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Introduction. We consider a finitely generated group Γ , and the two
usual C∗-algebras coming along with Γ : the full C∗-algebra C∗(Γ ) associ-
ated with the universal representation πun of Γ on Hun; and the reduced
C∗-algebra C∗r (Γ ) associated with the left regular representation λ of Γ
on `2(Γ ).

Given a finite set S of generators of Γ (here we mainly deal with the
non-symmetric case S 6= S−1), we set:

h =
1
|S|

∑
s∈S

s ∈ C∗(Γ ) .

In [HRV], to which this paper is a sequel, we initiated a study of the
spectral properties of h. For example, we proved that the intersection of the
spectrum Sph with the unit circle T equals either T or the group Cn of n-th
roots of 1, for some n ≥ 1. Concerning λ(h), there is the archetypal result
of [Day]: Γ is amenable if and only if 1 is in the spectrum of λ(h), if and
only if the spectral radius of λ(h) is 1. In the present paper, we examine
more closely how properties of Γ and its representation theory are reflected
in properties of Sph and Spλ(h). Here is a summary of our results.

(1) Γ has Kazhdan’s Property (T) if and only if the resolvent R :
C − Sph → L(Hun) has a pole at 1; this is equivalent to the compact-
ness in the norm topology of L(Hun) of the closed semigroup generated by
h. It is also equivalent to a uniform ergodic property for h.

(2) Γ is finite if and only if the resolvent R : C − Spλ(h) → L(`2(Γ ))
has a pole at 1; this is still equivalent to h being algebraic.

(3) The equality Sph = Cn holds if and only if Γ is isomorphic to Cn

and S is reduced to one generator; the equality Sp h = T holds if and only
if Γ is isomorphic to Z and S is reduced to one generator.

(4) Let %(λ(h)) = limk→∞ ‖λ(hk)‖1/k be the spectral radius of λ(h), and
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set σ(h) = lim supk→∞ ‖hk‖1/k
2 . Then

1√
|S|

≤ σ(h) ≤ %(λ(h)) ≤ 1 .

Moreover, for |S| ≥ 2, the equality 1/
√
|S| = σ(h) holds if and only if S

generates a free semigroup.
(5) For a class of groups Γ that includes hyperbolic groups in the sense

of Gromov (but not in general), one has σ(h) = %(λ(h)).
(6) If Γ is either the free group Fn on S = {s1, . . . , sn}, where n ≥ 2, or

the surface group

Γg =
〈
a1, b1, . . . , ag, bg

∣∣∣ g∏
i=1

aibia
−1
i b−1

i

〉
with S = {a1, b1, . . . , ag, bg}, where g ≥ 2, then

Spλ(h) = {z ∈ C : |z| ≤ 1/
√
|S|} .

Properties of λ(h) can be expressed in terms of digraphs (i.e. directed
graphs). More precisely, let G(Γ, S) denote the Cayley digraph of (Γ, S),
with set of vertices Γ and set of directed edges S×Γ , an edge (s, γ) having
origin γ and extremity s−1γ. The matrix of |S|λ(h) with respect to the
canonical basis (δγ)γ∈Γ of `2(Γ ) is then precisely the adjacency matrix of
G(Γ, S) (see e.g. Chapter 13 of [Har]). Thus, (3) above means that the
oriented cycles and the oriented line are respectively characterized, as Cayley
digraphs, by their spectra. (4) and (5) mean that, in case Γ is hyperbolic
and |S| ≥ 2, the spectral radius of G(Γ, S) is 1/

√
|S| if and only if G(Γ, S)

contains a regular rooted tree of degree |S|.
Although this paper is a sequel to [HRV], the results are largely inde-

pendent of those in [HRV].

We thank L. Brown, G. Cassier, T. Fack, L. Guillopé, S. Popa,
D. Voiculescu and W. Woess for interesting exchanges at various stages
of this work.

1. Characterizations of Property (T). Let us recall some facts from
[DuS]. Let x be an operator of norm 1 on a Hilbert space H. Suppose that
Spx has an isolated point z0; the point z0 is a pole of order p of x if the
resolvent

R : C− Spx → L(H) : z → (x− z)−1

has a pole of order p at z0. It is known that a pole z0 of modulus 1 is
necessarily simple, so that z0 is an eigenvalue of h ([DuS], Lemma VII.3.18).

