VOL. LXIV

ON SCHWARTZ'S C-SPACES AND ORLICZ'S O-SPACES

BY

S. DÍAZ MADRIGAL (Sevilla)

1. In what follows, $[E, \tau]$ denotes a Hausdorff topological vector space. We start by recalling some different kinds of convergence of series. A series $\sum x_n$ of elements in E is said to be:

(i) unconditionally Cauchy if for every 0-neighbourhood U of E there exists $n_0 \in \mathbb{N}$ such that $\sum_{i \in \sigma} x_i \in U$ for all finite $\sigma \subset \mathbb{N}$ with $\inf \sigma > n_0$;

(ii) c_0 -multiplier Cauchy (convergent) if $\sum \alpha_n x_n$ is Cauchy (convergent) for every sequence $(\alpha_n) \in c_0$.

The definitions of C-space and O-space are also linked to series. A survey about these spaces can be found in [10, Section 3.10].

DEFINITION 1. *E* is a *C*-space if every c_0 -multiplier convergent series in *E* is convergent. C-spaces were originally considered by L. Schwartz who proved [12] that $L^p(\Omega, \Sigma, \mu), 0 \leq p < \infty$, are C-spaces.

DEFINITION 2. *E* is an *O*-space, or satisfies condition (O), if every series $\sum x_n$ of elements in *E* which is perfectly bounded (this means that the set

$$S(x_n) = \left\{ \sum_{i \in \sigma} x_i : \sigma \text{ is a finite subset of } \mathbb{N} \right\}$$

is bounded), is convergent. Matuszewska–Orlicz [9] showed that a large class of modular spaces satisfy condition (O).

From the above definitions, we see that these concepts are quite similar. Some authors have studied their relations in the framework of *complete* topological vector spaces (see [2], [7]). In this context, Thomas [13] introduced the notion of Σ -completeness: a space E is said to be Σ -complete if every unconditionally Cauchy series in E is convergent. This concept was implicitly considered in a well-known result on Banach spaces due to Bessaga and Pe/lczy/nski [1]. Related to this, Kalton [7] characterized complete C-spaces as those not containing a copy of c_0 .

Our aim is to connect these concepts with each other for a class of topological vector spaces that is large enough so as to comprise the main

known C-spaces and O-spaces. We also give the corresponding examples to distinguish these concepts.

2. We say that *E* has *property* (*) if for every perfectly bounded series $\sum x_n$ in *E*, the set

$$B(x_n) = \Big\{ \sum_{i \in \sigma} \alpha_i x_i : |\alpha_i| \le 1, \ \sigma \text{ is a finite subset of } \mathbb{N} \Big\}$$

is bounded. The following spaces have property (*):

(1) [11, proof of Theorem 1] Locally bounded spaces (e.g., L^p , ℓ^p , $0), locally convex spaces (e.g., <math>L^p$, ℓ^p , $1 \le p$) and more generally pseudolocally convex spaces.

(2) [8, Theorem 2, Remark 2] Generalized Orlicz spaces $L^{\psi}(T, \mathcal{A}, \mu; E)$ over finitely additive measures. We note that these spaces are not generally complete and include $L^{0}(E)$, the space of Bochner measurable functions with values in a Banach space. Drewnowski–Orlicz [5] proved that the modular spaces mentioned before reduce to these spaces in the usual cases.

A subset D of E is called a *disk* if it is bounded and absolutely convex. Let us denote by E_D the linear span of D endowed with the topology defined by the gauge ϱ_D of D. A space E is *locally complete* if for every closed disk D in E, the normed space E_D is a Banach space. For locally convex spaces, this concept was characterized by Dierolf [3] in terms of closed absolutely convex hulls of null sequences. Now, we give another characterization using a lemma which clarifies the relation between c_0 -multiplier Cauchy series and perfectly bounded series.

LEMMA 1. (1) Every c_0 -multiplier Cauchy series in E is perfectly bounded.

(2) Assume that E has property (*). If $\sum x_n$ is perfectly bounded, then it is c_0 -multiplier Cauchy and $\sum \alpha_n x_n$ is unconditionally Cauchy for all $(\alpha_n) \in c_0$.

