VECTOR SETS WITH NO REPEATED DIFFERENCES

BY

PÉTER KOMJÁTH (BUDAPEST)

We consider the question when a set in a vector space over the rationals, with no differences occurring more than twice, is the union of countably many sets, none containing a difference twice. The answer is "yes" if the set is of size at most \aleph_2 , "not" if the set is allowed to be of size $(2^{2^{\aleph_0}})^+$. It is consistent that the continuum is large, but the statement still holds for every set smaller than continuum.

Paul Erdős showed in [2] that if $2^{\omega} > \omega_1$, then there exists a set $S \subset \mathbb{R}$ such that for every $a \in \mathbb{R}$ there can be at most two solutions of the equation x+y=a $(x,y\in S)$, but if S is decomposed into countably many parts, then in some part, for some $a\in \mathbb{R}$, there are two solutions of x+y=a. This is not true under the continuum hypothesis, for then there is a decomposition of \mathbb{R} into countably many linearly independent sets (over \mathbb{Q} , the rationals). Erdős and P. Zakrzewski asked if a similar result holds for differences as well.

In this paper V is a vector space over \mathbb{Q} , and S is a subset of V. If κ is a cardinal (not necessarily infinite), S is κ -sum-free iff for any $a \in V$, there are less than κ solutions of the equation x + y = a $(x, y \in S)$. S is κ -difference-free iff for every $d \in V$, $d \neq 0$, there are less than κ solutions of the equation x - y = d $(x, y \in S)$. In the former case, we consider the solutions (x, y) and (y, x) identical. In this notation, Erdős asked if every 3-difference-free set is the union of countably many 2-difference-free sets.

In the paper, the word *sum* is reserved to two-term sums. Also, we sometimes use the coloring terminology, i.e. confuse a decomposition into countably many parts with a coloration with countably many colors.

We first consider when the choice S=V works for questions of the given type.

THEOREM 1. (a) If $|V| \leq \omega_1$, then V is the union of countably many 2-difference-free sets.

Research partially supported by the Hungarian Science Research Grant No. 1908.

(b) If $|V| \ge \omega_2$, then V is not the union of countably many ω_2 -difference-free sets.

Proof. (a) By a well-known theorem of Erdős and Kakutani (see [3]), every vector space of cardinal ω_1 is the union of countably many bases.

(b) Assume that the vectors $\{x_{\alpha}, y_{\beta} : \alpha < \omega_2, \beta < \omega_1\}$ are independent. By a theorem of P. Erdős and A. Hajnal (see e.g. [1]), if the vectors $\{x_{\alpha}+y_{\beta}: \alpha < \omega_2, \beta < \omega_1\}$ are colored by countably many colors, then there is a set $Z \subset \omega_2$ of size ω_2 and $\beta_1 < \beta_2 < \omega_1$ such that the vectors $\{x_{\alpha}+y_{\beta_i}: \alpha \in Z, i=1,2\}$ get the same color. Then the difference $y_{\beta_1}-y_{\beta_2}=(x_{\alpha}+y_{\beta_1})-(x_{\alpha}+y_{\beta_2})$ is expressed in ω_2 many ways in the same part. \blacksquare

The case of sums is different.

Theorem 2. (a) If $|V| \leq 2^{\omega}$, then V is the union of countably many ω -sum-free sets.

(b) If $|V| > 2^{\omega}$ then V is not the union of countably many ω_1 -sum-free sets.

Proof. (a) We can assume that $V = \mathbb{R}$. Let B be a Hamel basis for \mathbb{R} . We color $\mathbb{R} - \{0\}$ with countably many colors as follows. We require that from the color of

$$x = \sum_{i=1}^{n} \lambda_i b_i \quad (b_1 < \dots < b_n)$$

the ordered sequence (of rationals) $\lambda_1, \ldots, \lambda_n$ should be recovered, and also a sequence of n-1 rational numbers, separating b_1, \ldots, b_n from each other. This is possible as there are countably many rational numbers. If x, y get the same color, and a basis element b appears in both, then, by our above coding requirements, b has the same index, say i, in x and y. The corresponding coordinate in the sum is then $2\lambda_i \neq 0$. There are, therefore, only finitely many possibilities to decompose a given vector as x + y.

