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SOME PROBLEMS IN MEASURE THEORY
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0. Introduction. In his 1946 paper [33], classical by now, E. Szpilrajn
(E. Marczewski) presented a review of some open problems and questions
in measure theory. The problems considered there were rather important
for further development of the theory. Later attempts by various authors
led to affirmative or negative solutions of many of those problems. As a
rule, the solution of one or another of those questions was connected with
the appearance of new methods and was accompanied by rapid progress
in measure theory. The material contained in [33] was quite large, despite
its fairly small volume. The following topics were included: measure ex-
tensions; uniqueness of invariant measures; relations with measurable and
non-measurable cardinals; Hausdorff measures; existence of separable sup-
ports of Borel measures in metrizable spaces; properties of subsets of the real
line that are small in the Borel sense, and others. All those problems were of
general nature and came out of the “inner” development of measure theory.
We remark that several applications of measure theory in such branches of
mathematics as functional analysis, probability theory, integration theory
and so on, were just touched upon in Marczewski’s paper.

Over forty years have elapsed since that time, and the situation in mea-
sure theory has considerably changed: the scope of problems has contin-
uously expanded and the interest of the theory itself has been changing
one way or another. Nevertheless, it must be emphasized that general as-
pects of the theory still play an important part and still constitute its core.
As before, the development of measure theory is stimulated by systematic
employment of purely set-theoretic methods and exposition of links with
related fields of mathematics. Among those fields worth mentioning are
combinatorial theory of infinite sets (including the theory of measurable
and non-measurable cardinals), descriptive set theory with its methods (it
suffices to recall a collection of theorems about measurable selectors and the
well-known Choquet capacity theorem), general topology (recall in partic-
ular the important role of the Montgomery operation in the study of Borel
measures in metric spaces), general theory of convex sets (recall especially
the classical Hahn–Banach extension theorem, proved with the help of the
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Axiom of Choice and having numerous applications in integration theory)
and others. Undoubtedly, those fields will have a strong influence on the
development of measure theory.

The present paper contains a small review of some problems in mea-
sure theory, in our opinion having certain interest and possibly admitting
non-trivial applications to different fields. In choosing our material we were
motivated in the first place by the desire to survey, like in [33], those prob-
lems which are sufficiently simple in formulation on the one hand and touch
important points of the theory on the other. We are mainly concerned with
certain aspects of such topics as: non-measurable sets in metric spaces,
quasi-invariant and invariant measures in infinite-dimensional topological
vector spaces, properties of Borel measures in various topological spaces,
properties of cylindrical and Borel σ-algebras, classes of families of prob-
ability measures. We need not add that the choice of problems presented
here was inspired by the author’s interests and preferences.

To begin with, let us recall certain simple definitions and notions that
we shall use in the sequel.

By a measure space we mean a triple (E,S, µ) where E is a set, S some
σ-algebra of subsets of E and µ a measure defined on S. A measure µ is said
to be non-zero (non-degenerate, non-trivial) if it is not identically equal to
zero. A measure µ is called σ-finite if E can be covered by a countable family
of µ-measurable sets each of which has a finite µ measure. Furthermore, µ
is called diffuse if the measure of every one-element subset of E is zero.

Suppose that E is equipped with some topology and that S coincides
with the σ-algebra of all Borel sets relative to that topology. In this case
the measure µ is called a Borel measure on E. A Borel measure µ is said to
be Radon if it is defined on a Hausdorff space E and

µ(X) = sup{µ(K) : K ⊆ X & K is compact}

for each Borel subset X ⊆ E.
A topological space E is called Polish if E is homeomorphic to a complete

separable metric space. It is well known that any two uncountable Polish
spaces are Borel isomorphic. In other words, such spaces are identical from
the point of view of Borel structure.

Let g be a mapping. By dom g we denote the domain of g. We say that
g is a functional if dom g is a family of functions.

The symbol ω stands, as usual, for the cardinality of the set of positive
integers; c denotes the cardinality continuum. Let α be any infinite cardinal
number. It is called measurable in the wide sense if a non-degenerate σ-
finite diffuse measure can be defined on the σ-algebra of all subsets of α,
and measurable in the narrow sense if there exists a diffuse measure with
range {0, 1}, defined on the σ-algebra of all subsets of α.



PROBLEMS IN MEASURE THEORY 199

Let E be a basic set and let τ be a topology on E. Recall that the least
cardinality of a basis for τ is called the weight of E.

Let (E,S, µ) be a measure space. The inner and the outer measure
associated with µ are denoted by µ∗ and µ∗ respectively. A set X ⊆ E is
called µ-massive in E if µ∗(E \X) = 0.

1. Non-measurable subsets of metric spaces and generalized
integrals. Let (E, %) be a metric space, B(E) its Borel σ-algebra and µ a
σ-finite (in particular, probability) measure on B(E). Under certain restric-
tions imposed on the topological weight of E one can show the existence in E
of a closed separable support for µ. More precisely, the following well-known
result holds.

