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CONDITIONS WHICH ENSURE
THAT A SIMPLE MAP DOES NOT RAISE DIMENSION

BY

W. D Ȩ BS K I AND J. M IO DUSZEWSK I (KATOWICE)

The present paper deals with those continuous maps from compacta into
metric spaces which assume each value at most twice. Such maps are called
here, after Borsuk and Molski (1958) and as in our previous paper (1990),
simple.

We investigate the possibility of decomposing a simple map into essential
and elementary factors, and the so-called splitting property of simple maps
which raise dimension. The aim is to get insight into the structure of those
compacta which have the property that simple maps from them do not raise
dimension.

In what follows a map means a continuous map, unless explicitly stated
otherwise. A space is, except in some general lemmas, understood to be
metrizable. A compactum means a compact metric space.

1. Outline of the problem. If f : X → Y is a simple map from a
compactum, then the dimension of f(X) can exceed that of X by at most 1.
This follows from the formula

dim f(X)− dim X ≤ k − 1,

established by Hurewicz (1933) for maps from compacta assuming each value
at most at k points.

There are compacta no simple map from which raises dimension. For
instance, as proved by Hurewicz (1933), this property is enjoyed by any
compactum satisfying the following condition:

(α) subcompacta of full dimension have non-empty interiors.

This condition is rather restrictive. It is satisfied by manifolds, in par-
ticular by intervals of the reals.

If a one-dimensional compactum satisfies (α), its non-degenerate subcon-
tinua cannot be nowhere dense. If it is connected, it is hereditarily locally
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connected. It follows that a one-dimensional continuum satisfying (α) is the
union of open arcs, which form a dense (and open) subset, and of a totally
disconnected (closed) subset. Maximal open arcs form, in view of heredi-
tary local connectedness, a null family. This implies that a one-dimensional
continuum satisfying (α) is regular in the sense of ramification, i.e. has a
base of open sets with finite boundaries.

Dendrites are regular in this sense. However, not all dendrites have
property (α). None the less, there are no simple maps from dendrites which
raise dimension. This is an unpublished result of Sieklucki, announced by
Lelek (1962); its proof will be given here (1).

As far as we know, the problem of characterizing the compacta with
the property that simple maps from them do not raise dimension is not
solved even in the case of one-dimensional continua. We will call such one-
dimensional continua thin.

The property of being small in the sense of ramification does not im-
ply the property of being thin: there are regular continua which are not
thin; see e.g. our paper (1990). It remains an open problem whether or
not the Sierpiński triangular curve is thin. In the paper quoted above we
showed that there are no dimension-raising simple maps from the Sierpiński
triangular curve into the plane.

On the other hand, as we shall see, the Anderson–Choquet curve (1959)
and the Andrews chainable continuum (1961), which are big in the sense of
order of ramification, happen to be thin.

Let f : X → Y be a map. We say that it has the splitting property if
there exists a subcontinuum C of Y , with dim C = dim X, for which f−1(C)
is the union of disjoint subsets C ′ and C ′′ of X such that f |C ′ and f |C ′′ are
homeomorphisms onto C.

The statement that simple dimension-raising maps from compacta have
the splitting property appears implicitly in the literature; see e.g. Sieklucki
(1969). It is—in full generality—a consequence of a theorem of Freudenthal
(1932) from general dimension theory. As we shall show, in some particular
cases, e.g. in the case of maps from regular continua, the proof can be
performed in an elementary way.

2. Essential and elementary factors of simple maps. If f is a
simple map from a space X, then a pair of continua C ′ and C ′′ in X will be
called a pair of twins if

(1) C ′ ∩ C ′′ = ∅ and f(C ′) = f(C ′′).

(1) Professor Sieklucki kindly informed us that the original proof can be found in his
doctoral dissertation.
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For brevity, a pair of points x′ and x′′ will be regarded as a pair of twins
if f(x′) = f(x′′) (2).

The family of pairs of twins is in a natural manner partially ordered by
inclusion. A simple map for which there do not exist maximal pairs of twins
will be called essentially simple.

The function f(x) = x2 on the reals is an example of an essentially
simple map. The map of the interval 0 ≤ t ≤ 1 onto the circle |z| = 1 given
by f(t) = e2πit is simple but not essentially simple, since {0, 1} is a pair of
maximal twins.