(b) Let $\{b(\alpha): \alpha < (2^{\omega})^+\}$ be independent. By the Erdős–Rado theorem (see [4]), if we color the vectors $\{b(\alpha)-b(\beta): \alpha < \beta < (2^{\omega})^+\}$ with countably many colors, then there is an increasing sequence $\{\alpha_{\xi}: \xi \leq \omega_1\}$ such that $\{b(\alpha_{\xi}) - b(\alpha_{\zeta}): \xi < \zeta \leq \omega_1\}$ get the same color. But then

$$b(\alpha_0) - b(\alpha_{\omega_1}) = (b(\alpha_0) - b(\alpha_{\xi})) + (b(\alpha_{\xi}) - b(\alpha_{\omega_1}))$$

is the sum of ω_1 monocolored pairs.

We now consider the more general case when S is an arbitrary subset of V.

THEOREM 3. If $|S| \leq \aleph_2$ is \aleph_2 -difference-free, then it is the union of countably many 2-difference-free sets.

Proof. We are going to decompose S into the increasing continuous union of sets of size \aleph_1 , $S = \bigcup \{S_\alpha : \alpha < \omega_2\}$, and again, $S_{\alpha+1} - S_\alpha$ as $\bigcup \{T_{\alpha,\xi} : \xi < \omega_1\}$, the increasing continuous union of countable sets, and then we color the elements in $T_{\alpha,\xi+1} - T_{\alpha,\xi}$ with different colors. We show that if the sets S_α , $T_{\alpha,\xi}$ are sufficiently closed, then no quadruple of the form $\{a,a+x,b,b+x\}$ can get the same color. This suffices, as, by an old observation of R. Rado, every vector space is the union of countably many sets, none containing a three-element arithmetic progression. We require that if a difference $d \neq 0$ occurs as the difference between two elements or two sums in S_α , then all pairs with difference d should be in S_α . Assume that $\{a, a+x, b, b+x\}$ get monocolored, and that $S_{\alpha+1}$ is the first set including all. By the above closure property, at most two of the elements can be in S_α . There are several cases to consider.

Case 1: $a, a + x \in S_{\alpha}$, $b, b + x \in S_{\alpha+1} - S_{\alpha}$. Impossible, by the closure properties of S_{α} .

Case 2: $a, b \in S_{\alpha}, \ a+x, b+x \in S_{\alpha+1}-S_{\alpha}$. Same as Case 1.

Case 3: $a, b+x \in S_{\alpha}$, $a+x, b \in S_{\alpha+1}-S_{\alpha}$. We show that to any a+x in $S_{\alpha+1}-S_{\alpha}$ there can only be one b as above. If b is good, then (a+x)+b=a+(b+x) is the sum of two elements in S_{α} , so if b_1 , b_2 are good, then b_1-b_2 is the difference of two sums in S_{α} , and so $b_1, b_2 \in S_{\alpha}$, by our assumptions on S_{α} . Likewise, to every element $b \in S_{\alpha+1}-S_{\alpha}$ only one good a+x can exist, so if the sets $T_{\alpha,\xi}$ are closed under the $b\mapsto a+x$, $a+x\mapsto b$ functions, then b, a+x appear in the same $T_{\alpha,\xi+1}$, and so they get different colors.

Case 4: $a \in S_{\alpha}$, $a + x, b \in T_{\alpha,\xi}$, $b + x \in T_{\alpha,\xi+1} - T_{\alpha,\xi}$. It suffices to show that to a given pair $\{a + x, b\}$ there can correspond at most one b + x as above; then an argument similar to the one given in Case 3 concludes the proof. If $a_1 + x_1 = a_2 + x_2$, $a_1, a_2 \in S_{\alpha}$, then $a_2 - a_1 = (b + x_1) - (b + x_2)$, so b + x must be in S_{α} , a contradiction.