Theorem 1. Consider a group Γ , a finite generating set S of Γ and the
corresponding contraction h ∈ C∗(Γ ). The following are equivalent :
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(i) Γ has Kazhdan’s Property (T);
(ii) there exists an integer n such that Sph ∩ T is the group Cn of n-th

roots of 1, and each of these is a simple pole of h;
(iii) 1 is a pole of h;
(iv) h has a pole z0 of modulus 1.

Moreover , if these hold , the integer n in (ii) divides the exponent of the finite
abelian group Γ/[Γ, Γ ].

P r o o f. (i)⇒(iii). Assume that Γ has Property (T). Denote by Γ̂ the
unitary dual of Γ .

The proof of Proposition I(4) in [HRV] shows that there exists a constant
δ > 0 such that any z ∈ C with 0 < |z − 1| < δ belongs to C − Sph and
satisfies

‖π((z − h)−1)‖ ≤ (δ − |z − 1|)−1

for any π ∈ Γ̂ which is not the unit representation χ1 of Γ in C. On the
other hand, χ1((z − h)−1) = (z − 1)−1. It follows that

‖(z − h)−1‖ = sup
π∈Γ̂

‖π((z − h)−1)‖ = O(|z − 1|−1)

so that 1 is a simple pole of h.
(iii)⇒(i). Assume that (iii) holds; consider a unitary representation π of

Γ on a Hilbert space H, and suppose that there exists a sequence (ξn)n≥1

of vectors of norm 1 in H such that

lim
n→∞

max
s∈S

‖π(s)ξn − ξn‖ = 0 .

We have to show that π has a non-zero fixed vector.
Observe that 1 is in Spπ(h) by assumption on (ξn)n≥1, that 1 is isolated

in Spπ(h) because it is isolated in Sph, and that 1 is a simple pole of π(h)
because ‖π((z − h)−1)‖ ≤ ‖(z − h)−1‖ for z near 1 and 6= 1. As recalled at
the beginning of this section, this implies that 1 is an eigenvalue of π(h), so
that π has non-zero fixed vectors by Proposition I(2) of [HRV].

The implications (ii)⇒(iii)⇒(iv) are obvious. Let us show that (iv)
implies (ii). As z0 is isolated in Sph, the peripheral spectrum Sph∩T is the
set Cn for some n ≥ 1, and z0h is unitarily equivalent to h (see Proposition 3
and the proof of Lemma 7 of [HRV]). So (ii) holds.

Assume finally that the equivalent conditions (i) to (iv) hold. Then the
abelian group Γ/[Γ, Γ ] is finite, by Proposition I.7 of [HaV]. By Proposition 3
of [HRV], Γ/[Γ, Γ ] maps homomorphically onto Cn, so that n divides the
exponent of Γ/[Γ, Γ ].

R e m a r k s. (i) When S = S−1 the operator h is self-adjoint, so that
z0 ∈ Sph is isolated in Sph if and only if z0 is a simple pole of h. In this
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case, Theorem 1 is contained in [HRV], and says in particular that Γ has
Property (T) if and only if 1 is isolated in Sph.

(ii) We do not know whether there exists a pair (Γ, S) such that the
corresponding h has a spectrum where 1 is isolated but is not a pole. Note,
however, that there exists a pair (Γ, S) and π ∈ Γ̂ such that 1 is isolated
in Spπ(h) but is not a pole of π(h) (see the example involving the Volterra
operator, shortly before Lemma 5 of [HRV]).

Consider again an operator x of norm 1 on a Hilbert space H; let p
denote the orthogonal projection of H onto Ker(x − 1). For each integer
m ≥ 1, form the average

Am(x) =
1
m

(1 + x + . . . + xm−1) .

By von Neumann’s mean ergodic theorem, the sequence (Am(x))m≥1 always
converges strongly to p (see e.g. no 143 of [RiN]). We say that x is uniformly
ergodic if this convergence is in norm, i.e. if

lim
m→∞

‖Am(x)− p‖ = 0 .

Denote by S(x) the norm closed semigroup generated by x in L(H).
Kaashoek and West have shown that S(x) is compact in the norm topol-
ogy if and only if Spx ∩ T is either empty or a finite set of simple poles
(Theorem 3 of [KaW]).

If Γ is a group with Property (T), then there is a unique projection
pΓ 6= 0 in C∗(Γ ) such that π(pΓ ) = 0 for any π ∈ Γ̂ −{χ1} (see Lemma 3.1
of [Val]).

Theorem 2. Notation being as in Theorem 1, the following are equiva-
lent :

(i) Γ has Kazhdan’s Property (T);
(ii) S(h) is compact ;
(iii) h is uniformly ergodic.

Moreover , if these hold , then limm→∞Am(h) = pΓ .