Theorem 1.1. Suppose that the topological weight of the space (E, %) is
not measurable in the wide sense. Then for every σ-finite Borel measure
µ in E there exists a closed separable set F (µ) ⊆ E with the property that
µ(E \ F (µ)) = 0. (Thus µ is concentrated on F (µ) or, in other words, F (µ)
is the separable support of µ.)

A proof of this theorem can be found, for example, in [2] or [20]. An
easy corollary to Theorem 1.1 is

Theorem 1.2. Let (E, %) be a complete metric space whose topological
weight is not measurable in the wide sense. Then every σ-finite Borel mea-
sure µ on E is concentrated on some σ-compact set F (µ) ⊆ E.

Theorem 1.2 follows from Theorem 1.1 and the fact that in a complete
separable metric space every σ-finite Borel measure is Radon.

Theorem 1.1 represents itself a fairly general abstract result about σ-
finite Borel measures in metric spaces. However, it can also be successfully
applied to quite special cases. For one of such applications to Gaussian
measures in Rω (the space of all real sequences), see [5]. Here we are going
to consider its application to some questions concerning non-measurability
of various sets in complete metric spaces of cardinality continuum.

Recall that a subset X of a Hausdorff topological space E is called uni-
versally measurable (with respect to the class of all σ-finite Borel measures
on E) if, for every σ-finite Borel measure µ on E, we have X ∈ domµ where
µ denotes the standard completion of µ. The following example describes a
quite large class of universally measurable sets.

Example 1.1. Let (E, %) be a complete separable metric space and X
an analytic (Suslin) subset of E. Then both X and E \ X are universally
measurable in E. This follows directly from the known Choquet capacity
theorem (see [25], [7] or [3], Chap. 9, for the proof). Suppose now that Y ⊆ E
is the image of E \ X under a continuous mapping. The problem of the
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universal measurability of Y is unsolvable within the standard axiomatics
of set theory. Indeed, this can be obtained immediately from the following
assertions.

1) Gödel’s constructivity axiom (see, e.g., [30] and [1]) implies the exis-
tence of an analytic subset X of the real line R and a continuous mapping
f : R\X → R such that f(R\X) is not Lebesgue measurable. In particular,
the set f(R \X) is not universally measurable in R.

2) Under the assumption of Martin’s axiom along with the negation of
the Continuum Hypothesis, if Y ⊆ E is the image of E \X via a continuous
mapping then Y is universally measurable in (E, %).

Let E be a Hausdorff topological space and let X be a subset of E. We
say that X is absolutely non-measurable (relative to the class of all non-
degenerate σ-finite diffuse Borel measures in E) if X 6∈ domµ for every
non-degenerate σ-finite diffuse Borel measure µ on E (as before, µ stands
for the completion of µ).

Thus we can see that, in a Hausdorff topological space, universally mea-
surable sets and absolutely non-measurable sets are antipodal in nature.

For any complete separable metric space (E, %) of cardinality continuum,
the problem of existence, in E, of an absolutely non-measurable subset is
solved in the affirmative via a classical construction due to F. Bernstein [24],
which we recall here. First, recall the following general lemma in set theory.

Lemma 1.1. Let E be an infinite set and let (Xi)i∈I be a family of subsets
of E such that card(I) ≤ card(E) and (∀i ∈ I) (card(Xi) = card(E)). Then
there exists a set X ⊆ E with

(∀i ∈ I) (card(X ∩Xi) = card((E \X) ∩Xi) = card(E)).

The proof of this lemma can be carried out by transfinite induction
(which gives the construction of the required set X). As a direct application
of Lemma 1.1 we get the following classical result due to Bernstein.

Theorem 1.3. Let (E, %) be an uncountable complete separable metric
space. There is a subset X of E such that both X and E\X intersect every
non-empty perfect subset of E; consequently , card(X) = card(E \X) = c.

The set X in Theorem 1.3 is usually called a Bernstein set. It is not
difficult to show that every such set is absolutely non-measurable in E.
Indeed, let µ be an arbitrary non-degenerate σ-finite diffuse Borel measure
in E. Suppose that X is measurable with respect to the completion µ of µ.
Then obviously we have

µ(X) + µ(E \X) = µ(E) > 0,

so at least one of the numbers µ(X) and µ(E\X) is strictly positive. Without
loss of generality we can assume that µ(X) > 0. Since µ is a Radon measure,
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there is a compact set K ⊆ X for which µ(K) > 0. In particular, K is
uncountable, and it is clear that K contains a non-empty perfect subset of
E, which contradicts the fact that X is a Bernstein set in E. This concludes
the proof of the absolute non-measurability of X.

From the above discussion it follows that in any complete separable met-
ric space of cardinality continuum there exist absolutely non-measurable
subsets. A natural question arises: how essential is the assumption that the
space is separable? To answer this question we need the following simple
lemma from the theory of metric spaces.