Case 5: $b \in S_{\alpha}$, $a, a + x \in T_{\alpha,\xi}$, $b + x \in T_{\alpha,\xi+1} - T_{\alpha,\xi}$. Again, it is enough to show that to a given pair $\{a, a + x\}$ there can only be one good b + x. Notice that a, a + x already determine x. If $b_1 + x$, $b_2 + x$ were good, then their difference $b_1 - b_2$ would occur as the difference of two elements in S_{α} , so again $b_1 + x$, $b_2 + x$ would both be in S_{α} .

Case 6: $a, a + x, b, b + x \in S_{\alpha+1} - S_{\alpha}$. Assume that $a, a + x, b \in T_{\alpha,\xi}$, $b + x \in T_{\alpha,\xi+1} - T_{\alpha,\xi}$. In this case b + x = b + (a + x) - a, so if we make $T_{\alpha,\xi}$ closed under u + v - w for $u, v, w \in T_{\alpha,\xi}$, we see that this case cannot occur.

THEOREM 4. If $|V| = (2^{2^{\omega}})^+$, then there is a 3-difference set $S \subset V$ which is not the union of countably many 2-difference sets.

Proof. Let V be the vector space with the basis $\{g(\alpha,\beta): \alpha < \beta < (2^{2^{\omega}})^{+}\}$. For $\alpha < \beta < \gamma$ put $b(\alpha,\beta,\gamma) = g(\alpha,\beta) + g(\beta,\gamma) - g(\alpha,\gamma)$, and let $S = \{b(\alpha,\beta,\gamma): \alpha < \beta < \gamma < (2^{2^{\omega}})^{+}\}$. If S is decomposed as $S = \bigcup\{S_i: i < \omega\}$, then, by the Erdős–Rado theorem (see [4]), there are $i < \omega$, $\alpha < \beta < \gamma < \delta$ with $b(\alpha,\beta,\gamma), b(\alpha,\beta,\delta), b(\alpha,\gamma,\delta), b(\beta,\gamma,\delta) \in S_i$. But then the nonzero distance

$$g(\beta, \gamma) - g(\alpha, \gamma) + g(\alpha, \delta) - g(\beta, \delta) = b(\alpha, \beta, \gamma) - b(\alpha, \beta, \delta)$$
$$= b(\beta, \gamma, \delta) - b(\alpha, \gamma, \delta)$$

occurs twice.

We have to show that S is a 3-difference-free set. If $\alpha < \beta < \gamma < (2^{2^{\omega}})^+$, $\alpha' < \beta' < \gamma' < (2^{2^{\omega}})^+$, and there is at most one common element in $\{\alpha, \beta, \gamma\}$ and $\{\alpha', \beta', \gamma'\}$, then there is no cancellation in $c = b(\alpha, \beta, \gamma) - b(\alpha', \beta', \gamma')$, so the sets can be recovered from c. If the two triplets look like $\{\alpha, \beta, \gamma\}$, $\{\alpha, \gamma, \delta\}$, then

$$b(\alpha, \beta, \gamma) - b(\alpha, \gamma, \delta) = g(\alpha, \beta) + g(\beta, \gamma) - 2g(\alpha, \gamma) + g(\alpha, \delta) - g(\gamma, \delta),$$

the triplets can be reconstructed again. The remaining cases

$$b(\alpha, \beta, \delta) - b(\alpha, \gamma, \delta) = g(\alpha, \beta) + g(\beta, \delta) - g(\alpha, \gamma) - g(\gamma, \delta)$$
$$= b(\alpha, \beta, \gamma) - b(\beta, \gamma, \delta)$$

give the equality of just two vectors.

THEOREM 5. If V is a vector space and $S \subset V$ is ω_2 -difference-free, then S is the union of countably many ω -difference-free sets.

Proof. We prove the result by induction on $\kappa = |S|$. For $\kappa \leq \omega$ the result is obvious. For $\kappa = \omega_1$ we can use the above-mentioned Erdős–Kakutani result that S can be covered by countably many linearly independent sets (see [3]).