P r o o f. (i)⇒(ii) follows from our Theorem 1 and Theorem 3 of [KaW].
(ii)⇒(iii) is a particular case of Theorem 1 of [KaW].
(iii)⇒(i). Suppose that (iii) holds, and let p ∈ C∗(Γ ) be the norm limit

of the sequence (Am(h))m≥1. Since, for any m ≥ 1, we have ‖Am(h)‖ = 1,
we see that p is non-zero. We have recalled above that h(ξ) = ξ for any
ξ ∈ Im p ⊆ Hun. For such a ξ ∈ Im p, we have successively:

s(ξ) = ξ for all s ∈ S by Lemma 3 of [HRV];
γ(ξ) = ξ for all γ ∈ Γ because S generates Γ ;
x(ξ) = χ1(x)ξ for all x ∈ C∗(Γ ) because Γ generates C∗(Γ ) .
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Consequently, pC∗(Γ )p = Cp, so that p is a minimal projection such that
χ1(p) = 1. Then Γ has Property (T) by Lemma 1.2 of [Val].

The last assertion follows from the proof of (iii)⇒(i) and the uniqueness
of pΓ .

Corollary 1. Let Γ be a group with Property (T) and let S , h, pΓ be as
above. Assume that , for any n ≥ 2, there does not exist any homomorphism
of Γ onto Cn which is constant on S (this is for example the case if Γ is
perfect). Then

lim
m→∞

‖hm − pΓ ‖ = 0 .

P r o o f. It follows from the assumption and Proposition 3 of [HRV] that
Sph ∩ T = {1}. The spectrum of h(1 − pΓ ) is then contained in the open
unit disk of C. Notice that, for any m ≥ 1,

hm − pΓ = hm(1− pΓ ) = (h(1− pΓ ))m .

Let γ be a simple closed rectifiable curve in the open unit disk, surrounding
Sph(1−pΓ ). Then, by holomorphic functional calculus, we have for m ≥ 1,

hm − pΓ =
1

2πi

∫
γ

o zm[z− h(1− pΓ )]−1 dz .

Hence

‖hm − pΓ ‖ ≤
1
2π

[sup
z∈γ

‖[z − h(1− pΓ )]−1‖
∫
γ

o |z|m |dz| .

Since zm converges to 0 uniformly on γ, we have the assertion.

2. Reconstructing Γ and S from Sph. As before, Γ will be a
group with a finite generating subset S, and h will denote the corresponding
element in C∗(Γ ). The theme of this section is: how far does the spectrum
of h or λ(h) determine Γ and S? We shall consider the following cases: λ(h)
has a pole of modulus one; Sph is finite; Sp h is a closed subgroup of T.

2.1. Poles of λ(h). We recall that Spλ(h) ∩ T is non-empty if and only
if Γ is amenable (see the end of Section B of [HRV]).

Proposition 1. If λ(h) has a pole of modulus 1, then Γ is finite.

P r o o f. By the preceding remark, Γ is amenable. It follows firstly that
C∗(Γ ) and C∗r (Γ ) are isomorphic, and secondly (by Theorem 1) that Γ has
Property (T). As Γ is amenable and has Property (T), it is a finite group
(see [HaV], Proposition 1.7).

2.2. Finiteness of Sph. It is tempting to conjecture that Sph is finite
if and only if Γ is finite. Good examples of operators with finite spectrum
are algebraic operators, i.e. operators T for which there exists a non-zero
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polynomial P with complex coefficients such that P (T ) = 0. For such a T ,
any point in SpT is a pole of T (see Exercise VII.5.17 of [DuS]). Here is
what we can show.

Proposition 2. Γ is finite if and only if h is algebraic.

P r o o f. We prove the non-trivial implication “h algebraic ⇒ Γ finite”.
Denote by n the dimension of the unital subalgebra of the complex group
algebra CΓ generated by h; let Γ+ be the subsemigroup generated by S,
endowed with the natural word length. Fix g ∈ Γ+, say of length k; then
g belongs to the support of hk. Writing hk as a linear combination of
1, h, h2, . . . , hn−1, we have

supphk ⊆
n−1⋃
i=0

supphi .

Hence

Γ+ ⊆
n−1⋃
i=0

supphi ,

so Γ+ is finite. In particular, elements of S have finite order; as a conse-
quence, Γ = Γ+ and Γ is finite.

R e m a r k s. (1) Using the bound |supphi| ≤ |S|i in the above proof, we
get a crude estimate on the order of Γ :

|Γ | ≤ |S|n − 1
|S| − 1

.