Lemma 1.2. Let (E, %) be an arbitrary non-empty complete metric space
without isolated points. Then there is a subset of E which is homeomorphic
to the Cantor set 2ω (in particular , this subset is an uncountable complete
separable subspace of E).

For a proof of Lemma 1.2 see, e.g., [24].
Let now (E, %) be a complete metric space of cardinality continuum. By

(Xi)i∈I we denote the injective family of all uncountable closed separable
subsets of E. It is easy to see that card(I) ≤ c and (∀i ∈ I)(card(Xi) = c).
Note that the set I of indices can be empty. Further, using Lemma 1.1 we
get a set X ⊆ E such that

(∀i ∈ I)(card(X ∩Xi) = card((E \X) ∩Xi) = c).

Moreover, in view of Lemma 1.2 we see that both X and E\X intersect any
non-empty perfect subset of E. In other words, the following generalization
of Theorem 1.3 is true.

Theorem 1.4. If (E, %) is a complete metric space of cardinality contin-
uum then there is a subset X of E such that both X and E \ X intersect
every non-empty perfect subset of E and card(X) = card(E \X) = c.

It is interesting to note that, unlike the Bernstein set in Theorem 1.3,
the set X in Theorem 1.4 is not necessarily absolutely non-measurable in
E. This follows directly from the following result.

Theorem 1.5. The following conditions are equivalent :

1) c is not measurable in the wide sense;
2) any complete metric space (E, %) of cardinality c contains an abso-

lutely non-measurable subset.

For the proof of Theorem 1.5 it suffices to make use of Theorem 1.1
together with the reasoning used to establish the absolute non-measurability
of every Bernstein set in an uncountable complete separable metric space.
We add here that if (E, %) is an arbitrary complete metric space of cardinality
c whose weight is not measurable in the wide sense, then there exists an
absolutely non-measurable subset of E.
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Example 1.2. Let ω1 denote the first uncountable cardinal. Consider
the Hilbert space l2(ω1) with orthonormal base of cardinality ω1. Clearly
card(l2(ω1)) = c and the topological weight of l2(ω1) equals ω1. By a classi-
cal theorem of Ulam (cf. [26]), the cardinal ω1 is non-measurable in the wide
sense. Hence l2(ω1) contains absolutely non-measurable subsets. A similar
argument works for any Hilbert space l2(ωα) where ωα is an infinite cardinal
not greater than c and less than the first weakly inaccessible cardinal.

Example 1.3. Let R be the real line with the Euclidean topology τ . We
define another topology τ∗ on R, putting

τ∗ = {Z : (∃U) (∃Y ) (U ∈ τ & Y ⊆ R & card(Y ) ≤ ω & Z = U \ Y )}.

It is easy to see that

1) τ∗ is a topology on R, strictly stronger that τ ;
2) (R, τ∗) is non-separable and non-metrizable;
3) the topological weight of (R, τ∗) is c;
4) the Borel structures of (R, τ∗) and (R, τ) coincide;
5) there exist absolutely non-measurable sets in (R, τ∗).

Thus we see that in some quite simple cases restrictions on topological
weight are not necessary for the existence of an absolutely non-measurable
subset in a Hausdorff topological space, since the topological weight of
(R, τ∗) can be either measurable in the wide sense or not. In this context
the following open problem is of considerable interest.

Problem 1.1. Find a topological characterization of Hausdorff topolog-
ical spaces containing absolutely non-measurable subsets.

The problem above seems interesting even in special cases. For instance,
if l∞ is the non-separable Banach space of all bounded real sequences then
the following two statements are equivalent:

1) l∞ contains an absolutely non-measurable subset;
2) c is not measurable in the wide sense.

Now, let (E, %) be an arbitrary separable metric space and let µ be an
arbitrary σ-finite diffuse Borel measure in E. Suppose that for a subset
Z ⊆ E we have µ∗(Z) > 0. Then obviously Z is uncountable. It is natural
to pose the following question.

Problem 1.2. Is it possible to decompose Z into a collection of subsets
Zi (i ∈ I) so that card(I) > ω and (∀i ∈ I) (µ∗(Zi) > 0)?

Without additional set-theoretic assumptions the solution of this prob-
lem is not known. Note the following result related to Problem 1.2.
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Theorem 1.6. If Martin’s Axiom holds then for the set Z above there
exists a partition (Zi)i∈I such that card(I) = c and (∀i ∈ I) (µ∗(Zi) =
µ∗(Z) > 0).

Example 1.4. Suppose that c is measurable in the wide sense, and
consider the real line R with the ordinary Lebesgue measure λ. Then, by a
well known result due to K. Kunen, there exists Z ⊆ R such that card(Z) < c
and λ∗(Z) > 0. In particular, Z is not Lebesgue measurable, and it is
clear that Z cannot be represented as the union of a family (Zi)i∈I where
card(I) = c and (∀i ∈ I) (λ∗(Zi) > 0).