Proof. (1) If $\sum x_n$ is not perfectly bounded, then there exists a balanced 0-neighbourhood U such that $S(x_n) \not\subset kU$ for all $k \in \mathbb{N}$. Take a balanced 0-neighbourhood V such that $V + V \subset U$. If we set

$$S_r(x_n) = \left\{ \sum_{i \in \sigma} x_i : \sigma \text{ is a finite subset of } \mathbb{N}, \text{ inf } \sigma > r \right\},$$

then, for each $r \in \mathbb{N}$, there must exist p > r, $p \in \mathbb{N}$, such that $S_r(x_n) \not\subset pV$. Otherwise, if there exists $r \in \mathbb{N}$ with $S_r(x_n) \subset pV$ for all p > r $(p \in \mathbb{N})$, then we have $S(x_n) \subset \lambda U$ for some $\lambda > 0$, since $\{\sum_{i \in \sigma} x_i : \sigma \subset \{1, \ldots, r\}\}$ is finite, so bounded. Thus, we can obtain a sequence of finite subsets $\sigma_k \subset \mathbb{N}$ with $\inf \sigma_{k+1} > \sup \sigma_k$ such that $\sum_{i \in \sigma_k} x_i \notin kV$. If we define $\alpha_n = 1/k$ when $n \in \sigma_k$ and 0 otherwise, then $(\alpha_n) \in c_0$, but $\sum \alpha_n x_n$ is not Cauchy.

(2) Suppose that $\sum x_n$ is a perfectly bounded series such that there exist a balanced 0-neighbourhood U in E, $(\alpha_n) \in c_0$ and a sequence of finite subsets $\sigma_k \subset \mathbb{N}$ with $\inf \sigma_{k+1} > \sup \sigma_k$ such that $\sum_{i \in \sigma_k} \alpha_i x_i \notin U$.

Set $\beta_k = \sup\{|\alpha_i| : i \in \sigma_k\} + 1/k$. By property (*), $B(x_n)$ is bounded and since

$$y_k = \sum_{i \in \sigma_k} \frac{\alpha_i}{\beta_k} x_i \in B(x_n),$$

we can obtain $\lambda > 0$ such that $y_k \in \lambda U$ for all $k \in \mathbb{N}$. Bearing in mind that $(\beta_k \lambda)_k$ is a null sequence, we get a contradiction.

THEOREM 1. If $[E, \tau]$ has property (*), then E is locally complete if and only if every c_0 -multiplier τ -Cauchy series is c_0 -multiplier τ -convergent.

Proof. \Rightarrow Let $\sum x_n$ be a c_0 -multiplier τ -Cauchy series in E. Thus, by Lemma 1, $S(x_n)$ is bounded and, by property (*), the closure of $B(x_n)$, which we denote by D, is a closed disk in E. Since E is locally complete, $[E_D, \varrho_D]$ is a Banach space. On the other hand, $\varrho_D(a) \leq 1$, for all $a \in S(x_n)$, that is, $S(x_n)$ is ϱ_D -bounded, thus, by Lemma 1, $\sum x_n$ is c_0 -multiplier ϱ_D -Cauchy and, therefore, c_0 -multiplier ϱ_D -convergent. Since the topology generated by ϱ_D on E_D is finer than the topology induced by τ on E_D , we conclude that $\sum x_n$ is c_0 -multiplier τ -convergent.

 \Leftarrow Let *D* be a closed disk in *E* and (x_n) a Cauchy sequence in $[E_D, \varrho_D]$. By induction, we can obtain a strictly increasing sequence of positive integers (n_k) such that

$$\varrho_D(x_{n_{k+1}} - x_{n_k}) \le \frac{1}{2^k k^2} \quad \text{for all } k \in \mathbb{N}.$$

Take $y_k = x_{n_{k+1}} - x_{n_k}$ for k = 1, 2, ... The last inequality shows that $\sum 2^k y_k$ is c_0 -multiplier ρ_D -Cauchy, thus c_0 -multiplier τ -Cauchy. According to the hypothesis, it is also c_0 -multiplier τ -convergent. In particular, the series $\sum \frac{1}{2^k} 2^k y_k$ is τ -convergent to $z \in E$. On the other hand,

$$\sum_{j=1}^{r} y_j = x_{n_{r+1}} - x_{n_1} \quad \text{for all } r \in \mathbb{N}.$$