Let f be a simple map from a compact Hausdorff space X into a Haus-
dorff space. Consider the collection of all pairs {x′, x′′} of point twins which
cannot be enlarged to maximal twins. Extend this collection to a partition
of X by assuming that other elements of the partition are one-point sets.
Let P (f) stand for this partition.

A partition of a space is said to be upper semicontinuous at its element
A if for each open set U containing A and each point a in A there exists a
neighbourhood V of a such that each element of the partition intersecting V
is contained in U . A partition is called upper semicontinuous if it is upper
semicontinuous at each of its elements.

Lemma 1. The partition P (f) is upper semicontinuous.

P r o o f. The upper semicontinuity of P (f) at elements being the counter-
images of values of f follows easily from the fact that the partition into the
counter-images of values of a closed (continuous) map is upper semicontin-
uous.

An element of P (f) which is not a counter-image of a value of f is a
one-point set {a} such that f−1(f(a)) = {a, b}, where a 6= b. Let {K, L} be
a maximal pair of twins such that a ∈ K and b ∈ L.

Let J = f(K) = f(L). Take neighbourhoods, G of K and H of L, with
disjoint closures. Then J is a connected component of f(G) ∩ f(H), since
K and L form a maximal pair of twins. Let W ⊂ int(f(G∪H)) be an open
neighbourhood of J with boundary disjoint from f(G)∩f(H), and let V be
a neighbourhood of a such that

(2) V ⊂ G, f(V ) ⊂ W, f−1(f(W )) ⊂ G ∪H .

We shall show that

(3) if x′ ∈ V and {x′, x′′} ∈ P (f), then x′′ ∈ G.

By (2), there is nothing to prove if x′′ = x′, so assume x′ 6= x′′. We have
f(x′) = f(x′′), since {x′, x′′} ∈ P (f). Suppose x′ 6∈ G. Then x′′ ∈ H, as
f−1(f(x′′)) ⊂ G ∪ H, by (2). Thus, the common value of f at x′ and x′′

(2) Whenever we call a set {u, v} a pair, we assume u and v to be distinct.
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belongs to f(G)∩f(H). Let C be the connected component of f(x′) = f(x′′)
in f(G) ∩ f(H). Since G and H are disjoint, f−1(C) splits into disjoint
continua C ′ and C ′′, each mapped homeomorphically under f onto C. Since
f(x′) = f(x′′) ∈ W by (2), and the boundary of W is disjoint from f(G) ∩
f(H), and hence from C, we have C ⊂ W . Thus, C ′ and C ′′ form a
maximal pair of twins such that x′ ∈ C ′ and x′′ ∈ C ′′. This contradicts our
assumptions on P (f), and (3) is proved.

To finish the proof, let U be a neighbourhood of a. Since (2) is satisfied
for sufficiently small neighbourhoods V of a, it is enough to show that the
elements of P (f) intersecting those V are contained in U .

Suppose to the contrary that for arbitrarily small neighbourhoods V of
a satisfying (2) there are elements of P (f) intersecting V and not contained
in U . These elements are of the form {x′, x′′}, where x′ ∈ V and f(x′) =
f(x′′). By continuity and compactness, there exists c 6∈ U (an accumulation
point of the x′′) such that f(c) = f(a). We have c 6= a. Also, c 6= b, since,
by (3), if an element {x′, x′′} of P (f) intersects V, it cannot intersect H (in
which b lies). A contradiction, as f is simple.

Let g : X → P (f) be the quotient map corresponding to the partition
P (f). It follows from Lemma 1 that P (f) is (compact) Hausdorff in the
quotient topology. Since g(x′) = g(x′′) implies f(x′) = f(x′′), we get a
factorization

(4) f = h ◦ g

of f , where g is essentially simple by construction.
The map h has the property opposite to the preceding one, namely, as is

easy to see, each pair of points which are identified under h can be enlarged
to a maximal pair of twins with respect to h. A simple map having this
property will be called elementarily simple.

Thus, we get the following

Theorem 1. Each simple map f from a compact Hausdorff space into a
Hausdorff space admits a factorization f = h◦g into a surjective essentially
simple map g and an elementarily simple map h.