Now we will consider generalized integrals, in particular some of their
properties connected with non-measurability of sets.

Let (E,S, µ) be a measure space. For simplicity we assume that µ is
a probability measure and that µ is non-atomic and separable (i.e. µ is
metrically isomorphic to the Lebesgue measure λ on the unit interval [0, 1]).
Let H be a non-zero separable Banach space with its Borel structure denoted
by B(H). We denote by Φ(E,H) the vector space of all measurable mappings
from E into H, factorized according to the usual equivalence relation. Then
it is well known that the metric

%(φ, ψ) =
∫
E

|φ− ψ|
1 + |φ− ψ|

dµ (φ, ψ ∈ Φ(E,H))

gives the topology of convergence in measure in Φ(E,H). In this way
Φ(E,H) is a Polish topological vector space.

By a generalized integral in Φ(E,H) we mean any functional g : L → H
such that

1) L is a vector subspace of Φ(E,H) containing all measurable step
functions from E into H;

2) g is linear (or at least additive);
3) for every µ-measurable set Y ⊆ E and every h ∈ H, g(χY · h) =

µ(Y ) · h, where χY is the characteristic function (the indicator) of Y .

We require as little as possible in the definition of generalized integral,
and this notion fully fits in with various different definitions of integrals
(for instance, the most often used definition of Bochner integral). Now we
formulate a result concerning the properties of generalized integrals.

Theorem 1.7. Let T1 be the theory given in (ZF) & (axiom of dependent
choice) & (every subset of the real line has the Baire property). Then in T1

every generalized integral has the domain of the first category in Φ(E,H).

A proof of the theorem above can be found in [20] (only the case H = R
is considered there, yet the proof carries over to any separable non-zero
Banach space H).
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It is useful to compare Theorem 1.7 with the next result, essentially due
to A. N. Kolmogorov (see [23]).

Theorem 1.8. Let (E,S, µ) be the unit interval with Lebesgue measure
and let H be the real line. Let T2 be the theory given by (ZF) & (axiom of
dependent choice) & (every subset of the real line is Lebesgue measurable).
Then in T2 the domain of each generalized integral is a proper subspace of
Φ(E,H).

For several reasons the result in Theorem 1.7 is preferable to that in The-
orem 1.8. First, Theorem 1.7 provides insight into the topological structure
of the domain of an arbitrary generalized integral (and, what is more, taking
values in an arbitrary separable non-zero Banach space H). Furthermore, in
providing the relative consistency of each of the theories T1 and T2 different
techniques are employed. Namely, to establish the relative consistency of T1

it suffices to have the consistency of ZF only (or, which is equivalent, the
consistency of ZFC). On the other hand, to get the relative consistency of
T2 it is necessary to require that a stronger theory (ZFC) & (there exists an
uncountable strongly inaccessible cardinal number) be consistent.

A more detailed discussion of the above fact can be found in a paper of
S. Shelah [29], where it is shown that great cardinal numbers are necessary
to justify the relative consistency of T2.

Going back to Theorem 1.7, we can see that the domain of any effec-
tively defined generalized integral can only be a set of the first category in
the topological vector space Φ(E,H). In particular, we find that if g is an ef-
fectively defined generalized integral then dom g 6= Φ(E,H) (by “effectively”
we mean that the Axiom of Choice is not made use of).

The following problem is naturally related to the remarks above.

Problem 1.3. Can we prove any analogue of Theorem 1.7 in terms
of measure theory? In other words, does there exist, in Φ(E,H), a non-
degenerate σ-finite diffuse Borel measure µ such that µ∗(dom g) = 0 for any
effectively defined generalized integral g?

In investigating the last problem it is useful to have the following example
in mind.

Example 1.5. Let K1 be the unit circle in the Euclidean plane R2,
considered as a compact abelian group, and let Kω

1 = K1 × K1 × . . .; let
µ be the Haar measure in Kω

1 . Analogously to the notion of generalized
integral, for the space Kω

1 one can introduce the notion of generalized limit
(see [16]). Then it turns out that the following statements hold:

1) In the theory T1 the domain of any generalized limit is of the first
category in the topological group Kω

1 ;
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2) In the theory T2 the domain of any generalized limit is a set of µ-
measure zero in Kω

1 .

2. Quasi-invariant and invariant measures. In the present section
we shall touch upon some questions connected with various properties of
non-zero σ-finite quasi-invariant (invariant) Borel measure defined in topo-
logical vector spaces.

Let (E,S, µ) be a measure space and Γ a group of transformations of the
basic set E. The measure µ is said to be quasi-invariant under Γ (shortly:
Γ -quasi-invariant) if the following conditions are satisfied:

1) the σ-algebra S is invariant under Γ ;
2) (∀h ∈ Γ ) (∀X ∈ S) (µ(h(X)) = 0 ⇔ µ(X) = 0).

