COLLOQUIUM MATHEMATICUM

VOL. LXIII

A CHARACTERIZATION OF COMPLETELY BOUNDED MULTIPLIERS OF FOURIER ALGEBRAS

BY

PAUL JOLISSAINT (NEUCHÂTEL)

1. Introduction. Given a locally compact group G, we denote by λ the left regular representation of G, by $C_r^*(G)$ the reduced C^* -algebra of G and by $W^*(G)$ its weak closure in $B(L^2(G))$. The Fourier algebra of G is the space of coefficients of λ and it is the predual of $W^*(G)$. A function φ on G is a multiplier of A(G) if $\varphi \psi$ belongs to A(G) for every ψ in A(G). We denote by MA(G) the space of multipliers of A(G). Every φ in MA(G) defines an operator m_{φ} on $M^*(G)$ such that $M_{\varphi}\lambda(s) = \varphi(s)\lambda(s)$ for $s \in W^*(G)$ (cf. [dCH], Prop. 1.2). One says that $\varphi \in MA(G)$ is a completely bounded multiplier of A(G) if M_{φ} is completely bounded on $W^*(G)$ (or equivalently on $C_r^*(G)$), which means that $||M_{\varphi}||_{cb} = \sup_{n\geq 1} ||M_{\varphi} \otimes i_n||$ is finite, where i_n denotes the identity map on $M_n(C)$. The corresponding subspace of MA(G) is denoted by $M_0A(G)$, and it is a Banach algebra with the norm

$||\varphi||_{M_0A} = ||M_{\varphi}||_{\rm cb} \,.$

It constitutes a remarkable class for the study of harmonic analysis on G: see for instance [dCH] and [CH]. Moreover, the authors of [BF] proved that $M_0A(G)$ coincides with the space $B_2(G)$ of Herz–Schur multipliers of G. To do that, they used a characterization of these multipliers due to J. E. Gilbert [Gi], but the latter was never published. The aim of this note is to present a short proof of the following theorem, where condition (2) is a well-known and useful variant of Gilbert's theorem (cf. [CH], p. 508):

THEOREM. Let G be as above and let φ be a function on G. Then the following conditions are equivalent:

(1) φ belongs to $M_0A(G)$;

¹⁹⁹¹ Mathematics Subject Classification: Primary 43A22; Secondary 46L05. Key words and phrases: multiplier, Fourier algebra, C^* -algebra, representation. Partially supported by the Swiss NSF request nb 21-26162.89.

(2) there exist a Hilbert space K and bounded continuous functions ξ , η from G to K such that $\varphi(t^{-1}s) = \langle \xi(s), \eta(t) \rangle$ for all s, t in G.

Moreover, if these conditions are satisfied, then $||\varphi||_{M_0A} = \inf ||\xi||_{\infty} ||\eta||_{\infty}$ where the infimum is taken over all pairs as in condition (2).

2. Proof of the theorem. The proof of $(1) \Rightarrow (2)$ rests on a representation theorem for completely bounded maps on unital C^* -algebras ([Pau], Theorem 7.4): If φ is an element of $M_0A(G)$, then there exist a Hilbert space K, a nondegenerate *-representation π : $C^*_{\rm r}(G) \to B(K)$ and two bounded operators v_1 , v_2 from $L^2(G)$ to K such that $M_{\varphi}(a) = v_2^*\pi(a)v_1$ for a in $C^*_{\rm r}(G)$ and

$$|\varphi||_{M_0A} = ||v_1|| \, ||v_2|| \, .$$

By [DC^{*}], 13.3, the nondegenerate *-representation $\sigma = \pi \circ \lambda$ of $L^1(G)$ is associated with a unique continuous unitary representation of G, still denoted by σ . Then we claim that we have, for every $s \in G$,

(*)
$$M_{\varphi}(\lambda(s)) = \varphi(s)\lambda(s) = v_2^*\sigma(s)v_1.$$

In fact, if $s \in G$ is fixed, let W_s be the set of compact neighbourhoods of s, ordered by reverse inclusion. For $V \in W_s$, choose a positive continuous function f_V supported in V such that $\int f_V = 1$. Then again by [DC^{*}], 13.3, $\lambda(f_V)$ converges σ -strongly to $\lambda(s)$ in $W^*(G)$ and $\sigma(f_V)$ converges σ -strongly to $\sigma(s)$ in B(K). As $M_{\varphi}(\lambda(f_V)) = v_2^* \sigma(f_V) v_1$ for every V, we get (*) by σ -weak continuity of M_{φ} .

Finally, take some unit vector $\xi_0 \in L^2(G)$ and set

 $\xi(s) = \sigma(s)v_1\lambda(s^{-1})\xi_0 \quad \text{and} \quad \eta(s) = \sigma(s)v_2\lambda(s^{-1})\xi_0 \quad \text{ for } s \in G.$

Then ξ and η are bounded and continuous, and we have, for s, t in G,

$$\begin{aligned} \langle \xi(s), \eta(t) \rangle &= \langle v_2^* \sigma(t^{-1}s) v_1 \lambda(s^{-1}) \xi_0, \lambda(t^{-1}) \xi_0 \rangle \\ &= \varphi(t^{-1}s) \langle \lambda(t^{-1}s) \lambda(s^{-1}) \xi_0, \lambda(t^{-1}) \xi_0 \rangle = \varphi(t^{-1}s) \,. \end{aligned}$$

Moreover, $||\xi||_{\infty} ||\eta||_{\infty} \le ||v_1|| ||v_2|| = ||\varphi||_{M_0A}$.

The proof of $(2) \Rightarrow (1)$ is straightforward, so we only sketch it: If φ satisfies condition (2), by Theorem 1.6 of [dCH], it is enough to check that φ belongs to MA(G). If $\psi = \langle \lambda(\cdot)f, g \rangle$ is in A(G) (with f, g in $L^2(G)$), and if $||\psi||_A = ||f|| ||g||$, then choose an orthonormal basis (ε_i) of K and set $\xi_i(s) = \langle \xi(s^{-1}), \varepsilon_i \rangle f(s)$ and $\eta_i(s) = \langle \eta(s^{-1}), \varepsilon_i \rangle g(s)$. Then $\varphi \psi(s) = \sum_i \langle \lambda(s)\xi_i, \eta_i \rangle$ and it is easy to see that

$$||\varphi\psi||_A \le ||\xi||_{\infty} ||\eta||_{\infty} ||\psi||_A.$$

REFERENCES

- [BF] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. (6) 3-A (1984), 297-302.
- [dCH] J. de Cannière and U. Haagerup, Multipliers of the Fourier algebra of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1984), 455-500.
- [CH] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507–549.
 [DC*] J. Dixmier, C*-Algebras, North-Holland, Amsterdam 1982.
- [Gi] J. E. Gilbert, L^p -convolution operators and tensor products of Banach spaces I, II, III, preprints.
- [Pau] V. I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific &Technical, Harlow 1986.

INSTITUT DE MATHÉMATIQUES UNIVERSITÉ DE NEUCHÂTEL CHANTEMERLE 20 2000 NEUCHÂTEL, SWITZERLAND

Reçu par la Rédaction le 30.9.1991