3. Simple maps from regular compacta. Let X be a compact
Hausdorff space and let f : X → Y be a continuous map into a Hausdorff
space. If y ∈ Y and if W is a neighbourhood of f−1(y) in X, then f(W )
is a neighbourhood of y in Y . The interiors int f(W ) for all such y and W
form an open base in Y , provided that f is surjective. But, in order to get a
base, it suffices to consider only those W which are unions of finitely many
sets from a given base in X.

The above statements from general topology will be used in the proof of
the following
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Splitting Lemma I. Let X be a compact Hausdorff space regular in
the sense of ramification, and let f : X → Y be a simple map onto a
Hausdorff space of dimension ≥ 2. There exists a non-degenerate nowhere
dense subcontinuum C of Y such that f−1(C) = C ′ ∪C ′′, where C ′ and C ′′

are disjoint and f |C ′ and f |C ′′ are homeomorphisms onto C.

P r o o f. Let y ∈ Y . Consider neighbourhoods W of f−1(y) which are
unions of finitely many elements of a base in X consisting of sets with
finite boundaries. The sets W have finite boundaries, too. The interiors
of f(W ) for all y in Y form a base in Y , according to the above remarks.
Since dim Y ≥ 2, the boundary of some int f(W ) contains a non-degenerate
continuum, say C. We can assume that C is disjoint from the (finite) image
of the boundary of W . The continuum C is nowhere dense in Y , since it
lies on the boundary of an open subset of Y .

Let c ∈ C. Then f−1(c) consists of two points. One of them, say c′, lies in
W , since C ⊂ f(W ), by our last assumption. To find the other one, observe
that c being a point of the boundary of f(W ), in each neighbourhood of c
there are values of f at points in the complement of W . Thus, by continuity
and compactness, c is the value of f at a point c′′ in the closure of X−W , in
fact in X−W , as C (in which c lies) is disjoint from the image of W−W (the
boundary of W ). Clearly, c′′ 6= c′. The set {c′, c′′} is the full counter-image
of c, as f is simple.

It follows that f−1(C) is the union of

C ′ = W ∩ f−1(C) and C ′′ = (X −W ) ∩ f−1(C),

which are disjoint and open, and therefore closed, in f−1(C). Each of them
is mapped onto C continuously and in one-to-one way. Since C is compact,
C ′ and C ′′ are compact. Thus, f |C ′ and f |C ′′ are homeomorphisms onto C.

Corollary (contained in Theorem II of Hurewicz (1933) and containing
the theorem of Hahn (1913) and Mazurkiewicz (1915)). Simple maps do not
raise the dimension of one-dimensional continua having property (α); in
other words, one-dimensional continua having property (α) are thin.

P r o o f. Assume to the contrary that f is a simple map from a one-
dimensional continuum X having property (α) onto a Hausdorff space of di-
mension ≥ 2. The Splitting Lemma I can be applied, since X, having prop-
erty (α), is regular in the sense of ramification. By that lemma, there exists
a nowhere dense non-degenerate subcontinuum C of Y such that f−1(C)
splits into disjoint continua C ′ and C ′′ mapped homeomorphically under f
onto C. Both C ′ and C ′′, being non-degenerate, are of dimension 1 every-
where. Hence, the interiors D′ of C ′ and D′′ of C ′′ with respect to X are
dense in C ′ and C ′′, respectively, since X has property (α). Thus f(D′) and
f(D′′) are open and dense subsets of C. Take y ∈ f(D′) ∩ f(D′′). Then
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D′∪D′′ is a neighborhood of f−1(y) in X. Thus, f(D′∪D′′) is a neighbour-
hood of y in Y . But f(D′ ∪ D′′), being contained in C, is nowhere dense
in Y . A contradiction.

4. Elementarily simple maps from regular compacta. In the
sequel the following lemma on twins will be needed.

Lemma. Let f be a simple map between Hausdorff compact spaces. The
elements of maximal twins of f form a disjoint family.

P r o o f. It suffices to show that if {C ′, C ′′} and {D′, D′′} are distinct
pairs of twins of f and {C ′, C ′′} is maximal, then C ′ ∩ D′ = ∅. Suppose
that this is not true and take x ∈ C ′ ∩D′. Let U ′ and U ′′ be open and such
that C ′ ⊂ U ′, C ′′ ⊂ U ′′ and U ′ ∩ U ′′ = ∅. Let E′ be the component of x in
U ′. We have C ′  E′. The inclusion is strict since E′ has, according to the
Janiszewski lemma, a point on the boundary of U ′. Then {E′, E′′}, where
E′′ is the component of f−1(f(E)) intersecting C ′′, is a pair of twins larger
than {C ′, C ′′}, contrary to the maximality of the latter.