If $\kappa > \omega_1$, decompose S as the increasing, continuous union $S = \bigcup \{S_\alpha : \alpha < \kappa\}$ of sets of size smaller than κ such that if a nonzero difference d occurs in S_α , then its all occurrences are in S_α . By the inductive hypothesis, each $S_{\alpha+1} - S_\alpha$ is a union of countably many ω -difference-free sets. We claim that the union of these decompositions is good as well. Assume that the nonzero difference d occurs infinitely many times between points getting the same color t. If d first occurs in $S_{\alpha+1}$, then by the above closure property of our decomposition, each occurrence of d is either in $S_{\alpha+1} - S_\alpha$, or is between S_α and $S_{\alpha+1} - S_\alpha$. By our hypothesis, only finitely many occurrences of the former type get color t, so d occurs infinitely many times as x-y where $x \in S_\alpha$, $y \in S_{\alpha+1} - S_\alpha$ or $x \in S_{\alpha+1} - S_\alpha$, $y \in S_\alpha$. Infinitely many times the same case occurs. If, now, $a, a' \in S_\alpha$, $b, b' \in S_{\alpha+1} - S_\alpha$, and a-b=a'-b'=d, then the nonzero difference a-a'=b-b' occurs in S_α , so $b, b' \in S_\alpha$ should hold, a contradiction.

We can slightly extend this result.

THEOREM 6. If V is a vector space and $S \subset V$ is ω_2 -difference-free, then S is the union of countably many ω -difference-free, ω -sum-free sets.

Proof. By Theorem 5, we can assume that S is ω -difference-free. We again reason by induction on $\kappa = |S|$. The case $\kappa \leq \omega$ is again trivial. Assume that $\kappa \geq \omega_1$. Decompose S into the increasing, continuous union of subsets of size $<\kappa$, $S = \bigcup \{S_\alpha : \alpha < \kappa\}$ such that $a+b-c \in S_\alpha$ when $a,b,c \in S_\alpha$, and, of course, $a+b-c \in S$ holds; moreover, if d is either of the form a-a' or (a+b)-(a'+b') for some $a,a',b,b' \in S_\alpha$ then all pairs with difference d occur in S_α . Build an auxiliary graph G_α on $S_{\alpha+1}-S_\alpha$ by joining a,b if the sum a+b occurs among the pairwise sums in S_α .

CLAIM. G_{α} consists of independent edges.

Proof of Claim. Assume that a is joined to b, b', i.e. a+b, a+b' both occur among the pairwise sums in S_{α} . Then b-b' is the difference of two such sums, so $b, b' \in S_{\alpha}$ by our assumptions on S_{α} .

 G_{α} is, therefore, a bipartite graph.

By our inductive hypothesis, there is a good coloring of $S_{\alpha+1} - S_{\alpha}$ such that each color class is ω -sum-free, and we can assume that these classes constitute a good coloring of G_{α} as well. Take the union of these colorings; we claim that it works.

Assume that the points a_n , b_n get the same color, and $a_n + b_n = c$ (n = 0, 1, ...). We consider two cases.

Case 1: For infinitely many n, there is a β_n such that $a_n \in S_{\beta_n}$, $b_n \in S_{\beta_n+1} - S_{\beta_n}$. If not all β_n 's are the same, then we get e.g. $a \in S_{\beta}$, $b \in S_{\beta+1} - S_{\beta}$, $a' \in S_{\beta'}$, $b' \in S_{\beta'+1} - S_{\beta'}$, and $\beta < \beta'$. But then $a, b, a' \in S_{\beta'}$ and $b' = a + b - a' \notin S_{\beta'}$, a contradiction.

If, however, $\beta_n = \beta_m$, i.e. $a, a' \in S_\beta$, $b, b' \in S_{\beta+1} - S_\beta$, then a - a' = b' - b, so $b, b' \in S_\beta$ again should hold.