If condition 1) is satisfied together with

3) (∀h ∈ Γ ) (∀X ∈ S) (µ(h(X)) = µ(X)),

then we say that µ is invariant under Γ (or, shortly, that µ is Γ -invariant).
It is obvious that every Γ -invariant measure is Γ -quasi-invariant and that
the converse is in general false.

In Euclidean space Rn, the standard Lebesgue measure λn is invariant
with respect to the group of all isometries. Note that λn can be considered
both on the Borel σ-algebra B(Rn) and on the Lebesgue σ-algebra L(Rn) of
Rn. Denote by B(Rn) the class of all subsets of Rn with the Baire property.
It is evident that B(Rn) ⊆ B(Rn) and that B(Rn) is an σ-algebra. The
following question arises: is it possible to define on B(Rn) a non-degenerate
σ-finite measure which is invariant (or at least quasi-invariant) under a fairly
large group of isometric transformations of Rn? It turns out that the answer
to this question is negative. Precisely, the following result holds.

Theorem 2.1. Let Γ be a group of motions of Euclidean space Rn. Then
the following conditions are equivalent :

1) for every x ∈ Rn the orbit Γ (x) is uncountable;
2) for every non-zero σ-finite Γ -quasi-invariant measure µ in Rn there

exists a µ-non-measurable set in the σ-algebra B(Rn).

In particular , if condition 1) is satisfied then there exists no non-
degenerate σ-finite Γ -quasi-invariant measure on B(Rn).

The proof of Theorem 2.1 uses induction on n together with Ulam’s
theorem stating that the first uncountable cardinal ω1 is not measurable in
the wide sense.

So we see that in the finite-dimensional Euclidean space Rn there does
exist a non-zero σ-finite measure on the Borel σ-algebra B(Rn) which is
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invariant under the group of all motions of the space, while no such mea-
sure exists on the σ-algebra B(Rn). If we turn to the infinite-dimensional
complete separable metrizable locally convex topological vector space Rω

consisting of all real sequences, then the situation changes. In fact, the
following result holds.

Theorem 2.2. Let E be an arbitrary infinite-dimensional Polish topo-
logical vector space. Then there is no non-degenerate σ-finite Borel measure
in E, quasi-invariant under the group of all translations of the space.

A proof can be found, for example, in [20], [34] or [32]. Note that since
every σ-finite Borel measure in a Polish space is a Radon measure, Theo-
rem 2.2 follows from the result below, which is due to Xia Dao-Xing.

Theorem 2.3. Let E be a topological metrizable group admitting a com-
plete metric. If there is in E a non-zero σ-finite Radon measure quasi-
invariant under the group of all left translations of E, then E is locally
compact.

A very simple proof of Theorem 2.3, based on arguments connected
with the category of the space E, can be found in [34]. In particular, it
follows from the above theorem that if E is an infinite-dimensional complete
metrizable topological vector space then it is impossible to define in E a
non-degenerate σ-finite Radon measure quasi-invariant under the group of
all translations of the space. It is worthwhile to compare Theorem 2.3 with
the result below, following quite easily from Theorem 1.1.

Theorem 2.4. Let E be a metrizable topological group, viewed as the
group of left translations of itself. If the topological weight of E is not
measurable in the wide sense and if there is at least one non-zero σ-finite
Borel measure in E, quasi-invariant under some dense subgroup Γ ⊆ E,
then E is separable.

From the above we see that for an infinite-dimensional topological vector
space E it is in general impossible to define a non-degenerate σ-finite Borel
measure, quasi-invariant under the whole additive group of the space. Under
these circumstances it is natural to relax the requirement of quasi-invariance
of the measure. In particular, one can ask about the existence in E of a non-
zero σ-finite Borel measure, quasi-invariant under some fairly large group Γ
of translations of E. By “large” we can mean, for instance, that Γ is dense
in E. In this respect the following open problem appears to be interesting.

Problem 2.1. Give a characterization (in purely algebraic and topolog-
ical terms) of all topological vector spaces E satisfying the condition: there
exists in E at least one non-degenerate σ-finite Borel measure quasi-invariant
under some dense vector subspace of E.
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Furthermore, the following statement holds even without any additional
set-theoretic assumptions.

Theorem 2.5. Let E be a non-separable normed vector space and let Γ
be a dense subgroup of the additive group E. Then there exists no non-zero
Γ -quasi-invariant σ-finite Borel measure in E.

It was shown in [20] that the reason for that fact lies in the Γ -absolute
negligibility of every ball (or, which is the same, of every bounded set) in a
non-separable normed vector space.

However, for infinite-dimensional separable Banach spaces it turns out
that the last question can be answered in the affirmative. More precisely,
we have the following

Theorem 2.6. Let E be an infinite-dimensional separable Banach space.
Then there exists in E a probability Borel measure quasi-invariant under
some dense vector subspace of E.