A map is called monotone if the counter-images of points are all con-
nected. The property of being regular compact Hausdorff is preserved un-
der monotone (continuous) maps into Hausdorff spaces; see e.g. Whyburn
(1942), p. 138.

A family of subsets of a metric space is called a null family if for every
ε > 0 only finitely many sets in this family have diameters ≤ ε.

Theorem 2. Elementarily simple maps from regular compacta do not
raise dimension.

P r o o f. Let X be a regular compactum and let f be an elementarily
simple map from X onto a Hausdorff space Y ; then, in fact, Y is a com-
pactum.

Let F be the family of elements of all maximal twins of f . By the
lemma, the elements of F are pairwise disjoint. Since X is regular, and thus
hereditarily locally connected, F is a null family. Identify each element of F
to a point. The corresponding quotient map r : X → X∗ is monotone. The
quotient space X∗ is Hausdorff, since the partition into continua which form
a null family is upper semicontinuous. Thus, X∗ is a regular compactum,
since monotone maps preserve regularity.

Identify the images of elements of F to single points. Let s : Y → Y∗
be the corresponding quotient map. The space Y∗ is a compactum, the
identification being upper semicontinuous, as the images of elements of F
form a null family.
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We get the following diagram of commuting maps:

X
r−→ X∗

f ↓ ↓ g

Y −→
s

Y∗

where g is induced—in view of the properties of quotients—by the maps
formerly defined.

The map g is elementarily simple. By construction, it has no pair of
non-degenerate twins.

In particular, g does not have the splitting property. Since X∗ is regular,
from the Splitting Lemma I applied to g it follows that dim Y∗ ≤ dim X∗ ≤ 1.

Arrange the images under f of members of F into a sequence

(5) J1, J2, . . .

Let Yk be obtained from Y by identifying each of the sets Jk, Jk+1, . . .
from (5) to a single point. Then Y∗ = Y1. Let sk : Y → Yk be the corre-
sponding quotient map; we have s1 = s. Consider the inverse system

(6) . . . → Yk+1 → Yk → . . . → Y2 → Y1 = Y∗,

where the bonding maps are induced by the quotient maps described above.
The maps sk : Y → Yk induce a map s∞ from Y into the limit space

Y∞ of (6). The map s∞ is one-to-one, which follows from our description.
Thus, it is a homeomorphism. In consequence, the dimensions of Y and Y∞
are equal.

Recall that dim Y∗ = dim Y1 ≤ 1. Also dim Y2 ≤ 1, since Y2 can
be viewed as a compactification of Y1 with a point replaced by a one-
dimensional remainder homeomorphic to J1; this conclusion on the dimen-
sion of compactification follows easily from the sum theorem in dimension
theory (see e.g. Hurewicz and Wallman (1941), p. 30). For the same reason,
dim Y3 ≤ 1, and hence = 1. Thus, the limit space Y∞, and in consequence
Y , have dimension ≤ 1. A contradiction.

5. The structure of essentially simple maps from dendrites. A
continuum is said to be hereditarily unicoherent if any two of its subcontinua
have a connected intersection.

If f is a simple map then the points of the domain of f will be called
relative (with respect to f) if there exists a pair of twins such that the points
belong to the same element of the pair.

The proof of the following lemma is straightforward and will be omitted.

Lemma 2. Let X be hereditarily unicoherent. Let f be a simple map from
X. The relation of being relative (with respect to f) is an equivalence.
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The equivalence classes of relativeness are semicontinua, i.e. any two
points in an equivalence class can be joined by a continuum. The equivalence
class corresponding to an equivalence class S′ is the equivalence class S′′

which is the union of twins C ′′ from all pairs {C ′, C ′′}, where C ′ is contained
in S′. We have S′ ∩ S′′ = ∅, and f |S′ and f |S′′ are continuous one-to-one
maps onto the same image.

If S′ is closed, and hence a continuum, then S′′ is closed; in this case
{S′, S′′} is a pair of twins (in fact, a maximal pair of twins).

If f is an essentially simple map, the equivalence classes of relativeness
are never closed.

