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VECTOR SETS WITH NO REPEATED DIFFERENCES

BY

PETER KOMJATH (BUDAPEST)

We consider the question when a set in a vector space over the rationals,
with no differences occurring more than twice, is the union of countably
many sets, none containing a difference twice. The answer is “yes” if the
set is of size at most N, “not” if the set is allowed to be of size (22N0)+. It
is consistent that the continuum is large, but the statement still holds for
every set smaller than continuum.

Paul Erdés showed in [2] that if 2¢ > wy, then there exists a set S C R
such that for every a € R there can be at most two solutions of the equation
x+y=a (x,y € S), but if S is decomposed into countably many parts, then
in some part, for some a € R, there are two solutions of x + y = a. This is
not true under the continuum hypothesis, for then there is a decomposition
of R into countably many linearly independent sets (over Q, the rationals).
Erdés and P. Zakrzewski asked if a similar result holds for differences as
well.

In this paper V is a vector space over Q, and S is a subset of V. If k
is a cardinal (not necessarily infinite), S is k-sum-free iff for any a € V,
there are less than s solutions of the equation z +y = a (z,y € S). S is
k~difference-free iff for every d € V| d # 0, there are less than k solutions
of the equation z —y = d (z,y € S). In the former case, we consider the
solutions (z,y) and (y,x) identical. In this notation, Erdds asked if every
3-difference-free set is the union of countably many 2-difference-free sets.

In the paper, the word sum is reserved to two-term sums. Also, we
sometimes use the coloring terminology, i.e. confuse a decomposition into
countably many parts with a coloration with countably many colors.

We first consider when the choice S = V works for questions of the given

type.

THEOREM 1. (a) If |V| < wq, then V is the union of countably many
2-difference-free sets.
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(b) If |V | > wa, then V is not the union of countably many w-difference-
free sets.

Proof. (a) By a well-known theorem of Erdés and Kakutani (see [3]),
every vector space of cardinal w; is the union of countably many bases.

(b) Assume that the vectors {z4,ys3 : @ < wa, 3 < w1} are independent.
By a theorem of P. Erdds and A. Hajnal (see e.g. [1]), if the vectors {zq+ys :
a < wy, 3 < wi} are colored by countably many colors, then there is a set
Z C wy of size wp and 1 < P2 < wp such that the vectors {z + ygs, :
a € Z, i = 1,2} get the same color. Then the difference yg, — yp, =
(o +Yp,) — (o +yp,) is expressed in wy many ways in the same part. m

The case of sums is different.

THEOREM 2. (a) If |V| < 2¥, then V is the union of countably many
w-sum-free sets.

(b) If |V| > 2% then V is not the union of countably many wi-sum-free
sets.

Proof. (a) We can assume that V = R. Let B be a Hamel basis for R.
We color R — {0} with countably many colors as follows. We require that
from the color of

=1

the ordered sequence (of rationals) A1, ..., A, should be recovered, and also
a sequence of n — 1 rational numbers, separating by, ..., b, from each other.
This is possible as there are countably many rational numbers. If x, y get the
same color, and a basis element b appears in both, then, by our above coding
requirements, b has the same index, say 7, in x and y. The corresponding
coordinate in the sum is then 2)\; # 0. There are, therefore, only finitely
many possibilities to decompose a given vector as = + .

(b) Let {b(c) : @ < (2¥)"} be independent. By the Erdés-Rado theorem
(see [4]), if we color the vectors {b(a)—b(3) : a < § < (2¥)1} with countably
many colors, then there is an increasing sequence {o¢ : ¢ < w;} such that
{b(ag) —b(ae) : € < < wi} get the same color. But then

b(ag) — b(ew,) = (b(ao) — blag)) + (b(ag) — o, )
is the sum of w; monocolored pairs. m

We now consider the more general case when S is an arbitrary subset
of V.

THEOREM 3. If |S| < Ny is Wy-difference-free, then it is the union of
countably many 2-difference-free sets.
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Proof. We are going to decompose S into the increasing continuous
union of sets of size Ry, S = [J{S, : @ < wq}, and again, S,11 — S, as
U{Tu,e : £ < wr}, the increasing continuous union of countable sets, and
then we color the elements in T, ¢y1 — T\, ¢ with different colors. We show
that if the sets S,, T, are sufficiently closed, then no quadruple of the
form {a,a + x,b,b+ x} can get the same color. This suffices, as, by an old
observation of R. Rado, every vector space is the union of countably many
sets, none containing a three-element arithmetic progression. We require
that if a difference d # 0 occurs as the difference between two elements or
two sums in S, then all pairs with difference d should be in S,,. Assume that
{a,a+ x,b,b+ x} get monocolored, and that S,1 is the first set including
all. By the above closure property, at most two of the elements can be in S,
There are several cases to consider.

