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ON SCHWARTZ’S C-SPACES AND ORLICZ’S O-SPACES
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1. In what follows, [E, τ ] denotes a Hausdorff topological vector space.
We start by recalling some different kinds of convergence of series. A series∑

xn of elements in E is said to be:

(i) unconditionally Cauchy if for every 0-neighbourhood U of E there
exists n0 ∈ N such that

∑
i∈σ xi ∈ U for all finite σ ⊂ N with inf σ > n0;

(ii) c0-multiplier Cauchy (convergent) if
∑

αnxn is Cauchy (convergent)
for every sequence (αn) ∈ c0.

The definitions of C-space and O-space are also linked to series. A survey
about these spaces can be found in [10, Section 3.10].

Definition 1. E is a C-space if every c0-multiplier convergent series in
E is convergent. C-spaces were originally considered by L. Schwartz who
proved [12] that Lp(Ω,Σ, µ), 0 ≤ p < ∞, are C-spaces.

Definition 2. E is an O-space, or satisfies condition (O), if every series∑
xn of elements in E which is perfectly bounded (this means that the set

S(xn) =
{∑
i∈σ

xi : σ is a finite subset of N
}

is bounded), is convergent. Matuszewska–Orlicz [9] showed that a large class
of modular spaces satisfy condition (O).

From the above definitions, we see that these concepts are quite similar.
Some authors have studied their relations in the framework of complete topo-
logical vector spaces (see [2], [7]). In this context, Thomas [13] introduced
the notion of Σ-completeness: a space E is said to be Σ-complete if every
unconditionally Cauchy series in E is convergent. This concept was im-
plicitly considered in a well-known result on Banach spaces due to Bessaga
and Pe/lczy/nski [1]. Related to this, Kalton [7] characterized complete
C-spaces as those not containing a copy of c0.

Our aim is to connect these concepts with each other for a class of
topological vector spaces that is large enough so as to comprise the main
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known C-spaces and O-spaces. We also give the corresponding examples to
distinguish these concepts.

2. We say that E has property (∗) if for every perfectly bounded series∑
xn in E, the set

B(xn) =
{∑
i∈σ

αixi : |αi| ≤ 1, σ is a finite subset of N
}

is bounded. The following spaces have property (∗):
(1) [11, proof of Theorem 1] Locally bounded spaces (e.g., Lp, `p, 0 <

p < 1), locally convex spaces (e.g., Lp, `p, 1 ≤ p) and more generally
pseudolocally convex spaces.

(2) [8, Theorem 2, Remark 2] Generalized Orlicz spaces Lψ(T,A, µ;E)
over finitely additive measures. We note that these spaces are not generally
complete and include L0(E), the space of Bochner measurable functions with
values in a Banach space. Drewnowski–Orlicz [5] proved that the modular
spaces mentioned before reduce to these spaces in the usual cases.

A subset D of E is called a disk if it is bounded and absolutely convex.
Let us denote by ED the linear span of D endowed with the topology defined
by the gauge %D of D. A space E is locally complete if for every closed disk
D in E, the normed space ED is a Banach space. For locally convex spaces,
this concept was characterized by Dierolf [3] in terms of closed absolutely
convex hulls of null sequences. Now, we give another characterization using
a lemma which clarifies the relation between c0-multiplier Cauchy series and
perfectly bounded series.

Lemma 1. (1) Every c0-multiplier Cauchy series in E is perfectly
bounded.

(2) Assume that E has property (∗). If
∑

xn is perfectly bounded , then
it is c0-multiplier Cauchy and

∑
αnxn is unconditionally Cauchy for all

(αn) ∈ c0.