(2) If S = S−1, then h = h∗; hence Sph is finite if and only if h is
algebraic, if and only if Γ is finite.

(3) We point out the relation between Proposition 2 and a paper of
Formanek [For] where he considers the element

x =
1
|S|2

∑
s∈S

s =
h

|S|
∈ CΓ

and shows two things:

(i) 1− x is not a left divisor of zero in CΓ ;
(ii) if 1− x is right invertible in CΓ , then Γ is finite.

This provides an alternative proof of Proposition 2: indeed, if h is algebraic,
then so is 1−x; by (i) the minimal polynomial of 1−x over C has a non-zero
constant term, meaning that 1−x is invertible in CΓ ; then (ii) implies that
Γ is finite.

(4) Assume that Γ is finite. Then Sph is a subset of some finite extension
K of the rational field Q. Conversely, let Sp be a subset of K, and let n ≥ 1
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be an integer. Let (Γj)j∈J be a family of pairwise non-isomorphic finite
groups, each having a set Sj of n generators. Let hj be the corresponding
element in CΓj . It was shown by Strunkov [Str] that, if Sphj = Sp for every
j ∈ J , then J is finite.

2.3. Sph is a closed subgroup of T. Since we know from [HRV] that
we have either Sp h ∩ T = T or Sph ∩ T = Cn for some n ≥ 1, it is
natural to consider cases where Sph equals either T or Cn. This is done
in this subsection. It is here that we get our most precise results, since we
completely characterize pairs (Γ, S) with Sp h ⊆ T. The next lemma has its
own interest; it owes much to conversations with L. Brown and T. Fack.

Lemma 1. Let M be a finite von Neumann algebra. Let x ∈ M be such
that ‖x‖ = 1 and Spx ⊆ T. Then x is unitary.

P r o o f. We shall appeal to the theory of characteristic values, or s-
numbers, initiated by Fack [Fac] and elaborated by Brown [Bro], of which
we recall some basic facts.

Let τ be a positive faithful trace on M such that τ(1) = 1. Fix an
element y ∈ M with ‖y‖ = 1. For t ∈ [0, 1], define the t-th characteristic
value (or s-number) µy(t) by

µy(t) = inf ‖ye‖
where the infimum is taken over all projections e in M such that τ(e) ≥ 1−t.
Clearly µy : [0, 1] → R is a non-negative function with values decreasing from
1 to 0. By Proposition 1.3 of [Fac], one also has

µy(t) = min{λ ≥ 0 : τ(eλ) ≥ 1− t}
where eλ is the unique resolution of the identity, continuous on the right,
such that |y| =

∫ 1

0
λ deλ.

Assume from now on that y is invertible in M . In §3 of [Bro], one defines
a finite positive measure ν on Sp y with the property that, for any t ∈ [0, 1],

t∫
0

log(s(u)) du ≤
t∫

0

log(µy(u)) du ≤ 0

where s(·) is the decreasing rearrangement of z → |z| relative to ν (see
Proposition 1.11 and Theorem 3.6 of [Bro]). If Sp y ⊆ T, then s is the
constant function 1, so the above inequalities say that µy(t) = 1 for almost
all t ∈ [0, 1]. Because µy is decreasing, this means that

µy(t) =
{ 1 for 0 ≤ t < 1 ,

0 for t = 1 .

Using the definition of µy in terms of spectral resolution, we see that this
forces |y| = 1, i.e. that y is unitary.
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Now, let Γ be a group with a finite generating subset S such that Sph
⊆ T. Because Spλ(h) ⊆ Sph, we see that Γ is amenable.

Proposition 3. If Sph = Cn for some n ≥ 1, then Γ is isomorphic to
Cn and |S| = 1; if Sph = T, then Γ is isomorphic to Z and |S| = 1.

P r o o f. The preceding remark shows that Γ is amenable, so that λ
provides an isomorphism C∗(Γ ) ' C∗r (Γ ). As λ(h) belongs to the finite von
Neumann algebra λ(Γ )′′ generated by C∗r (Γ ), the previous lemma shows
that λ(h) is unitary, so that h is unitary. Since unitaries are extreme points
of unit balls in unital C∗-algebras (see 1.1.13 of [Ped]), the equality h =
(1/|S|)

∑
s∈S s shows that |S| = 1, and Proposition 3 follows.

3. On the spectrum and spectral radius of λ(h). We recall that,
if x is a bounded operator on a (non-zero) Hilbert space, the spectral radius
of x, denoted by %(x), is

%(x) = lim
k→∞

‖xk‖1/k = max
z∈Sp x

|z| .