To prove Theorem 2.6 we need the following simple

Lemma 2.1. Denote by l1 the separable Banach space of all absolutely
summable real sequences and suppose that E is a separable Banach space.
Then there exists a continuous linear mapping of l1 onto E.

In other words, in the case of separable Banach spaces the space l1 plays
a role similar to the role of 2ω (Cantor set) in the class of all non-empty
compact metric spaces (because every non-empty compact metric space is
the image of the Cantor set under a continuous mapping).

Once we have Lemma 2.1, Theorem 2.6 can be proved quite easily when
we use the fact that in l1 there exists a probability Borel measure, quasi-
invariant under a dense vector subspace.

Example 2.1. Let µ be an arbitrary probability Borel measure in the
real line R, quasi-invariant under the group of all translations of R. By well
known Fubini theorem it is not hard to show that µ has the form µ(x) =∫

X
φdλ, X ∈ B(R), where φ is a strictly positive real function, integrable

with respect to Lebesgue measure λ and such that
∫

R φdλ = µ(R) = 1.

Example 2.2. Consider an infinite countable family (µi)i∈I of probabil-
ity Borel measures on the real line R such that every µi is R-quasi-invariant.
We can identify the set I with ω. Then the product µ =

∏
i∈I µi is a prob-

ability Borel measure in the topological vector space Rω. Denoting by R(ω)

the vector subspace of Rω consisting of all finite real sequences we see that
µ is R(ω)-quasi-invariant. It is also evident that R(ω) is dense in Rω. It can
be proved that R(ω) is maximal (in the sense of inclusion) among all groups
Γ ⊆ Rω with the following property: for every infinite countable collection
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(µi)i∈I of probability Borel R-quasi-invariant measures on R, the product
of µi’s is Γ -quasi-invariant on Rω (see [17]).

The space Rω is also interesting from the point of view of invariant
measures. The following statement holds.

Theorem 2.7. There exists in Rω a non-degenerate σ-finite Borel R(ω)-
invariant measure µ; moreover , given a real number p, 1 ≤ p < ∞, the
measure µ can be chosen so that it is concentrated on the space lp ⊆ Rω.

A proof of the above theorem is essentially provided in [18] (for p = 2, yet
the argument remains valid for any real p ≥ 1). Starting from the existence
of the measure indicated in Theorem 2.7 it is not difficult to construct:

1) a non-zero σ-finite Borel measure in C([0, 1]), invariant under the
dense vector subspace consisting of all polynomials on [0, 1];

2) a non-zero σ-finite Borel measure in the space R[0,1] of all real functions
on [0, 1], invariant under the subspace of all polynomials on [0, 1] (we note
that in the present case the space R[0,1] is equipped with the Tikhonov
topology and that the space of all polynomials is dense in R[0,1]).

In general, the following problem remains open.

Problem 2.2. Give a characterization (in purely algebraic and topolog-
ical terms) of all topological vector spaces E with the property: there is at
least one non-degenerate σ-finite Borel measure in E, invariant under some
dense vector subspace of E.

It may be useful to compare Problem 2.2 with the analogous Problem 2.1
as well as with the example below.

Example 2.3. Let α be an arbitrary infinite cardinal number. Con-
sider the topological vector space Rα (equipped with the Tikhonov product
topology and the product vector structure). Denote by R(α) the subspace of
Rα defined as the collection of all finite α-sequences of real numbers. R(α)

is obviously dense in Rα. It turns out that there exists in Rα a probability
Borel R(α)-quasi-invariant measure ν. A proof of this fact can be found in
[19]. We wish to indicate that in that proof a certain imbedding f of Rα

into the compact abelian group Kα
1 is employed; here K1 stands for the unit

circle in R2. The imbedding f has the property that f(Rα) is µ-massive in
Kα

1 where µ stands for the ordinary Haar measure on this group. In fact
one can assert that the measure ν is the restriction of µ to the µ-massive
set Rα (via the identification of Rα with f(Rα)). In this connection we note
that for α > ω it is not known whether there exists in Rα a non-zero σ-finite
Borel measure, invariant under the group R(α).

Deliberately we do not touch upon any problems connected with various
properties of Haar measures on locally compact topological groups, since the
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appropriate theory is well-developed and presented in detail in many works
(see, e.g., [11], [4], Chap. 7, 8, or [12]).

3. Borel measures in topological spaces. In this section we shall
consider miscellaneous Borel measures in Hausdorff topological spaces. In
many cases the Hausdorff separation condition is unnecessary and is intro-
duced exclusively for the sake of convenience. Besides, we shall be primarily
interested in diffuse probability (or at least σ-finite) Borel non-zero mea-
sures.

Assuming the Continuum Hypothesis and applying transfinite induction,
N. N. Lusin constructed in 1914 (see [26]) a subset X of the real line R with
the following properties:

1) X is uncountable:
2) X is dense in R:
3) for any subset Z of the first category in R the intersection Z ∩X is

at most countable.

