groups, Arch. Math. (Basel), to appear.

[8] J.-L. Clerc, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact ,
Ann. Inst. Fourier (Grenoble) 24 (1) (1974), 149–172.

[9] L. Colzan i, S. Giu l in i, G. Travag l in i and M. Vignat i, Pointwise convergence
of Fourier series on compact Lie groups, Colloq. Math. 60/61 (1990), 379–386.

[10] C. Fef fe rman, On the convergence of multiple Fourier series, Bull. Amer. Math.
Soc. 77 (1971), 744–745.

[11] S. Giu l in i and G. Travag l in i, Sharp estimates for Lebesgue constants on compact
Lie groups, J. Funct. Anal. 68 (1986), 106–116.

[12] C. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat.
Acad. Sci. U.S.A. 40 (1954), 996–999.

[13] J. M. Lopez and K. A. Ross, Sidon Sets, Marcel Dekker, New York 1975.
[14] A. N. Podkorytov, Summation of multiple Fourier series over polyhedra, Vestnik

Leningrad. Univ. Math. 13 (1981), 69–77.
[15] P. M. Soard i, Serie di Fourier in più variabili , U.M.I., Bologna 1984.
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