If Γ is a group with a given finite generating subset S, we shall deal in this
section with the operator

λ(h) =
1
|S|

∑
s∈S

λ(s) .

(Sometimes we shall have to work with different generating subsets and we
shall append a subscript to h to indicate the dependence on S). We first
have the easy

Proposition 4. (i) %(λ(h)) belongs to Spλ(h).
(ii) Spλ(h) is symmetric with respect to the real axis in C.
(iii) Assume that S does not contain the unit e of Γ , and set T = S∪{e};

then

Spλ(hT ) =
|S|

|S|+ 1

[
1
|S|

+ Spλ(hS)
]

and

%(λ(hT )) =
|S|

|S|+ 1

[
1
|S|

+ %(λ(hS))
]

.

(iv) Suppose S = {s1, s2}. Then ‖λ(h)‖ = 1; moreover , λ(h) is invertible
if and only if s1s

−1
2 has finite, odd order.

P r o o f. (i) In `2(Γ ), the cone C = {ξ ∈ `2(Γ ) : Re ξ(g) ≥ 0 and
Im ξ(g) ≥ 0 for all g ∈ Γ} is normal in the sense of ordered topological
vector spaces, and the operator λ(h) is positive for the ordering defined by
C; so the result follows from 2.2 in the Appendix of [Sch]. Note that this is
an infinite-dimensional analogue of the Perron–Frobenius theory.
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(ii) λ(h) commutes with the (anti-linear) operator of complex conjuga-
tion on `2(Γ ).

(iii) This follows from the identity

λ(hT ) =
|S|

|S|+ 1

[
1
|S|

+ λ(hS)
]

and from (i).
(iv) From λ(h) = 1

2 [λ(s1s
−1
2 ) + 1]λ(s2), we have ‖λ(h)‖ = 1

2‖λ(s1s
−1
2 ) +

1‖ = 1 because λ(s1s
−1
2 ) is a unitary operator with 1 in its spectrum. More-

over, we see that λ(h) is invertible if and only if λ(s1s
−1
2 ) + 1 is invertible,

which happens exactly when s1s
−1
2 has finite order m and −1 is not an m-th

root of 1, i.e. m is odd.

Recall that the canonical trace τ is defined on C∗r (Γ ) by

τ : C∗r (Γ ) → C : x → 〈xδe | δe〉

where δe is the characteristic function of {e}. In the random walk defined
on the group Γ by the Markov operator λ(h), the trace τ(λ(hn)) is viewed
as the probability of returning to e at the n-th step, given that the random
walk starts at e. We wish to compare that probability with %(λ(hn)). We
shall need the following lemma, which seems interesting for its own sake.

Lemma 2. Let M be a finite von Neumann algebra, and let t be a positive
normalized trace on M. Then, for any x ∈ M ,

|t(x)| ≤ %(x) .

P r o o f. Consider the centre Z of M and the centre-valued trace T :
M → Z. It follows from Proposition 8.3.10 of [KaR] that there exists a
state f on Z such that t = f ◦ T . Since Z is abelian,

t(x) = f(T (x)) ∈ conv SpT (x) ,

where conv means “convex hull”. Now, it follows from [Ber] that one also
has

conv SpT (x) ⊆ conv Sp(x) .

The lemma immediately follows.

The next proposition extends Theorem 4.6(b) of [MoW] to the non-
symmetric case.

Proposition 5. For any integer n ≥ 1, one has

τ(λ(hn)) ≤ %(λ(hn)) .

P r o o f. Apply Lemma 2 to the positive normalized trace τ on the von
Neumann algebra λ(Γ )′′ generated by C∗r (Γ ).
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We conclude this section by looking at the behaviour of %(λ(h)) under
passage to a quotient group. If N is a normal subgroup of Γ , we denote by
π : Γ → Γ/N the quotient homomorphism. We shall compare the spectral
radii of the operators λ(hS) acting on `2(Γ ) and λΓ/N (hπ(S)) acting on
`2(Γ/N).

Proposition 6. Notation being as above, one has:

(i) %(λ(hS)) ≤ %(λΓ/N (hπ(S)));
(ii) if N is amenable, then %(λ(hS)) = %(λΓ/N (hπ(S))).

P r o o f. (i) For any integer k ≥ 1, let Hk be the subgroup of Γ generated
by the symmetric subset

supp (hk
S)∗hk

S = (Sk)−1Sk = {x−1y : x, y ∈ Sk} .