If two classes S′ and S′′ corresponding to each other are not closed, then

(7) S′ ∩ S′′ 6= ∅,
and, by hereditary unicoherence, the intersection (7) is connected; it is not
excluded that one of the closures is contained in the other, as is the case
when X is a hereditarily indecomposable continuum.

Now we add local connectedness to the assumptions on X, i.e. we con-
sider the dendrites, that is, locally connected uniquely arcwise connected
continua.

All properties of dendrites needed here can be found in, or easily deduced
from, the material contained in Kuratowski (1950). Note, for instance, that
dendrites are regular in the sense of ramification.

We leave without proof the following—perhaps less known—property of
dendrites: if M and N are connected and disjoint subsets of a dendrite, then
M ∩N consists of at most one point.

Taking into account (7), we get

Lemma 3. For dendrites the intersections (7) are one-point sets.

Corollary. If a map f from a dendrite into a Hausdorff space is
essentially simple and ab is an arc in the dendrite (the unique arc with ends
a and b) such that f(a) = f(b), then there exists a point c on ab such that
f |ac and f |cb are homeomorphisms onto the same image.

P r o o f. Since f is essentially simple, the classes of relativeness, S′ of
a and S′′ of b, are non-closed semicontinua. Since f(a) = f(b), we easily
deduce that S′ and S′′ correspond to each other, i.e. f |S′ and f |S′′ are one-
to-one continuous maps onto the same image, where S′ and S′′ are disjoint.
By Lemma 3, S′ and S′′ intersect in a single point c. Take an arc joining a
and b in S′ ∪S′′. Then c lies on this arc, which in view of the uniqueness of
arcs in dendrites is the given arc ab. The arcs ac and cb lie, up to the point
c, in S′ and S′′, respectively. They are mapped under f homeomorphically
onto arcs joining f(c) and f(a) = f(b) (recall that f |S′ and f |S′′ are one-to-
one and extend continuously to S′ ∪ {c} and S′′ ∪ {c}). The images of f |ac
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and f |cb coincide, since otherwise the counter-images of f(ac) and f(cb)
would give two distinct arcs joining a and b in the dendrite.

The converse implication is also true, but it will not be used in the sequel.

6. A theorem on dendrites. A value y of a map f : X → Y is said to
be open if y ∈ int(f(V )) for each neighbourhood U of any x in f−1(y). If f
is a continuous map between compacta, the set of open values of f is a dense
Gδ subset of the set of all values. This follows from the Baire theorem.

Single values are always open. A value y of a simple map f (assume that
y = f(a) = f(b)) is open if and only if lim a′ = a, f(a′) = f(b′) , a′ 6= b′,
implies lim b′ = b.

Theorem 3. The image of a dendrite under an essentially simple map
is a dendrite.

P r o o f. Let f be an essentially simple map from a dendrite X onto
a Hausdorff space Y . Let u and v be distinct points of Y . It suffices to
show—in view of the known characterization of dendrites (see Whyburn
(1942), p. 88)—that there exists a point disconnecting Y between u and v.

Let u = f(a) and v = f(b). Let ab be the unique arc in X with ends a
and b. Consider maximal open arcs on ab at whose ends f assumes the same
values. By the Corollary to Lemma 3, the map f folds any such arc around
an inner point. Thus, any two such maximal arcs, including their ends, are
disjoint. Remove these maximal open arcs from ab. We get a compactum
K such that f assumes the same values only at those pairs of points of K
which are the ends of a removed open arc.

The ends of ab are not removed, and we conclude from the construction
that f(K) is an arc with ends f(a) and f(b).

According to the aforementioned consequence of the Baire theorem, the
points of f(K) which are open values of both f |K and f |f−1(f(K)) form a
dense Gδ subset of f(K). Since the set of branch points of a dendrite is at
most countable (Kuratowski (1950), p. 227; Whyburn (1942), p. 60), choose
p ∈ f(K) distinct from f(a) and f(b) in such a way that p is an open value
for f |K and f |f−1(f(K)) and all points of f−1(p) are of order ≤ 2 on X in
the sense of ramification.

We shall show that p is the desired point, i.e.

(∗) p disconnects Y between f(a) and f(b).

We consider two cases.