Case 2: For infinitely many n, there is a β_n such that $a_n, b_n \in S_{\beta_n+1} - S_{\beta_n}$. Not all the β_n 's are the same, as the coloring on $S_{\beta+1} - S_{\beta}$ is supposed to be good. We get, therefore, elements of the following type: a+b=a'+b', $a,b\in S_{\beta}, a',b'\in S_{\beta+1}-S_{\beta}$, i.e. the sum a'+b' occurs as a sum in S_{β} , so a',b' are joined in G_{α} , so they get different colors.

We now show that it is consistent that 2^{ω} is arbitrarily high, and Theorem 3 can be extended to all cardinals $< 2^{\omega}$. For the different notions concerning Martin's axiom, and several applications, we recommend [5].

THEOREM 7. If MA_{κ} holds and $|S| \leq \kappa$ is ω_2 -difference-free, then S is the union of countably many 2-difference-free sets.

134

Proof. By the previous theorem, we can assume that S is ω -differencefree and ω -sum-free. Let $p=(s,f)\in P$ be a condition, where $s\subseteq S$ is finite, and $f: s \to \omega$ is a good coloring, i.e. $f^{-1}(i)$ is 2-difference-free for every $i < \omega$. Put $(s', f') \leq (s, f)$ iff $s' \supseteq s, f' \supseteq f$. It is obvious that for any $x \in S$, the set $\{(s, f) : x \in s\}$ is dense, and if $G \subseteq P$ is a generic set meeting all these dense sets, then $\bigcup \{f:(s,f)\in G\}$ is a good coloring of S. The only thing we have to prove is that (P, \leq) is ccc, i.e. that among any collection of uncountably many elements in P, some two are compatible. Assume that $p_{\alpha} \in P$ ($\alpha < \omega_1$) are given. Using the pigeon-hole principle and the Δ -system lemma, we can assume that $p_{\alpha} = (s \cup s_{\alpha}, f_{\alpha})$ where the sets $\{s, s_{\alpha} : \alpha < \omega_1\}$ are disjoint, and the functions f_{α} have identical restrictions to s. As S is ω -difference-free and ω -sum-free, if $\alpha < \omega_1$, then every difference/sum occurring in $s \cup s_{\alpha}$ which does not occur in s, occurs only in finitely many other $s \cup s_{\beta}$. By Hajnal's set mapping theorem (see [5]), we can find an uncountable index set in which for $\alpha \neq \beta$, no nonzero difference or sum occurs both in s_{α} and s_{β} , except of course the differences and sums in s. We claim that now p_{α} , p_{β} are compatible. Assume, towards a contradiction, that the function $f_{\alpha} \cup f_{\beta}$ is not a good coloring of $s \cup s_{\alpha} \cup s_{\beta}$. Then some $d \neq 0$ occurs twice as a difference, d = a - b = a' - b', and either $a, a' \in s_{\alpha}, b, b' \in s_{\beta}$ or $a, b' \in s_{\alpha}$, $a', b \in s_{\beta}$. In the former case b - a = b' - a' occurs both in s_{α} and s_{β} , which is impossible by our assumptions. In the latter case a + b' = a' + b, a contradiction again.

REFERENCES

- P. Erdős, Set theoretic, measure theoretic, combinatorial, and number theoretic problems concerning point sets in Euclidean space, Real Anal. Exchange 4 (1978–79), 113–138.
- [2] —, Some applications of Ramsey's theorem to additive number theory, European J. Combin. 1 (1980), 43–46.
- [3] P. Erdős and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943), 457-461.
- [4] P. Erdős and R. Rado, A partition calculus in set theory, ibid. 62 (1956), 427–489.
- [5] D. Fremlin, Consequences of Martin's Axiom, Cambridge University Press, 1984.

DEPARTMENT OF COMPUTER SCIENCE R. EÖTVÖS UNIVERSITY MÚZEUM KRT. 6-8 1088 BUDAPEST, HUNGARY

> Reçu par la Rédaction le 20.6.1991; en version modifiée le 3.3.1992