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CHAIN RULES FOR CANONICAL STATE EXTENSIONS
ON VON NEUMANN ALGEBRAS

BY

CARLO CECCH IN I (UDINE) AND DÉNES PETZ (BUDAPEST)

In previous papers we introduced and studied the extension of a state
defined on a von Neumann subalgebra to the whole of the von Neumann
algebra with respect to a given state. This was done by using the standard
form of von Neumann algebras. In the case of the existence of a norm one
projection from the algebra to the subalgebra preserving the given state our
construction is simply equivalent to taking the composition with the norm
one projection.

In this paper we study couples of von Neumann subalgebras in connection
with the state extension. We establish some results on the ω-conditional
expectation and give a necessary and sufficient condition for the chain rule
of our state extension to be true.

We extensively use the language of spatial derivatives developed by
Connes [5] and summarized also in [2], [3]. Given two normal states ϕ
and ω of a von Neumann algebra M⊂ B(H) we set

(1) [ϕ/ω] = ∆(ϕ, ω′)1/2∆(ω, ω′)−1/2

where ∆(ψ, ω′) is the spatial derivative with respect to the auxiliary faithful
normal state ω′ on M′. If ϕ ≤ αω for some α ∈ R+ then [ϕ/ω] has a
bounded closure belonging to M which is the analytic continuation of the
Connes cocycle [Dϕ,Dω]t at the point −i/2 (cf. [4]). (Recall that in the
general case [ϕ/ω] is a nonclosable operator.)

On the von Neumann algebra M⊂ B(H) we consider a state ω induced
by a cyclic and separating vector Ω and we denote by J the modular con-
jugation. For a subalgebra Mi ⊂M, let Hi be the closure of MiΩ and let
Ei be the corresponding projection. So EiMi|Hi has Ω as a cyclic and sep-
arating vector and Ji is written for the corresponding modular conjugation.
(Mostly we identify Mi with EiMi|Hi.)

Let us recall ([1]) that the ω-conditional expectation E ,iω : M → Mi is
defined by the formula

(2) E ,iω (a) = JiEiJaJEiJi (a ∈M) .
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If Mi ⊂ Mj ⊂ M then Ej,iψ stands for the ψ-conditional expectation
Mj →Mi for a state ψ of Mj .

Given a state ϕ0 of M0 ⊂ M ⊂ B(H), its extension %ω(ϕ0) to M with
respect to ω is defined by the vector

(3) [ϕ0/ω0]Ω (ω0 ≡ ω|M0) .

It was proved in [2], [3] that

(4) E ,0%ω(ϕ0)
(x) = E ,0ω (v∗xv) (x ∈M)

where Jv′J = v ≡ v(ω, ϕ0) and

v′ : a[ϕ0/ω0]Ω 7→ a[%ω(ϕ0)/ω]Ω (a ∈M)

is a partial isometry in M′. When ψ ≤ α%ω(ϕ0) and ψ|M0 = ϕ0 then
similarly

(5) E ,0ψ (x) = E ,0ω (a∗xa) (x ∈M)

where Ja′J = a and

(6) a′ : b[ϕ0/ω0]Ω 7→ b[ψ/ω]Ω (b ∈M)

is a bounded operator in M′.
We consider the von Neumann algebra M2 ⊂ M1 ⊂ M and a faithful

normal state ϕ2 on M2. Denote by τ(ϕ2;M1)(ω) the vector state on M
for the vector

(7) [ω2/ϕ2][%ω1(ϕ2)/ω1]Ω .

Lemma 1. In the above context

(8) [ω2/ϕ2][%ω1(ϕ2)/ω1]Ω = J1v(ω1, ϕ2)J1Ω .

P r o o f. It follows from the definition of v(ω1, ϕ2) that

[ω2/ϕ2][%ω1(ϕ2)/ω1]Ω = [ω2/ϕ2]J1v(ω1, ϕ2)J1[ϕ2/ω2]Ω .

Here the right hand side may be transformed as follows:

[ω2/ϕ2]J1v(ω1, ϕ2)J1[ϕ2/ω2]Ω = J1v(ω1, ϕ2)J1[ω2/ϕ2][ϕ2/ω2]Ω
= J1v(ω1, ϕ2)J1Ω ,

and the proof is complete.

Lemma 2. With the above notation

τ(ϕ2;M1)(ω)|M1 = ω|M1 .

P r o o f. This is a consequence of the previous lemma because v(ω1, ϕ2) ∈
M1 and v∗(ω1, ϕ2)v(ω1, ϕ2)Ω = Ω.

We may regard the state τ(ϕ2;M1)(ω) as a kind of perturbation of ω
by ϕ2 and M1. If the objects ϕ2 and M1 fit well to the given state ω then
τ(ϕ2;M1)(ω) and ω coincide. (Due to Lemma 2, on the subalgebra M1
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they always coincide.) The next result concerns the majorization relation
of these two states.

Proposition 3. There is a constant α > 0 such that τ(ϕ2;M1)(ω) ≤ αω
if and only if there exists a ∈M such that

E ,1ω (a) = v(ω1, ϕ2)(a) and E ,1ω (a∗a) = E ,1ω (a)∗E ,1ω (a) .