Casel:a,a+x€8,, byb+2x € Soy1 — S,. Impossible, by the closure
properties of S,.

Case2:a,be Sy, a+x,b+x € S,41 — S,. Same as Case 1.

Case 3:a,b+2 € S,, a+2,b € So41 — S,. We show that to any
a4+ z in Syuy1 — S, there can only be one b as above. If b is good, then
(a+x)+b=a+ (b+ x) is the sum of two elements in S, so if by, by are
good, then by — by is the difference of two sums in S, and so by,bs € Sq,
by our assumptions on S,. Likewise, to every element b € S,4+1 — S, only
one good a + x can exist, so if the sets T, ¢ are closed under the b +— a + z,
a + x — b functions, then b, a + x appear in the same T, ¢11, and so they
get different colors.

Cased:a € So, a+x,bcThe, b+a € Tyep1 —Toe. It suffices to
show that to a given pair {a + x, b} there can correspond at most one b+ x
as above; then an argument similar to the one given in Case 3 concludes the
proof. If a; + z1 = ag + x2, a1,as € Sy, then ay —a; = (b+x1) — (b+ z2),
so b+ x must be in S,, a contradiction.

Case 5: b€ So, a,a+x € Toe, b+ € Tyeqp1 — Toe. Again, it is
enough to show that to a given pair {a,a + x} there can only be one good
b+ z. Notice that a, a + x already determine x. If by 4+ =, by + = were good,
then their difference b; — by would occur as the difference of two elements
in S,, so again by + x, by +  would both be in S,.

Case 6: a,a+x,b,b+x € Sqy1 — So. Assume that a,a +z,b € T, ¢,
b+ €Ther1 —Toe. Inthiscase b+x =b+ (a+x)—a, so if we make T, ¢
closed under u+v—w for u,v,w € T, ¢, we see that this case cannot occur. m

THEOREM 4. If |V| = (22°)*, then there is a 3-difference set S C V
which is not the union of countably many 2-difference sets.
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Proof. Let V be the vector space with the basis {g(a, ) : @ < 8 <
(22)*}. For a < B < 7 put b(a, 8,7) = g(a,B) + g(8,7) — g(a,), and
let S = {b(a,B,7) : a < B << (22)Ft}. If S is decomposed as S =
U{Si : i < w}, then, by the Erdés—Rado theorem (see [4]), there are i < w,
a < f <y <4 with b(a7677)7b(a>ﬁ75)7b(047775)ab(ﬁ7'775) € S;. But then
the nonzero distance

9(8.7) — g9(a,v) + g(a,6) — g(B3,6) = b(ev, B,7) — b(ex, B, 6)
- b(ﬂv’% 6) - b(a/% 5)
occurs twice.

We have to show that S is a 3-difference-free set. If o < § < v < (227)7,
o < B <+ < (2%27)*, and there is at most one common element in {a, 5,7}
and {a/, 3,7}, then there is no cancellation in ¢ = b(«, 3,7) — b(e/, 5, 7'),
so the sets can be recovered from c. If the two triplets look like {a, 3,7},
{a,~,d}, then

b(a, 8,7) = ble,7,0) = g(e, B) + 9(B,7) — 29(a, 7) + g, ) — g(7,6) ,
the triplets can be reconstructed again. The remaining cases
b(aa/@7 6) - b(Oé,’)/, 6) = g(a,ﬁ) +g(ﬁ> 5) - g(a,’y) - 9(775)
= b(a7ﬁ77) - b(/@7776)
give the equality of just two vectors. m

THEOREM b. If V is a vector space and S C 'V is wy-difference-free, then
S is the union of countably many w-difference-free sets.

Proof. We prove the result by induction on x = |S|. For k < w the re-
sult is obvious. For k = wy we can use the above-mentioned Erdds—Kakutani
result that S can be covered by countably many linearly independent sets
(see [3]).

If kK > wq, decompose S as the increasing, continuous union S = (J{S, :
a < Kk} of sets of size smaller than x such that if a nonzero difference d occurs
in S,, then its all occurrences are in S,. By the inductive hypothesis, each
Sa+1 — S is a union of countably many w-difference-free sets. We claim
that the union of these decompositions is good as well. Assume that the
nonzero difference d occurs infinitely many times between points getting the
same color t. If d first occurs in S, 41, then by the above closure property of
our decomposition, each occurrence of d is either in S,11 — S,, or is between
So and So11 — So. By our hypothesis, only finitely many occurrences of
the former type get color t, so d occurs infinitely many times as © — y where
T € Say Y € Sag1 — Sq Or & € Soqr1 — Say, Yy € Su. Infinitely many
times the same case occurs. If, now, a,a’ € S,, b,b' € Soy1 — S,, and
a—b=a —b =d, then the nonzero difference a —a’ = b — b’ occurs in S,,
so b,b’ € S, should hold, a contradiction. m
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We can slightly extend this result.

