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1. Introduction. In this note we consider weak solutions (in the Sobolev
space W 1,q

loc (Ω), 1 < q ≤ n) of quasilinear elliptic equations of the type

(1) div A(x, u,∇u) = B(x, u,∇u), x ∈ Ω ⊂ Rn ,

where A and B satisfy certain growth conditions given in Section 2. In [3]
Yu. G. Reshetnyak proved that weak solutions of (1) are totally differentiable
almost everywhere. For a linear equation div(a(x)∇u) = 0 this was proved
independently by B. Bojarski [1]. We will show how to simplify Reshetnyak’s
proof by adopting the method of Bojarski.

As was shown by Reshetnyak, the theorem on almost everywhere differ-
entiability is a simple consequence of a difficult theorem of Serrin [5] which
asserts the Hölder continuity of weak solutions of (1). We shall use instead
a weaker (and much easier to prove) result on local boundedness of weak
solutions. Then the final argument is provided by the classical Stepanov
differentiability criterion (Theorem 4 below).

This shows that the a.e. differentiability is, in some sense, independent
of Hölder continuity of weak solutions of (1). It also seems that the proof
presented in this paper is simpler and more natural than the original one:
it works for any class of elliptic equations in divergence form for which
one is able to prove the local boundedness of weak solutions, provided the
difference quotient (u(x0 + hX)− u(x0))/h satisfies an equation (belonging
to the class in question) whenever u(x) does.

Finally, we want to stress the fact that, in the case 1 < q ≤ n, Reshet-
nyak’s theorem in fact yields some nontrivial geometric information about
weak solutions of (1). First of all, the Hölder exponent provided by [5]
is very close to zero. On the other hand, there exist continuous, nowhere
differentiable functions v ∈ W 1,n

loc (Ω) (see the example of Serrin [6]). (For
q > n the result becomes trivial: by a well-known theorem of Calderón [2],

The work of both authors was partially supported by a KBN grant.



288 P. HAJ  LASZ AND P. STRZELECKI

all elements of W 1,q
loc (Ω) are differentiable a.e. The case q = 1 is rather

troublesome, mainly due to the fact that the spaces L1(Ω) and W 1,1(Ω) are
not reflexive; equation (1) can then admit quite irregular solutions and the
results of Serrin are, in general, not valid.)

2. Assumptions and the result. A and B are respectively Rn-
and R-valued functions of (x, u, p) ∈ Ω × R × Rn. Moreover, we assume
that A(x, u(x), p(x)) andB(x, u(x), p(x)) are measurable for any measurable
functions u(x) and p(x), and

|A(x, u, p)| ≤ a|p|q−1 + b|u|q−1 + e ,

|B(x, u, p)| ≤ c|p|q−1 + d|u|q−1 + f ,(2)
p ·A(x, u, p) ≥ |p|q − d|u|q − g ,

where a is some positive constant, while b, c, d, e, f , g are positive measur-
able functions each in some Ls:

(3) b, e ∈ Ln/(q−1−ε); c ∈ Ln/(1−ε); d, f, g ∈ Ln/(q−ε)

for some ε ∈ (0,min{1, q − 1}). A function u ∈ W 1,q
loc (Ω) is called a weak

solution of (1) if and only if

(4)
∫
Ω

(∇ψ ·A(x, u,∇u) + ψB(x, u,∇u)) dx = 0

for each ψ ∈ W 1,q
0,loc(Ω), where W 1,q

0,loc(Ω) denotes the closure of C∞0 (Ω) in
W 1,q

loc (Ω). In the sequel B(x, r) will denote the Euclidean ball with center x
and radius r; we write B(r) if x = 0. By

∫
A
− f(x) dx we denote the averaged

integral |A|−1
∫

A
f(x) dx.

The result of Reshetnyak reads as follows.

Theorem 1. Each weak solution of (1) is differentiable almost every-
where with respect to the Lebesgue measure in Ω.

Our proof is very close to the original one. We shall need three theorems.
The first one is taken from Serrin [5, Theorems 1 and 2].

Theorem 2. Assume that u ∈ W 1,q
loc (Ω), B(2) b Ω, solves the equation

(1). Then

‖u‖∞,B(1) ≤ C(‖u‖q,B(2) +K) ,

where the constant C depends on n, q, a, ε, ‖b‖, ‖c‖, ‖d‖ and

K = (‖e‖+ ‖f‖)1/(q−1) + ‖g‖1/q ,

the norms of b, . . . , g being taken in the appropriate Ls spaces.
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The next theorem is a slightly weaker version of the Lp-differentiability
theorem of Calderón and Zygmund [7, Chapter VIII, Theorem 1] (see also
[4]).

