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1. Introduction. Given a locally compact group G, we denote by A
the left regular representation of G, by C(G) the reduced C*-algebra of G
and by W*(G) its weak closure in B(L?(G)). The Fourier algebra of G
is the space of coefficients of A and it is the predual of W*(G). A func-
tion ¢ on G is a multiplier of A(G) if p1y belongs to A(G) for every @
in A(G). We denote by M A(G) the space of multipliers of A(G). Every ¢
in M A(G) defines an operator m,, on A(G) whose transpose gives rise to a
o-weakly continuous operator M, on W*(G) such that M A(s) = ¢(s)A(s)
for s € W*(G) (cf. [dCH], Prop. 1.2). One says that ¢ € M A(G) is a com-
pletely bounded multiplier of A(G) if M, is completely bounded on W*(G)
(or equivalently on C}(G)), which means that ||M||ch, = sup,,>; || M, @iy
is finite, where i,, denotes the identity map on M, (C'). The corresponding
subspace of M A(G) is denoted by MyA(G), and it is a Banach algebra with
the norm

lollarga = [IMop|leh -

It constitutes a remarkable class for the study of harmonic analysis on G:
see for instance [dCH] and [CH]. Moreover, the authors of [BF| proved
that MoA(G) coincides with the space B2(G) of Herz—Schur multipliers
of G. To do that, they used a characterization of these multipliers due to
J. E. Gilbert [Gi], but the latter was never published. The aim of this note
is to present a short proof of the following theorem, where condition (2) is
a well-known and useful variant of Gilbert’s theorem (cf. [CH], p. 508):

THEOREM. Let G be as above and let ¢ be a function on G. Then the
following conditions are equivalent:

(1) ¢ belongs to MyA(G);
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(2) there exist a Hilbert space K and bounded continuous functions &, n

from G to K such that o(t~'s) = (£(s),n(t)) for all s, t in G.

Moreover, if these conditions are satisfied, then ||| a4 = inf |[€]|ool|n]] oo
where the infimum is taken over all pairs as in condition (2).

2. Proof of the theorem. The proof of (1) = (2) rests on a represen-
tation theorem for completely bounded maps on unital C*-algebras ([Paul],
Theorem 7.4): If ¢ is an element of MyA(G), then there exist a Hilbert
space K, a nondegenerate *-representation m: C;(G) — B(K) and two
bounded operators vy, ve from L?(G) to K such that M, (a) = vim(a)v, for
a in C}(G) and

llpllaroa = [fon][ l|va]] -

By [DC*], 13.3, the nondegenerate *-representation ¢ = 7o X of L'(G)
is associated with a unique continuous unitary representation of G, still
denoted by o. Then we claim that we have, for every s € G,

(%) My(A(s)) = p(8)A(s) = vzo(s)vr -

In fact, if s € G is fixed, let W, be the set of compact neighbourhoods
of s, ordered by reverse inclusion. For V' € Wy, choose a positive continuous
function fy supported in V such that [ fiy = 1. Then again by [DC*],
13.3, A(fy) converges o-strongly to A(s) in W*(G) and o(fy) converges
o-strongly to o(s) in B(K). As My, (X(fv)) = vso(fy)v1 for every V, we
get (%) by o-weak continuity of M.,,.

Finally, take some unit vector £, € L?(G) and set

£(s) = a(s)viA(s™H)E and n(s) = o(s)veA(s™ )¢  for s € G.
Then £ and 7 are bounded and continuous, and we have, for s, t in G,

(€(),n(t)) = (w30t s)vrA(s™")€0, A(E")E0)
Pt s) AT A5, AET o) = p(t71s).

Moreover, [[¢][ool[nllco < [[o]] ||va|] = ll¢l|ar,a-

The proof of (2)=-(1) is straightforward, so we only sketch it: If ¢
satisfies condition (2), by Theorem 1.6 of [dCH], it is enough to check
that ¢ belongs to MA(G). If v = (A()f,g9) is in A(G) (with f, g in
L?(@)), and if |[¥||a = ||f|||lg]], then choose an orthonormal basis (g;)
of K and set &(s) = (€(s1),e0)f(5) and mi(s) = {(n(s~),:)g(s). Then
op(s) = >, (A(s)&,m;) and it is easy to see that

edhlla < [[€llsclnllocl21] -
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