P r o o f. (1) If
∑

xn is not perfectly bounded, then there exists a bal-
anced 0-neighbourhood U such that S(xn) 6⊂ kU for all k ∈ N. Take a
balanced 0-neighbourhood V such that V + V ⊂ U . If we set

Sr(xn) =
{∑
i∈σ

xi : σ is a finite subset of N, inf σ > r
}

,

then, for each r ∈ N, there must exist p > r, p ∈ N, such that Sr(xn) 6⊂ pV .
Otherwise, if there exists r ∈ N with Sr(xn) ⊂ pV for all p > r (p ∈ N),
then we have S(xn) ⊂ λU for some λ > 0, since {

∑
i∈σ xi : σ ⊂ {1, . . . , r}}

is finite, so bounded.
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Thus, we can obtain a sequence of finite subsets σk ⊂ N with inf σk+1 >
supσk such that

∑
i∈σk

xi 6∈ kV . If we define αn = 1/k when n ∈ σk and 0
otherwise, then (αn) ∈ c0, but

∑
αnxn is not Cauchy.

(2) Suppose that
∑

xn is a perfectly bounded series such that there
exist a balanced 0-neighbourhood U in E, (αn) ∈ c0 and a sequence of finite
subsets σk ⊂ N with inf σk+1 > supσk such that

∑
i∈σk

αixi 6∈ U .
Set βk = sup{|αi| : i ∈ σk} + 1/k. By property (∗), B(xn) is bounded

and since
yk =

∑
i∈σk

αi
βk

xi ∈ B(xn) ,

we can obtain λ > 0 such that yk ∈ λU for all k ∈ N. Bearing in mind that
(βkλ)k is a null sequence, we get a contradiction.

Theorem 1. If [E, τ ] has property (∗), then E is locally complete if and
only if every c0-multiplier τ -Cauchy series is c0-multiplier τ -convergent.

P r o o f. ⇒ Let
∑

xn be a c0-multiplier τ -Cauchy series in E. Thus,
by Lemma 1, S(xn) is bounded and, by property (∗), the closure of B(xn),
which we denote by D, is a closed disk in E. Since E is locally complete,
[ED, %D] is a Banach space. On the other hand, %D(a) ≤ 1, for all a ∈ S(xn),
that is, S(xn) is %D-bounded, thus, by Lemma 1,

∑
xn is c0-multiplier

%D-Cauchy and, therefore, c0-multiplier %D-convergent. Since the topology
generated by %D on ED is finer than the topology induced by τ on ED, we
conclude that

∑
xn is c0-multiplier τ -convergent.

⇐ Let D be a closed disk in E and (xn) a Cauchy sequence in [ED, %D].
By induction, we can obtain a strictly increasing sequence of positive integers
(nk) such that

%D(xnk+1 − xnk
) ≤ 1

2kk2
for all k ∈ N .

Take yk = xnk+1 − xnk
for k = 1, 2, . . . The last inequality shows that∑

2kyk is c0-multiplier %D-Cauchy, thus c0-multiplier τ -Cauchy. According
to the hypothesis, it is also c0-multiplier τ -convergent. In particular, the
series

∑
1
2k 2kyk is τ -convergent to z ∈ E. On the other hand,

r∑
j=1

yj = xnr+1 − xn1 for all r ∈ N .

This means that (xnk
) τ -converges to h = z + xn1 . In fact, h belongs to

ED because (xn) is a %D-bounded sequence (i.e., (xn) ⊂ λD) and D is τ -
closed. Since [ED, %D] has a 0-neighbourhood basis formed by τ -closed sets,
we deduce [6, p. 59] that (xnk

) is also %D-convergent to h. Summarizing,
(xn) is a %D-Cauchy sequence having a subsequence (xnk

) %D-convergent to
h ∈ ED. Therefore, (xn) is %D-convergent to h.
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R e m a r k s. (a) If E is locally convex, then c0-multiplier Cauchy series
coincide with weakly unconditionally Cauchy series [6, p. 305] and, therefore,
Theorem 2 can be seen as an extension of a result for Banach spaces, due
to Bessaga and Pe/lczy/nski [1].

(b) We note that the right-left implication in the last theorem also proves
that every Σ-complete space is locally complete. We only have to change
the following: By construction

∑
yk is unconditionally %D-Cauchy, so un-

conditionally Cauchy in E and since E is Σ-complete,
∑

yk converges.