This means that (x_{n_k}) τ -converges to $h = z + x_{n_1}$. In fact, h belongs to E_D because (x_n) is a ϱ_D -bounded sequence (i.e., $(x_n) \subset \lambda D$) and D is τ -closed. Since $[E_D, \varrho_D]$ has a 0-neighbourhood basis formed by τ -closed sets, we deduce [6, p. 59] that (x_{n_k}) is also ϱ_D -convergent to h. Summarizing, (x_n) is a ϱ_D -Cauchy sequence having a subsequence $(x_{n_k}) \ \varrho_D$ -convergent to $h \in E_D$. Therefore, (x_n) is ϱ_D -convergent to h.

R e m a r k s. (a) If E is locally convex, then c_0 -multiplier Cauchy series coincide with weakly unconditionally Cauchy series [6, p. 305] and, therefore, Theorem 2 can be seen as an extension of a result for Banach spaces, due to Bessaga and Pe/lczy/nski [1].

(b) We note that the right-left implication in the last theorem also proves that every Σ -complete space is locally complete. We only have to change the following: By construction $\sum y_k$ is unconditionally ϱ_D -Cauchy, so unconditionally Cauchy in E and since E is Σ -complete, $\sum y_k$ converges.

The next theorem improves results from [2], [7], [13] and determines completely the connexion between C-spaces and O-spaces.

THEOREM 2. If E has property (*), then the following are equivalent:

(1) E is a C-space and is locally complete.

(2) E is an O-space.

(3) E is Σ -complete and contains no copy of c_0 .

If E is locally convex, then the above conditions are equivalent to

(4) $[E, \sigma(E, E')]$ is Σ -complete.

Proof. $(1)\Rightarrow(2)$. This follows from Lemma 1, Theorem 1 and the definition of C-space.

 $(2) \Rightarrow (1)$. This follows from Lemma 1, Theorem 1 and the definition of O-space. We note that if $\sum x_n$ is c_0 -multiplier Cauchy, then $\sum \alpha_n x_n$ is again c_0 -multiplier Cauchy, for every $(\alpha_n) \in c_0$.

 $(2) \Rightarrow (3)$. Let $\sum x_n$ be an unconditionally Cauchy series in E. By [6, p. 305], $S(x_n)$ is precompact and so bounded, and since E is an O-space, we deduce that $\sum x_n$ is convergent. On the other hand, suppose that there exists an isomorphism $T: c_0 \to E$ onto its image. It is clear that $\sum T(e_n)$ is a perfectly bounded series in E and not even Cauchy (e_n denotes as usual the sequence with 1 in the *n*th place and 0 elsewhere).

 $(3) \Rightarrow (2)$. Let $\sum x_n$ be a perfectly bounded series in E. Since E is Σ complete, we can assume that $\sum x_n$ is not unconditionally Cauchy. Therefore, there exists a 0-neighbourhood U in E and a sequence of finite subsets σ_k in \mathbb{N} with $\inf \sigma_{k+1} > \sup \sigma_k$ such that $y_k = \sum_{i \in \sigma_k} x_i \notin U$.

Let (α_n) be a null sequence. Since $S(y_n)$ is bounded, $\sum \alpha_n y_n$ is unconditionally Cauchy by Lemma 1, and because E is Σ -complete, $\sum \alpha_n y_n$ converges. Thus, we can define the following linear mapping:

$$T: c_0 \to E$$
, $(\alpha_n) \mapsto T(\alpha_n) = \sum_{n=1}^{\infty} \alpha_n y_n$

Let us see that T is continuous. Given a closed balanced 0-neighbourhood V of E, there exists $\lambda > 0$ such that $B(y_n) \subset \lambda V$. If B denotes the closed unit ball of c_0 , then it is easy to check that $T(\frac{1}{\lambda}B) \subset V$.

Since E contains no copy of c_0 , we deduce from [7] that $(T(e_n) = y_n)_n$ tends to zero and we get a contradiction.

 $(2) \Rightarrow (4)$. Let $\sum x_n$ be an unconditionally Cauchy series in $[E, \sigma(E, E')]$. By [6, p. 305], $S(x_n)$ is weakly precompact, thus bounded and, by (2), $\sum x_n$ converges.