Then

‖λ(hk
S)‖ = ‖λ[(hk

S)∗hk
S ]‖1/2 = %(λ[(hk

S)∗hk
S ])1/2

≤ %(λΓ/N [(hk
π(S))

∗hk
π(S)])

1/2 = ‖λΓ/N [(hk
π(S))

∗hk
π(S)]‖

1/2

= ‖λΓ/N (hk
π(S))‖

where the inequality follows from Lemma 3.1 of [Ke1]; (i) is now clear.
(ii) Let λΓ/N ◦ π be the left regular representation of Γ/N , viewed as a

representation of Γ . Since N is amenable, λΓ/N ◦π is weakly contained in the
left regular representation λ of Γ . So π induces a ∗-homomorphism C∗r (Γ ) →
C∗r (Γ/N) which is onto. Consequently, SpλΓ/N (hπ(S)) ⊆ Spλ(hS), so that
%(λΓ/N (hπ(S))) ≤ %(λ(hS)).

R e m a r k s. In the symmetric case S = S−1, Proposition 6 appears in
[Ke1], Lemma 3.1 and Corollary 2. In that case, the converse of (ii) is true
as well, by Theorem 1 of [Ke1]. Our Proposition 9 below shows that the
converse of (ii) does not hold in general; indeed, the quotient homomorphism
π : F2g → Γg has non-amenable kernel but, with S the usual set of generators
of F2g, one has

SpλΓg
(hπ(S)) = Spλ(hS) .

4. Free subsemigroups and a result of Kesten. We first quote
without proof a remarkable result of Kesten in the symmetric case S = S−1

(see Theorem 3 of [Ke1] and the Theorem of [Ke2]).

Proposition 7. Let S+ be a generating subset of Γ with |S+| = n. Form
S = S+ ∪ (S+)−1. Then, for the corresponding operator λ(hS),

√
2n− 1

n
≤ %(λ(hS)) = ‖λ(hS)‖ ≤ 1
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with equality on the right if and only if Γ is amenable and , provided n ≥ 2,
equality on the left if and only if Γ is freely generated by S+. In that case
Spλ(hS) = [−

√
2n− 1/n,

√
2n− 1/n].

We wish to indicate what Proposition 7 becomes in the non-symmetric
case. So let S be a finite, non-symmetric generating subset of Γ . Proposition
4(iv) above shows that, at least for |S| = 2, the norm ‖λ(h)‖ contains no
information (1). So we shall focus on the spectral radius %(λ(h)). However,
we shall see that, besides %(λ(h)), a new number σ(h) comes in, defined by

σ(h) = lim sup
k→∞

‖hk‖1/k
2 .

If S = S−1, then σ(h) = %(λ(h)) by Lemma 2.2 of [Ke1]. In general, σ(h)
only gives information on the semigroup Γ+ generated by S, because its
definition does not use inverses. In contrast, the definition of %(λ(h)) makes
use of inverses, since we view λ(h) as acting on `2(Γ ), not on `2(Γ+).

Before stating our results, we recall some definitions.
Let F be a finite, symmetric, generating subset of Γ such that e ∈ F .

We say that Γ has subexponential growth if limk→∞ |F k|1/k = 1; and that
Γ has property (RD) if there are constants C > 0, r ≥ 0 such that

‖λ(f)‖ ≤ C‖f(1 + L)r‖2 for any f ∈ CΓ

where L is the length function on Γ associated with F . These definitions
do not depend on the generating subset F (up to a change in the constant
C for property (RD)).

Examples of groups with property (RD) are on the one hand groups with
polynomial growth ([Jol], Theorem 3.1.17), on the other hand free groups
([Haa], Lemma 1.5) and more generally hyperbolic groups à la Gromov
([dHa], [JoV], Théorème 2).

The following proposition owes much to conversations with W. Woess.

Proposition 8. With Γ , S and h as usual , one has:

(i) 1/
√
|S| ≤ σ(h) ≤ %(λ(h)) ≤ 1;

(ii) for |S| ≥ 2, the equality 1/
√
|S| = σ(h) holds if and only if S

generates a free semigroup;
(iii) if either S is symmetric or Γ has property (RD), then σ(h) =

%(λ(h));
(iv) the equality %(λ(h)) = 1 holds if and only if Γ is amenable;
(v) if either Γ is amenable and S is symmetric, or if Γ has subexponen-

tial growth, then σ(h) = 1.