The next theorem improves results from [2], [7], [13] and determines
completely the connexion between C-spaces and O-spaces.

Theorem 2. If E has property (∗), then the following are equivalent :

(1) E is a C-space and is locally complete.
(2) E is an O-space.
(3) E is Σ-complete and contains no copy of c0.

If E is locally convex , then the above conditions are equivalent to

(4) [E, σ(E,E′)] is Σ-complete.

P r o o f. (1)⇒(2). This follows from Lemma 1, Theorem 1 and the
definition of C-space.

(2)⇒(1). This follows from Lemma 1, Theorem 1 and the definition of
O-space. We note that if

∑
xn is c0-multiplier Cauchy, then

∑
αnxn is

again c0-multiplier Cauchy, for every (αn) ∈ c0.
(2)⇒(3). Let

∑
xn be an unconditionally Cauchy series in E. By [6,

p. 305], S(xn) is precompact and so bounded, and since E is an O-space,
we deduce that

∑
xn is convergent. On the other hand, suppose that there

exists an isomorphism T : c0 → E onto its image. It is clear that
∑

T (en)
is a perfectly bounded series in E and not even Cauchy (en denotes as usual
the sequence with 1 in the nth place and 0 elsewhere).

(3)⇒(2). Let
∑

xn be a perfectly bounded series in E. Since E is Σ-
complete, we can assume that

∑
xn is not unconditionally Cauchy. There-

fore, there exists a 0-neighbourhood U in E and a sequence of finite subsets
σk in N with inf σk+1 > supσk such that yk =

∑
i∈σk

xi 6∈ U .
Let (αn) be a null sequence. Since S(yn) is bounded,

∑
αnyn is un-

conditionally Cauchy by Lemma 1, and because E is Σ-complete,
∑

αnyn
converges. Thus, we can define the following linear mapping:

T : c0 → E , (αn) 7→ T (αn) =
∞∑
n=1

αnyn .

Let us see that T is continuous. Given a closed balanced 0-neighbourhood
V of E, there exists λ > 0 such that B(yn) ⊂ λV . If B denotes the closed
unit ball of c0, then it is easy to check that T ( 1

λB) ⊂ V .
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Since E contains no copy of c0, we deduce from [7] that (T (en) = yn)n
tends to zero and we get a contradiction.

(2)⇒(4). Let
∑

xn be an unconditionally Cauchy series in [E, σ(E,E′)].
By [6, p. 305], S(xn) is weakly precompact, thus bounded and, by (2),

∑
xn

converges.
(4)⇒(2). Let

∑
xn be a perfectly bounded series in E and (αn) a se-

quence of 0’s and 1’s. Then S(αnxn) is weakly bounded and so weakly pre-
compact and, therefore,

∑
αnxn is weakly unconditionally Cauchy. Since

E is weakly Σ-complete,
∑

αnxn is weakly convergent. So, we have proved
that

∑
xn is weakly subseries convergent, and by the Orlicz–Pettis theorem,

we conclude that
∑

xn is convergent.

R e m a r k s. (a) According to the theorem, if E is a Banach space with
a copy of c0, then [E, σ(E,E′)] is a non-Σ-complete locally complete space.

(b) The argument from (2)⇒(3) shows that, if E is a C-space, then E
contains no copy of c0.

Theorem 2 allows us to rewrite some results of Thomas (see [14] for defini-
tions and notations) on Radon measures just replacing weak Σ-completeness
by containing no copy of c0. In fact, Theorem 3 answers a question posed
by Thomas [15, p. 20].

Theorem 3. Let E be a quasicomplete locally convex space. Then every
linear continuous mapping from any C(K) to E is a Radon measure if and
only if E contains no copy of c0.

Theorem 4. Let µ be a Radon measure with values in a quasicomplete
locally convex space E. If E contains no copy of c0, then for each scalarly
µ-integrable mapping f in the sense of Bourbaki , we have

∫
f dµ ∈ E.