P r o o f. The condition τ(ϕ1;M1)(ω) ≤ αω is equivalent to the existence
of an a ∈M such that

JaJΩ = [ω2/ϕ2][%ω1(ϕ2)/ω1]Ω .

Lemma 1 tells us that the right hand side is J1v(ω1, ϕ2)Ω and our state-
ment may be verified by computation. The converse is based on the fact
that

E ,1ω (a∗a) = E ,1ω (a)∗E ,1ω (a)
is equivalent to E1JaΩ = JaΩ and the above argument may be reversed.

The next result gives conditions for the chain rule of state extension to
hold.

Theorem 4. In the above setting the following conditions are equivalent.

(i) τ(ϕ2;M1)(ω) = ω.
(ii) %ω%ω1(ϕ2) = %ω(ϕ2).
(iii) E ,1ω (v(%ω(ϕ2), ω1)) = v(ω1, ϕ2).

P r o o f. As in the previous proof condition (i) is equivalent to

JvJΩ = [ω2/ϕ2][%ω1(ϕ2)/ω1]Ω

where v is now a partial isometry, v∗v = I. This is again equivalent to

JvJ [ϕ2/ω2]Ω = [%ω1(ϕ2)/ω1]Ω .

Here the left hand side is a representative of %ω(ϕ2) and the right hand
side is that of %ω%ω1(ϕ2). In this way we arrive at the equivalence of (i)
and (ii). The proof of the equivalence of condition (iii) follows from the
previous proposition.

As a sample of results which can be reached by the previously developed
techniques we shall prove the following.

Theorem 5. Let Ai (i = 1, 2, 3, 4) be a von Neumann algebra with the
inclusions A1 ⊃ A2 ⊃ A4 and A1 ⊃ A3 ⊃ A4. Let ω1 be a faithful normal
state on A1 with restriction ωi to Ai (i = 2, 3, 4) and let ϕ2 be a faithful
normal state on A2 with restriction ϕ4 to A4. Then any couple of the
following conditions implies the third.

(i) E1,3
ω (v(ω1, ϕ2)) = v(ω3, ϕ4),
E1,3
ω (v(ω1, ϕ2)∗v(ω1, ϕ2)) = |E1,3

ω (v(ω1, ϕ2))|2.
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(ii) ϕ2 = ϕ4 ◦ E2,4
ω2

.
(iii) %ω1(ϕ2) = %ω3(ϕ4) ◦ E1,3

ω1
.

P r o o f. First we formulate all the conditions in terms of vectors. We
claim that (i) is equivalent to

(i)′ [ω2/ϕ2][%ω1(ϕ2)/ω1]Ω = [ω4/ϕ4][%ω3(ϕ4)/ω3]Ω .

Here the left hand side is in fact J1v(ω1, ϕ2)Ω and the right hand side is
J3v(ω3, ϕ4)Ω. So the equivalence (i)⇔(i)′ follows as in Proposition 3.

Next, consider

(ii)′ [ϕ2/ω2]Ω = [ϕ4/ω4]Ω .

The left hand side is a vector representative of ϕ2 from the natural positive
cone for Ω and A2, and similarly the right hand side is a vector represen-
tative of ϕ4 in the cone for Ω and A4. By [2], (ii)′ is equivalent to saying
that ϕ2 = %ω2(ϕ4) and E2,4

ϕ2
= E2,4

ω2
. Now by [6] these latter conditions are

equivalent to (ii).

Finally, let

(iii)′ [%ω1(ϕ2)/ω1]Ω = [%ω3(ϕ4)/ω3]Ω .

The equivalence of (iii) and (iii)′ is essentially the same as that of (ii)
and (ii)′.

Assume now (i)′ and (ii)′. Since the state induced by the vector (i)′ on
A2 is ω2, there is a partial isometry v′2 ∈ A′

2 such that

[ω2/ϕ2][%ω1(ϕ2)/ω1]Ω = v′2Ω .

Then

[%ω1(ϕ2)/ω1]Ω = [ϕ2/ω2]v′2Ω = v′2[ϕ2/ω2]Ω
= v′2[ϕ4/ω4]Ω = [ϕ4/ω4]v′2 = [%ω3(ϕ4)/ω3]Ω .

Now assume (i)′ and (iii)′. Let v′2 ∈ A′
2 be as earlier. Then we have

[ϕ2/ω2]Ω = v′∗2 v
′
2[ϕ2/ω2]Ω = v′∗2 [ϕ2/ω2][ω2/ϕ2][%ω1(ϕ2)/ω1]Ω

= v′∗2 [%ω1(ϕ2)/ω1]Ω = v′∗2 [%ω3(ϕ4)/ω3]Ω
= v′∗2 [ϕ4/ω4][ω4/ϕ4][%ω3(ϕ4)/ω3]Ω
= v′∗2 [ϕ4/ω4]v′2Ω = v′∗2 v

′
2[ϕ4/ω4]Ω = [ϕ4/ω4]Ω .

Finally, the proof of (ii)′&(iii)′⇒(i)′ follows the same lines.

Further theorems comparing the partial isometries connecting different
conditional expectations can be obtained by the same technique.
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