 $(4)\Rightarrow(2)$. Let $\sum x_n$ be a perfectly bounded series in E and (α_n) a sequence of 0's and 1's. Then $S(\alpha_n x_n)$ is weakly bounded and so weakly precompact and, therefore, $\sum \alpha_n x_n$ is weakly unconditionally Cauchy. Since E is weakly Σ -complete, $\sum \alpha_n x_n$ is weakly convergent. So, we have proved that $\sum x_n$ is weakly subseries convergent, and by the Orlicz–Pettis theorem, we conclude that $\sum x_n$ is convergent.

Remarks. (a) According to the theorem, if E is a Banach space with a copy of c_0 , then $[E, \sigma(E, E')]$ is a non- Σ -complete locally complete space.

(b) The argument from $(2) \Rightarrow (3)$ shows that, if *E* is a C-space, then *E* contains no copy of c_0 .

Theorem 2 allows us to rewrite some results of Thomas (see [14] for definitions and notations) on Radon measures just replacing weak Σ -completeness by containing no copy of c_0 . In fact, Theorem 3 answers a question posed by Thomas [15, p. 20].

THEOREM 3. Let E be a quasicomplete locally convex space. Then every linear continuous mapping from any C(K) to E is a Radon measure if and only if E contains no copy of c_0 .

THEOREM 4. Let μ be a Radon measure with values in a quasicomplete locally convex space E. If E contains no copy of c_0 , then for each scalarly μ -integrable mapping f in the sense of Bourbaki, we have $\int f d\mu \in E$.

3. In our last section, we provide some examples to distinguish the concepts which appear in Theorem 2. Namely:

(1) c_0 is a Banach space, thus Σ -complete. Of course, it contains a copy of c_0 so it is neither a C-space nor an O-space.

(2) $[c_0, \sigma(c_0, \ell_1)]$ is locally complete but not Σ -complete by Theorem 2. Moreover it contains no copy of c_0 , since the weak topology cannot be normed except in the finite-dimensional case. Looking at the series $\sum e_n$, we conclude that it is not a C-space.

(3) Let Ω be a nonempty set, \mathcal{A} an infinite Boolean ring of subsets of Ω and E a locally convex Hausdorff space. An \mathcal{A} -simple function $\varphi : \Omega \to E$ is one with a finite number of nonzero values, each of them taken on a set of \mathcal{A} . We denote by $S(\mathcal{A}, E)$ the vector space of all \mathcal{A} -simple functions defined on Ω with values in E, endowed with the uniform convergence topology. The following lemma is essentially contained in the proof of [4, Thm. 4(b)]. It establishes that the terms of a subseries summable sequence in $S(\mathcal{A}, E)$ must be supported on the same sets.

LEMMA 2. Let (φ_n) be a subserve summable sequence in $S(\mathcal{A}, E)$. Then there exist nonvoid pairwise disjoint sets $A_1, \ldots, A_k \in \mathcal{A}$ such that for all $n \in \mathbb{N}$ we can write

$$\varphi_n = \sum_{i=1}^k \chi_{A_i} z_i(n)$$

for some $z_i(n) \in E$ (i = 1, ..., k). As usual χ_A denotes the characteristic function of the set A.

THEOREM 5. (1) $S(\mathcal{A}, E)$ is a C-space if and only if E is a C-space.

(2) Assume that E is complete. Then $S(\mathcal{A}, E)$ is a C-space if and only if E contains no copy of c_0 .

Proof. \Rightarrow Let $\sum x_n$ be a c_0 -multiplier convergent series and take $A \in \mathcal{A}$ $(A \neq \emptyset)$. It is clear that $\sum \chi_A x_n$ is c_0 -multiplier convergent in $S(\mathcal{A}, E)$ and thus convergent to $\chi_A x$ $(x \in E)$, and we conclude that $\sum x_n$ is convergent to x.