3. In our last section, we provide some examples to distinguish the
concepts which appear in Theorem 2. Namely:

(1) c0 is a Banach space, thus Σ-complete. Of course, it contains a copy
of c0 so it is neither a C-space nor an O-space.

(2) [c0, σ(c0, `1)] is locally complete but not Σ-complete by Theorem 2.
Moreover it contains no copy of c0, since the weak topology cannot be
normed except in the finite-dimensional case. Looking at the series

∑
en,

we conclude that it is not a C-space.
(3) Let Ω be a nonempty set, A an infinite Boolean ring of subsets of Ω

and E a locally convex Hausdorff space. An A-simple function ϕ : Ω → E
is one with a finite number of nonzero values, each of them taken on a set of
A. We denote by S(A, E) the vector space of all A-simple functions defined
on Ω with values in E, endowed with the uniform convergence topology.
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The following lemma is essentially contained in the proof of [4, Thm.
4(b)]. It establishes that the terms of a subseries summable sequence in
S(A, E) must be supported on the same sets.

Lemma 2. Let (ϕn) be a subseries summable sequence in S(A, E). Then
there exist nonvoid pairwise disjoint sets A1, . . . , Ak ∈ A such that for all
n ∈ N we can write

ϕn =
k∑
i=1

χAizi(n)

for some zi(n) ∈ E (i = 1, . . . , k). As usual χA denotes the characteristic
function of the set A.

Theorem 5. (1) S(A, E) is a C-space if and only if E is a C-space.
(2) Assume that E is complete. Then S(A, E) is a C-space if and only

if E contains no copy of c0.

P r o o f. ⇒ Let
∑

xn be a c0-multiplier convergent series and take
A ∈ A (A 6= ∅). It is clear that

∑
χAxn is c0-multiplier convergent in

S(A, E) and thus convergent to χAx (x ∈ E), and we conclude that
∑

xn
is convergent to x.

⇐ Let
∑

ϕn be a c0-multiplier convergent series in S(A, E). Then
( 1
nϕn) is a subseries summable sequence in S(A, E), thus according to

Lemma 2, there exist nonvoid pairwise disjoint sets A1, . . . , Ak ∈ A such
that for all n ∈ N we can write

1
n

ϕn =
k∑
i=1

χAizi(n)

for some zi(n) ∈ E. Set wi(n) = nzi(n) for all n ∈ N and i = 1, . . . , k.
Therefore,

∑
n wi(n) is c0-multiplier convergent in E for i = 1, . . . , k.

Since E is a C-space,
∑
n wi(n) is convergent to some wi ∈ E for i = 1, . . . , k.

Finally, we see that
∑
n ϕn is convergent to

∑k
i=1 χAi

wi in S(A, E), and this
shows that S(A, E) is a C-space.

Since A is infinite, we can take a nonvoid pairwise disjoint sequence
(An) ⊂ A. Consider the sequence of A-simple functions

ϕn = χAn
x , n ∈ N (x 6= 0) .

The series
∑

ϕn is c0-multiplier Cauchy in S(A, E), but it is not c0-
multiplier convergent. Therefore, by Theorem 1, S(A, E) is never locally
complete. This means that if E is a Banach space containing no copy of c0,
then S(A, E) provides examples of C-spaces which are not O-spaces.

(4) Finally, the topological direct sum [c0, σ(c0, `1)] ⊕ c0 is non-Σ-com-
plete but locally complete and, obviously, it contains a copy of c0.
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On the other hand, [c0, σ(c0, `1)] ⊕ S(P(N), R) is neither locally com-
plete nor a C-space (P(N) denotes as usual the algebra of all subsets of N).
Bearing in mind [7], and since neither summand contains a copy of c0, the
topological direct sum does not either.
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[2] A. Cost é, Convergence des séries dans les espaces F-normés de fonctions mesura-
bles, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 131–134.
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