From those properties it follows that each uncountable subset of X fails
to have the Baire property in R. Besides, the properties above imply that
if X is considered as a topological space (with the topology induced from
R) then every subset of the first category in X is at most countable. Let us
remark at this point that every diffuse σ-finite Borel measure in a separable
metric space is concentrated on a set of the first category (a similar fact
is true, in view of Theorem 1.1, for every metric space whose topological
weight is not measurable in the wide sense). In this way, using the property
of X indicated above we immediately get the following result.

Theorem 3.1. In the space X every diffuse σ-finite Borel measure is
identically zero.

Let us note, however, that without additional set-theoretic assumptions
it is impossible to show the existence of a set X ⊆ R with properties 1)
and 3), since it is easy to see that the conjunction of Martin’s Axiom and
the negation of the Continuum Hypothesis implies the absence of such a
set on the real line. On the other hand, applying standard methods of the
classical theory of analytic sets one can prove the existence (in ZFC) of an
uncountable set X ⊆ R satisfying the statement of Theorem 3.1.

A topological space E is usually called a Lusin space if it does not con-
tain isolated points and if every subset of the first category in E is at most
countable. Consequently, in any Lusin space the class of all sets of the first
category coincides with the collection of all subsets which are at most count-
able. According to the result formulated above, under some set-theoretic
assumptions there exist metrizable separable Lusin spaces of cardinality
continuum.
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Motivated by Theorem 3.1, by a Lusin space we shall understand any
Hausdorff topological space with no non-zero diffuse σ-finite Borel measure.
The following problem is open.

Problem 3.1. Give a characterization of Lusin spaces in the class of all
Hausdorff topological spaces.

Clearly, this problem is equivalent to the problem of description of all
Hausdorff topological spaces with at least one diffuse probability Borel mea-
sure. It could be useful to compare the last problem with a well-known result
of Kelley on Boolean algebras with measure (see [14] and [31]).

In 1924, assuming the Continuum Hypothesis and using transfinite in-
duction, W. Sierpiński constructed a subset Y of the real line R such that:

1) Y is uncountable;
2) Y is dense in R;
3) for every subset Z ⊆ R of Lebesgue measure zero the intersection

Z ∩ Y is at most countable.

It follows immediately from the properties above that no uncountable
subset of Y is Lebesgue measurable. In general, the Lusin set X considered
earlier and the Sierpiński set Y are quite similar and have dual properties
(for more details see [26], where a proof of the Sierpiński-Erdős duality
principle is given). Various applications of the Lusin and Sierpiński sets can
be found in [24] and [26].

We are now going to consider some problems concerning Radon measures
and radon topological spaces. Recall that a Hausdorff topological space E is
called a Radon space if every σ-finite Borel measure in E is a Radon measure.
In the definition of Radon space a weaker condition is usually required:
every finite (or even probability) measure in E is a Radon measure. It is
not difficult to notice, however, that both definitions are in fact equivalent.
Classical examples of radon spaces are Polish topological spaces, analytic
subsets of Polish spaces, and their complements.

Theorem 2.7 formulated in the previous section ensures the existence, in
Rω, of a non-degenerate σ-finite Borel measure µ, invariant under the group
R(ω). It is easy to see that µ has the following property: the µ-measure of
each non-empty open set in Rω is infinite. Thus we see that in the Polish
space Rω there exist σ-finite R(ω)-invariant Radon measures which are not
locally bounded at any point of the space.

Problem 3.2. Describe all Radon spaces in the class of all Hausdorff
topological spaces.

This problem is well known and so far has not been solved in a satisfac-
tory way. It is also interesting to investigate the behavior of Radon spaces
under usual set-theoretic operations. For instance, it cannot be claimed in
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general that the class of Radon spaces is closed under taking continuous
images (which satisfy the Hausdorff separation axiom). Indeed, in Section 1
we have noted that under Gödel’s constructivity axiom there exists an an-
alytic subset Z of the real line R and a continuous mapping f : R \ Z → R
such that f(R \ Z) is not Lebesgue measurable. In particular, f(R \ Z) is
not universally measurable in the real line. Consequently, the topological
space f(R\Z) is not a Radon space, since in this case the property of being
Radon space is equivalent to universal measurability. More generally, given
a Radon space E and its subspace E′, E′ is a Radon space if and only if
it is universally measurable with respect to the class of all σ-finite Borel
measures in E (see [4]).

The question whether the product of Radon spaces is a Radon space
appears to be equally interesting. In some special cases the product of a
countable family of Radon spaces turns out to be a Radon space (see, e.g.,
[28]). However, in general even the product of two Radon spaces may fail
to be Radon. More precisely, the following result holds (see [35]).