 \Leftarrow Let $\sum \varphi_n$ be a c_0 -multiplier convergent series in $S(\mathcal{A}, E)$. Then $(\frac{1}{n}\varphi_n)$ is a subseries summable sequence in $S(\mathcal{A}, E)$, thus according to Lemma 2, there exist nonvoid pairwise disjoint sets $A_1, \ldots, A_k \in \mathcal{A}$ such that for all $n \in \mathbb{N}$ we can write

$$\frac{1}{n}\varphi_n = \sum_{i=1}^k \chi_{A_i} z_i(n)$$

for some $z_i(n) \in E$. Set $w_i(n) = nz_i(n)$ for all $n \in \mathbb{N}$ and $i = 1, \dots, k$.

Therefore, $\sum_{n} w_i(n)$ is c_0 -multiplier convergent in E for $i = 1, \ldots, k$. Since E is a C-space, $\sum_{n} w_i(n)$ is convergent to some $w_i \in E$ for $i = 1, \ldots, k$. Finally, we see that $\sum_{n} \varphi_n$ is convergent to $\sum_{i=1}^{k} \chi_{A_i} w_i$ in $S(\mathcal{A}, E)$, and this shows that $S(\mathcal{A}, E)$ is a C-space.

Since \mathcal{A} is infinite, we can take a nonvoid pairwise disjoint sequence $(A_n) \subset \mathcal{A}$. Consider the sequence of \mathcal{A} -simple functions

$$\varphi_n = \chi_{A_n} x, \quad n \in \mathbb{N} \ (x \neq 0).$$

The series $\sum \varphi_n$ is c_0 -multiplier Cauchy in $S(\mathcal{A}, E)$, but it is not c_0 multiplier convergent. Therefore, by Theorem 1, $S(\mathcal{A}, E)$ is never locally complete. This means that if E is a Banach space containing no copy of c_0 , then $S(\mathcal{A}, E)$ provides examples of C-spaces which are not O-spaces.

(4) Finally, the topological direct sum $[c_0, \sigma(c_0, \ell_1)] \oplus c_0$ is non- Σ -complete but locally complete and, obviously, it contains a copy of c_0 .

C-SPACES AND	O-SPACES	251

On the other hand, $[c_0, \sigma(c_0, \ell_1)] \oplus S(\mathcal{P}(\mathbb{N}), \mathbb{R})$ is neither locally complete nor a C-space $(\mathcal{P}(\mathbb{N})$ denotes as usual the algebra of all subsets of \mathbb{N}). Bearing in mind [7], and since neither summand contains a copy of c_0 , the topological direct sum does not either.

REFERENCES

- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [2] A. Costé, Convergence des séries dans les espaces F-normés de fonctions mesurables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 131–134.
- P. Dierolf, Une caractérisation des espaces vectoriels topologiques complets au sens de Mackey, C. R. Acad. Sci. Paris Sér. A 283 (1976), 245-248.
- [4] P. Dierolf, S. Dierolf and L. Drewnowski, Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces, Colloq. Math. 39 (1978), 109–116.
- [5] L. Drewnowski and W. Orlicz, A note on modular spaces. X, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 809–814.
- [6] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981.
- [7] N. J. Kalton, Exhaustive operators and vector measures, Proc. Edinburgh Math. Soc. 19 (1975), 291–300.
- [8] I. Labuda, On bounded multiplier convergence of series in Orlicz spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 651–655.
- [9] W. Matuszewska and W. Orlicz, A note on modular spaces. IX, ibid. 16 (1968), 801–808.
- [10] S. Rolewicz, Metric Linear Spaces, Reidel, Dordecht 1985.
- [11] S. Rolewicz and C. Ryll-Nardzewski, On unconditional convergence in metric linear spaces, Colloq. Math. 57 (1967), 327–331.
- [12] L. Schwartz, Un théorème de convergence dans les L^p , $0 \le p < +\infty$, C. R. Acad. Sci. Paris Sér. A 268 (1969), 704–706.
- [13] E. Thomas, Sur le théorème d'Orlicz et un problème de M. Laurent Schwartz, ibid. 267 (1968), 7–10.
- [14] —, Sur les mesures vectorielles à valeurs dans des espaces d'un type particulier, ibid. 266 (1968), 1135–1137.
- [15] —, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc. 139 (1974).

DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD DE SEVILLA E.S.I.I. 41012 SEVILLA, SPAIN

Reçu par la Rédaction le 9.4.1992