C a s e 1: f−1(p) is a one-point set, say f−1(p) = {c}. Since c is an inner
point of the arc ab, the order of X at c is 2. Thus, X−{c} = M ∪N , where
M and N are continua and M ∩N = {c}. Since a and b lie in the different
sets M and N , f(a) and f(b) lie in the different sets f(M) and f(N).



182 W. DȨBSKI AND J. MIODUSZEWSKI

It remains to show that f(M) ∩ f(N) = {p}.
Suppose that there is one more point in this intersection. This means

that there exist x ∈ M and y ∈ N such that f(x) = f(y) (then x 6= a and
y 6= b). Then c is an inner point of the arc xy (recall that M ∩ N = {c}).
Since c is a single value of f , it is precisely the point of xy around which
the arc xy is folded in view of the Corollary to Lemma 3. Since the order of
X at c is 2, the arcs ab and xy coincide in a neighbourhood of c. Thus, f
assumes the same value at the ends of an arc around c lying on ab. But such
arcs were removed from ab in order to get K. A contradiction, as c ∈ K.

C a s e 2: f−1(p) = {c, d} and c 6= d. Either c or d lies in K, say c ∈ K.
Then d 6∈ K, since p is an open value of f |K and, as is easy to see, open
values of f |K are single values of f |K.

Since p is an open value of f |f−1(f(K)), there is a subarc of f(K),
containing p as an inner point, whose counter-image splits into two arcs in
X, one passing through c and the other through d. Since d 6∈ K, we can
assume that the arc passing through d is disjoint from K. In consequence,
the arc passing through c is contained in K. From the existence of these arcs
it follows that c and d are of order 2 in X (recall that they are of order ≤ 2,
as they belong to f−1(p)). Thus, the dendrite is the union of three continua
M , N ′ and N ′′ such that N ′ ∩M = {c}, M ∩N ′′ = {d} and N ′ ∩N ′′ = ∅.

We shall show that

(8) f(M) ∩ f(N ′) = {p} and f(M) ∩ f(N ′′) = {p}.
By symmetry, it suffices to show one of these equalities. We shall show

the first.
Suppose to the contrary that there is one more point, besides p, in f(M)∩

f(N ′). This means the existence of x ∈ M and y ∈ N ′, different from c and
d and such that f(x) = f(y). From M ∩N ′−{c} it follows that c is an inner
point of the arc xy. Since M ∪N ′ is connected, xy is contained in M ∪N ′.
But xy cannot touch the point d in M (d cannot be the end x of xy, since
this would imply f(x) = f(c) and, in consequence, y = c; it cannot be an
inner point of xy, since d is of order 2 in X and therefore an arc passing
through d must have points outside M). Thus, f |xy assumes the value p
only at c.

From f(x) = f(y) it follows, in view of the Corollary to Lemma 3, that
f folds the arc xy around c. Since the order of X at c is 2, the arcs xy and
cd coincide in a neighbourhood of c. From f(c) = f(d) it follows that, in
view of the Corollary mentioned above, f folds the arc cd around an inner
point of cd. As xy and cd coincide in a neighbourhood of c, there are three
points, two in a neighbourhood of c and the third in a neighbourhood of d,
such that the values of f at them are the same. We get a contradiction,
since f is simple. This concludes the proof of (8).
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From (8) it follows that f(M) ∩ f(N ′ ∪N ′′) = {p}.
Clearly, f(M) ∪ f(N ′ ∪ N ′′) = Y . So, in order to prove (∗), it suffices

to show that neither term of the union reduces to {p}. The latter will be
proved if we show that a and b belong to the different sets M and N ′ ∪N ′′.

To this end, observe that since c ∈ K ⊂ ab, the point c is an inner point
of ab. Thus, a and b lie in the different sets M and N ′ ∪ N ′′, since c is of
order 2 in X.

Corollary (Sieklucki). There are no dimension-raising simple maps
from dendrites; in other words, dendrites are thin.

P r o o f. Let f be a simple map from a dendrite X onto a Hausdorff
space Y . Let f = h ◦ g be the decomposition of f into an essential factor
g and an elementary factor h. By Theorem 3, the image g(X) is a den-
drite. Dendrites are regular, so we can apply Theorem 2 to the elementary
(surjective) factor h : g(X) → Y . It follows that dim Y ≤ dim X.