THEOREM 6. If V is a vector space and S C 'V is wo-difference-free, then
S is the union of countably many w-difference-free, w-sum-free sets.

Proof. By Theorem 5, we can assume that S is w-difference-free. We
again reason by induction on x = |S|. The case Kk < w is again trivial.
Assume that k > w;. Decompose S into the increasing, continuous union
of subsets of size < k, S =|J{Sa : @ < k} such that a +b — ¢ € S, when
a,b,c € S,, and, of course, a + b — ¢ € S holds; moreover, if d is either of
the form a — a’ or (a4 b) — (a’ +b') for some a,a’,b,b’ € S, then all pairs
with difference d occur in S,. Build an auxiliary graph G, on S,11 — S,
by joining a, b if the sum a + b occurs among the pairwise sums in S,.

CLAaM. G, consists of independent edges.

Proof of Claim. Assume that a is joined to b, ¥, i.e. a +b, a + '
both occur among the pairwise sums in S,. Then b — b’ is the difference of
two such sums, so b, b’ € S, by our assumptions on S,. =

G, is, therefore, a bipartite graph.

By our inductive hypothesis, there is a good coloring of S,4+1 — S, such
that each color class is w-sum-free, and we can assume that these classes
constitute a good coloring of G, as well. Take the union of these colorings;
we claim that it works.

Assume that the points a,, b, get the same color, and a,, + b, = ¢ (n =
0,1,...). We consider two cases.

Case 1: For infinitely many n, there is a (3, such that a, € Sg,, b, €
Sg,+1 — Sp,. If not all 3,,’s are the same, then we get e.g. a € Sg, b €
Sg+1 — 93, a € Spr, b e Sgr41 — Sp, and B < B’. But then a,b,a’ € Spr
and b’ =a+b—a ¢ Sp, a contradiction.

If, however, (3, = B, i.e. a,a’ € Sg, b,b' € Sg41—S3, then a—a’ = b'—b,
so b, b’ € Sp again should hold.

Case 2: Forinfinitely many n, there is a 3, such that ay, b, € Sg, +1 —
Sg,. - Not all the 3,,’s are the same, as the coloring on Sz — S is supposed
to be good. We get, therefore, elements of the following type: a+b = a' + ¥/,
a,b e Sg, a',b' € Sgy1 — Sp, i.e. the sum a’ + b occurs as a sum in Sg, so
a’, b are joined in G, so they get different colors. m

We now show that it is consistent that 2“ is arbitrarily high, and The-
orem 3 can be extended to all cardinals < 2¥. For the different notions
concerning Martin’s axiom, and several applications, we recommend [5].

THEOREM 7. If MA, holds and |S| < k is wa-difference-free, then S is
the union of countably many 2-difference-free sets.
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Proof. By the previous theorem, we can assume that S is w-difference-
free and w-sum-free. Let p = (s,f) € P be a condition, where s C §
is finite, and f : s — w is a good coloring, i.e. f~1(i) is 2-difference-free
for every i < w. Put (s, f") < (s,f) iff & D s, f/ 2O f. It is obvious
that for any = € S, the set {(s,f) : = € s} is dense, and if G C P is
a generic set meeting all these dense sets, then J{f : (s,f) € G} is a
good coloring of S. The only thing we have to prove is that (P, <) is ccc,
i.e. that among any collection of uncountably many elements in P, some
two are compatible. Assume that p, € P (o < w;) are given. Using
the pigeon-hole principle and the A-system lemma, we can assume that
Pa = (8 U Sa, fo) where the sets {s,s, : @ < wi} are disjoint, and the
functions f, have identical restrictions to s. As S is w-difference-free and
w-sum-free, if @ < wy, then every difference/sum occurring in s U s, which
does not occur in s, occurs only in finitely many other s U sg. By Hajnal’s
set mapping theorem (see [5]), we can find an uncountable index set in
which for a # (3, no nonzero difference or sum occurs both in s, and sg,
except of course the differences and sums in s. We claim that now p,, pg
are compatible. Assume, towards a contradiction, that the function f, U fz
is not a good coloring of s U s, U sg. Then some d # 0 occurs twice as a
difference, d = a — b =a’ — V', and either a,a’ € sq, b, b’ € sg or a,b’ € s,,
a’,b € sg. In the former case b —a = b — a’ occurs both in s, and sg,
which is impossible by our assumptions. In the latter case a +b = a’ + b, a
contradiction again. m
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