Theorem 3. Let Ω be an open domain in Rn and u ∈ W 1,q
loc (Ω). Then,

for h→ 0, and for almost all x0 ∈ Ω, the following function of X ∈ B(2):

u(x0 + hX)− u(x0)
h

−
n∑

i=1

∂u

∂xi
(x0)Xi

tends to zero in Lq(B(2)).

The following theorem is due to Stepanov [8] (we recall the statement
from [7, Chapter VIII, Theorem 3]).

Theorem 4 (Stepanov differentiability criterion). Let u : Ω → R be an
arbitrary function defined on an open set Ω ⊂ Rn. Define

E =
{
a ∈ Ω : lim sup

x→a

|u(x)− u(a)|
|x− a|

<∞
}
.

Then E is Lebesgue measurable and u is differentiable a.e. in E.

P r o o f o f T h e o r e m 1. Let u be a weak solution of (1). Define the
difference quotients

vh(X) =
u(x0 + hX)− u0

h
,

where u0 = u(x0). For h < 1
2dist(x0, ∂Ω) this is a well defined function

of X ∈ B(2), readily of class W 1,q(B(2)). Using the change of variables
x = x0 + hX and the definition of weak solutions of (1) one easily proves
that vh(X) solves the equation

div Ah(X, v,∇Xv) = Bh(X, v,∇Xv) ,

where

Ah(X, v, p) = A(x0 + hX, u0 + hv, p) ,
Bh(X, v, p) = hB(x0 + hX, u0 + hv, p) ,

for X ∈ B(2), v ∈ R, p ∈ Rn. Theorem 2 implies that

(5) sup
X∈B(1)

|u(x0 + hX)− u(x0)|
|h|

≤ Ch(‖vh‖q,B(2) +Kh) .

Notice that by changing u on a set of measure zero we can actually use
supremum instead of essential supremum in (5). Namely, it is enough to
put

u(x) := lim sup
r→0

−
∫

B(x,r)

u(y) dy .



290 P. HAJ  LASZ AND P. STRZELECKI

We shall show that for almost all x0 ∈ Ω the right hand side of (5)
remains bounded when h tends to zero. This will allow us to apply the
Stepanov differentiability criterion and finish the proof.

S t e p 1. Using the properties of A and B one can easily check that
Ah and Bh satisfy the growth conditions (2) with the same constant a and
b, . . . , g replaced by bh, . . . , gh:

bh(X) = 2q−1|h|q−1b(x0 + hX) ,
eh(X) = 2q−1|u0|q−1b(x0 + hX) + e(x0 + hX) ,
ch(X) = |h|c(x0 + hX) ,
dh(X) = 2q−1|h|qd(x0 + hX) ,
fh(X) = |h|(2q−1|u0|q−1d(x0 + hX) + f(x0 + hX)) ,
gh(X) = 2q−1|u0|qd(x0 + hX) + g(x0 + hX) .

Now, choose x0 to be an s-Lebesgue point of all the functions b, c, . . . , g (for
each of them take s according to (3)). Then the Lebesgue differentiation
theorem implies that the norms of bh, ch, . . . , gh in the respective Ls(B(2))
are bounded for h tending to zero. For instance, if s = n/(q − ε), then

‖gh‖s =
( ∫

B(2)

[gh(X)]s dX
)1/s

≤ 2n|B(2)|
[
2q−1|u0|q

(
−
∫

B(x0,2h)

[d(y)]s dy
)1/s

+
(

−
∫

B(x0,2h)

[g(y)]s dy
)1/s]

→ C1d(x0) + C2g(x0) as h→ 0 ,

and obviously the remaining cases can be treated in the same way. Hence, Ch

andKh on the right hand side of (5) are bounded (by a constant independent
of h) when |h| is sufficiently small.

S t ep 2. Theorem 3 readily implies that for h→ 0,

vh(X)−
n∑

i=1

∂u

∂xi
(x0)Xi

tends to zero in Lq(B(2)), hence the Lq-norm of vh is bounded for sufficiently
small |h|.

Putting together the conclusions of both steps we see that the left hand
side of (5) is bounded by a constant independent of h, hence

lim sup
Rn3k→0

|u(x0 + k)− u(x0)|
|k|

<∞, a.e. x0 ∈ Ω .

Stepanov’s criterion (Theorem 4) now implies that u is totally differentiable
almost everywhere in Ω. The proof of Theorem 1 is complete.
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R e m a r k. One can easily show that this total differential is equal to the
weak differential.
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