(1) This was already observed in [BeC] and [DeG]. Note, however, that provided e ∈ S,
the group Γ is amenable if and only if ‖λ(h)‖ = 1 (see Theorem 1 in [Day]).
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P r o o f. (i) For any integer k ≥ 1, set

Sk = supphk = {s1s2 . . . sk : si ∈ S for i = 1, 2, . . . , k} .

For g ∈ Sk, let wk(g) be the number of expressions of g of the form g =
s1s2 . . . sk; clearly

∑
g∈Sk wk(g) = |S|k and

hk(g) =
{

wk(g)/|S|k if g ∈ Sk ,
0 otherwise.

Then, by the Cauchy–Schwarz inequality,

(∗) ‖hk‖2 ≥
1

|S|k|Sk|1/2

∑
g∈Sk

wk(g) =
1

|Sk|1/2
≥ 1
|S|k/2

,

hence the first inequality. The second inequality follows from

‖hk‖2 = ‖λ(hk)δe‖2 ≤ ‖λ(hk)‖ ;

the third from %(λ(h)) ≤ ‖λ(h)‖ ≤ 1.
(ii) If S generates a free semigroup, then all inequalities in (∗) are equal-

ities.
Now, assume that |S| ≥ 2 and that S does not generate a free semigroup.

Then, for some integer m ≥ 1, one has |Sm| ≤ |S|m−1. Then, for all integers
k ≥ 1, |Smk| ≤ (|S|m − 1)k, so that, using (∗),

‖hkm‖2 ≥
1

|Smk|1/2
≥ 1

(|S|m − 1)k/2
.

Hence

σ(h) ≥ lim sup
k→∞

‖hkm‖1/km
2 ≥ 1

(|S|m − 1)1/2m
>

1√
|S|

.

(iii) If S = S−1, then σ(h) = %(λ(h)) by Lemma 2.2 of [Ke1]. Suppose
now that Γ has property (RD); set F = S ∪ S−1 ∪ {e}, and let C, r be the
constants associated with F in the above definition. Since supphk⊆{x∈Γ :
L(x) ≤ k}, one has

‖λ(hk)‖ ≤ C‖hk(1 + L)r‖2 ≤ C(1 + k)r‖hk‖2 .

Then %(λ(h)) ≤ lim supk→∞[C1/k(1 + k)r/k‖hk‖1/k
2 ] = σ(h) .

(iv) This follows from Theorem 1 of [Day], or Théorème 1 of [Far], or
Proposition 3 of [HRV].

(v) If Γ is amenable and S = S−1, combine (iii) and (iv) above. If Γ
has subexponential growth, then limk→∞ 1/|Sk|1/k = 1. Together with (∗),
this gives σ(h) ≥ 1.

R e m a r k. Assume that |S| ≥ 2 and that S does not generate a free
semigroup. Then, in the Cayley digraph G(Γ, S), we can find two vertices
x, y joined by two directed paths without common vertices except x and
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y. Let m be the length of the longest of the two paths. The proof of
Proposition 8(ii) then gives the explicit lower bound:

σ(h) ≥ 1
(|S|m − 1)1/2m

.

Observe that this bound decreases to |S|−1/2 as m increases to ∞.

From Proposition 8, one has immediately:

Corollary 2. Assume that Γ has property (RD), and that S has at least
2 elements. The following are equivalent :

(i) %(λ(h)) = 1/
√
|S|;

(ii) S generates a free semigroup.

Example. Let G be a finitely generated solvable group, which is not
almost nilpotent. Fix some integer n ≥ 2. By Corollary 4.14 of [Ros], G
contains a subset S with n elements that generates a free semigroup. Let
Γ be the subgroup of G generated by S; because Γ is solvable, we have by
Proposition 8,

σ(h) =
1√
n

and %(λ(h)) = 1 .

So here σ(h) and %(λ(h)) are as remote as they can possibly be. This
example shows that the assumption (RD) in Corollary 2 cannot be signifi-
cantly weakened; it also shows that replacing S by S ∪ S−1 may drastically
change σ(h).

We now give some explicit computations of spectra.

Proposition 9. Let Γ be either the free group Fn on S = {s1, . . . , sn},
where n ≥ 2, or the surface group

Γg =
〈
a1, b1, . . . , ag, bg

∣∣∣ g∏
i=1

aibia
−1
i b−1

i

〉
with S = {a1, b1, . . . , ag, bg} and g ≥ 2. Then

Spλ(hS) = {z ∈ C : |z| ≤ 1/
√
|S|} .

P r o o f. We begin with a few remarks, valid in both cases.