7. Splitting lemma in a general setting. A general background for
the splitting property of simple maps is contained in a result of Hurewicz
(1933) (derived from a more general theorem of Freudenthal (1932)), stating
that the set of multiple values of a dimension-raising map from a compactum
onto a compactum Y has dimension ≥ dim Y − 1.

We shall derive from that result of Hurewicz the following

Splitting Lemma II. If f : X → Y is a dimension-raising simple map
from a compactum onto a compactum, then Y contains a continuum C with
dim C = dim X such that f−1(C) = C ′ ∪ C ′′, where C ′ and C ′′ are disjoint
and f |C ′ and f |C ′′ are homeomorphisms onto C.

P r o o f. Since a compactum contains a connected component of full
dimension (X is finite-dimensional), it suffices to show the existence of a
compactum satisfying the conclusions.

For any positive integer k, let Fk be the set of those y in Y for which
diam f−1(y) ≥ 1/k. The sets Fk are closed, thus compact, and their union
is the set of all multiple values of f . By the theorem of Hurewicz quoted
above, this set has dimension ≥ dim Y − 1, hence one of the summands has
the same property.

So, fix a compact subset B of Y and η > 0 such that dim B ≥ dim Y −1
and diam f−1(y) ≥ η for y ∈ B.

Let y ∈ B and let f−1(y) = {a, b} (recall that f is simple). Take
neighbourhoods Ua of a and Ub of b of diameters < η/2, and therefore
disjoint. Let Vy be an open neighbourhood of y in B such that f−1(Vy) ⊂
Ua ∪ Ub; its existence follows from the continuity and compactness.
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If L is a compact subset of Vy, then f−1(L) splits into two compacta
L′ = Ua ∩ f−1(L) and L′′ = Ub ∩ f−1(L), since f |f−1(B) is strictly two-to-
one. It follows that f |L′ and f |L′′ are homeomorphisms onto L.

The sets Vy, y ∈ B, form an open cover of B. Let δ > 0 be a Lebesgue
number of that cover. Decompose B into a finite number of compacta of
diameters ≤ δ. One of the summands, say C, is of full dimension, hence of
dimension ≥ dim Y − 1. Since diam C ≤ δ, the compactum C is contained
in one of the sets Vy. Thus, f−1(C) splits into compacta C ′ and C ′′ such
that f |C ′ and f |C ′′ are homeomorphisms onto C (in view of the previous
paragraph). Since dim X ≤ dim Y , we have dim C ≥ dim X (in fact we have
equality, as X contains homeomorphic copies of C).

Corollary (Hurewicz 1933; cf. Kazhdan 1949, Sieklucki 1969). There
do not exist dimension-raising simple maps from compacta having property
(α).

We omit the proof as it is essentially the same as the proof of an analo-
gous Corollary to the Splitting Lemma I given in Section 3.

From the Splitting Lemma II it follows that if there exists a dimension-
raising simple map from a compactum, then this compactum contains two
disjoint homeomorphic non-degenerate subcontinua (of full dimension).

This implies, for instance, that there do not exist dimension-raising
simple maps from the Anderson–Choquet curve (1959), since no two of its
non-degenerate subcontinua are homeomorphic; in other words, the
Anderson–Choquet curve is thin. Note that this curve is far from being
regular in the sense of ramification. For the same reasons the chainable
continuum constructed by Andrews (1961) is thin.

Among one-dimensional continua which are not thin, an obvious exam-
ple is the Sierpiński universal curve; that it is not thin follows from its
universality, since thinness is inherited by subcompacta of full dimension,
and there are an abundance of one-dimensional continua which are not thin.
For instance, the Knaster simplest indecomposable (chainable) continuum
is not thin, allowing simple maps onto the plane square, e.g. that suggested
by its standard position in the plane.

Less obvious is the pseudo-arc, the unique chainable hereditarily inde-
composable continuum; the authors are indebted to Dr. Janusz Prajs for this
example. The reason for its not being thin is that the product of the pseudo-
arc and the Cantor set can be embedded into the pseudo-arc. This product
can be mapped, via the Cantor step function from the Cantor set onto a
closed interval of the reals, onto the product of the pseudo-arc and the inter-
val by means of a map which is simple. The image obviously has dimension 2
(everywhere). It is non-planable. The question of the existence of a dimen-
sion-raising simple map from the pseudo-arc into the plane remains open.
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The authors are indebted to the referee for his constructive criticism.
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