(1) Any element in the reduced C∗-algebra C∗r (Γ ) has a connected spec-
trum. Otherwise, holomorphic functional calculus would enable us to con-
struct non-trivial idempotents in C∗r (Γ ), contradicting a result of Pimsner
and Voiculescu [PiV] for free groups, and of Kasparov [Kas] for surface
groups.

(2) There exists a homomorphism Γ → Z mapping S to {1}. From that,
one deduces that the spectrum of λ(hS) is invariant under multiplication
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by any complex number of modulus 1 (see Lemma 7 of [HRV]). Together
with (1), this means that Spλ(hS) is either a disk or an annulus, centred at
0 in any case.

(3) Since Γ has property (RD) (see [JoV], Théorème 2) and S generates
a free semigroup, we have %(λ(hS)) = 1/

√
|S| by Corollary 2.

Now, let Γ be the free group Fn. We prove Proposition 9 by induction
on n. In view of remarks (2) and (3), it is enough to check that λ(hS) is
not invertible. For n = 2, this follows from Proposition 4(iv). For n > 2,
set S′ = {s1s

−1
n , s2s

−1
n , . . . , sn−1s

−1
n } and T = S′ ∪ {e}. Then

λ(hS) = λ(hT )λ(sn) .

We shall use the facts that the subgroup H of Fn generated by S′ is free
on n − 1 generators, and that the restriction to H of the left regular rep-
resentation of Fn is unitarily equivalent to a multiple of the left regular
representation of Fn−1. So our induction hypothesis means

Spλ(hS′) = {z ∈ C : |z| ≤ 1/
√

n− 1} .

In particular, by Proposition 4(iii), the operator λ(hT ) is not invertible, so
that λ(hS) is not invertible either, and the proof is complete for Γ = Fn.

For Γ = Γg, we appeal to the fact that S′ = {a1b
−1
g , b1b

−1
g , a2b

−1
g , b2b

−1
g ,

. . . , agb
−1
g } freely generates a free group on 2g − 1 generators, and use the

same argument as above to see that λ(hS) is not invertible.

Concluding remarks. (1) Consider Fn with n ≥ 2 and S as in Proposi-
tion 9. Then ‖λ(hS)‖ = 2

√
n− 1/n, as computed in [AkO] (see also [Woe]).

(2) Bearing in mind Kesten’s spectral characterization of free groups
(Proposition 7), and comparing it with our Corollary 2, one might won-
der whether, analogously, there is a spectral characterization of free groups
among groups with property (RD) endowed with a finite, non-symmetric,
generating system. This question was our motivation for Proposition 9,
giving a negative answer.

(3) Let E+
n be the free semigroup generated by s1, . . . , sn (n ≥ 2). Con-

sider the operator λ(h+) = (1/n)
∑n

i=1 λ(si) acting on H = `2(E+
n ). Since

λ(si)H is orthogonal to λ(sj)H for i 6= j, we have λ(si)∗λ(sj) = δij , hence
λ(h+)∗λ(h+) = 1/n, so that

√
nλ(h+) is an isometry. It is clearly not in-

vertible, because λ(h+) is not onto. Hence Sp
√

nλ(h+) is the closed unit
disk in C, i.e.

Spλ(h+) = {z ∈ C : |z| ≤ 1/
√

n} .

Added in proof (March 1993). Lemma 1 was proved in July 1992, after a conversa-
tion with L. Brown. Some time before, we had mentioned this lemma as a conjecture to
G. Cassier & T. Fack, and they had proved it under the additional assumption that Spx
is distinct from the circle. Their proof, which is direct, makes a clever use of an operator
kernel introduced by G. Cassier (Ensembles K-spectraux et algèbres duales d’opérateurs,
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Prépublications de l’Université de Lyon 1, no. 2 (1991), p. 10). Together with applications
to the invariant subspace problem, their proof can be found in the preprint Structure of
contractions in von Neumann algebras.
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harmonique sur les groupes de Lie (Sém. Nancy–Strasbourg 1973–75), Lecture
Notes in Math. 497, Springer, 1975, 153–163.

[For] E. Formanek, A problem of Herstein on group rings, Canad. Math. Bull. 17
(1974), 201–202.

[Haa] U. Haagerup, An example of a non-nuclear C∗-algebra which has the metric
approximation property , Invent. Math. 50 (1979), 279–293.

[Har] F. Harary, Graph Theory , Addison-Wesley, 1972.
[dHa] P. de la Harpe, Groupes hyperboliques, algèbres d’opérateurs et un théorème
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localement compacts, Astérisque 175 (1989).
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