Theorem 3.2. Assume the Continuum Hypothesis. Then there exist two
Hausdorff topological spaces E and F with the following properties:

1) E and F are compact and every closed subset of both E and F is a
Gδ-set ;

2) in the topological product E×F there exists a Borel subset Z of cardi-
nality continuum, without uncountable compact subsets and such that Z is
Borel isomorphic to the unit interval [0, 1] with the usual Euclidean topology.

From condition 1) of the last theorem it follows directly that the spaces
E and F are both Radon. On the other hand, by means of the set Z in
condition 2) it is possible to define a probability Borel measure in E × F
which is not a Radon measure. Therefore the product E×F is not a Radon
space.

A similar result can be obtained by the use of the classical “two arrows”
space of P. S. Aleksandrov, which is a compact Radon space. If we assume
that c is measurable in the wide sense then it is easy to show that the
product of two copies of the “two arrows” space is not Radon (the fact first
observed by D. Fremlin). As far as topological sums of Radon spaces are
concerned, it is easy to see that the following result holds.

Theorem 3.3. Suppose that (Ei)i∈I is a family of Radon spaces and
let E be the topological sum of that family. If the cardinality of I is not
measurable in the wide sense then E is a Radon space.

We shall now consider the so-called Prohorov topological spaces. First
we recall some definitions.
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Let E be a completely regular topological space and Cb(E) the Banach
space of all bounded continuous real functions on E, equipped with the norm
of uniform convergence. We write Mb(E) for the vector space of all finite
signed Radon measures on E. The bilinear form (φ, µ) →

∫
φdµ defined on

the product Cb(E)×Mb(E) gives rise to a separated duality between Cb(E)
and Mb(E). The weak topology in Mb(E) associated with this duality is
called the topology of tight convergence (or the tight topology) in Mb(E). It
is evident that the tight topology in Mb(E) is completely regular. Many
properties of the original space E carry over to the completely regular space
M+

b (E) consisting of all finite positive Radon measures on E. For instance,
if E is Polish then so is M+

b (E) with its tight topology; if E is a separable
metric space then M+

b (E) is a separable metrizable space; finally, if E is an
analytic (i.e. Suslin) topological space then so is M+

b (E) (see [4], Chap. 9).
Let now E be a Hausdorff topological space and suppose that M is a

subset of M+
b (E). We say that M has the Prohorov property if

1) supµ∈M |µ|(E) <∞ where |µ| denotes the total variation of µ;
2) for every ε > 0 there exists a compact set Kε ⊆ E such that |µ|(E \

Kε) < ε for any measure µ ∈M .

The Prohorov property provides a criterion for relative compactness in
the tight topology. Precisely, we have the following important result, due to
Prohorov.

Theorem 3.4. Let E be a completely regular topological space and let
M be a subset of Mb(E) with the Prohorov property. Then M is relatively
compact in the tight topology of Mb(E).

In some special cases (important in applications, however) the converse
is also true:

Theorem 3.5. Let E be a topological space. Suppose that E is either
locally compact or Polish. Let M ⊆ M+

b (E) be a relatively compact set in
the tight topology of M+

b (E). Then M has the Prohorov property.

The theorem just stated is essentially due to Prohorov. The last two
results provide a natural motivation to introduce the notion of Prohorov
space. Accordingly, we call a completely regular Radon space E a Prohorov
space if every relatively compact (in the tight topology) family of finite Borel
measures in E has the Prohorov property. The following problem remains
open.

Problem 3.3. Give a characterization of Prohorov spaces in the class
of all completely regular topological spaces.

In [27] it was shown that any metrizable Prohorov space is of the second
category in itself. Hence it follows in particular that the set Q of rationals
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with the usual Euclidean topology is not a Prohorov space (even though it
is Radon and σ-compact). It is also not difficult to see that the class of
Prohorov spaces is closed under taking finite topological sums and that the
property of being a Prohorov space is inherited by closed subsets.

A large number of interesting examples of Borel measures in various
topological spaces, possessing (or not) miscellaneous regularity properties,
can be found in [10].

4. Cylindrical and Borel σ-algebras. Let E denote, as usual, a given
basic set and let Φ be a family of mappings from E into a measurable space.
The smallest (with respect to inclusion) σ-algebra S of subsets of E such that
all mappings in Φ are measurable with respect to S is called the cylindrical
σ-algebra induced by Φ (shortly: Φ-cylindrical σ-algebra), and denoted by
B(E, Φ). Cylindrical σ-algebras play an important role in various questions
from measure theory and random processes theory (to mention just one
let us recall the well known theorem of Kolmogorov concerning families of
finite-dimensional distributions satisfying the consistency conditions).

Example 4.1. Let E be a topological space and let Φ be the family of
all continuous real functions defined on E. We regard R as a measurable
space with the usual Borel σ-algebra B(R). In this case the Φ-cylindrical
σ-algebra B(E, Φ) is called the Baire σ-algebra and denoted by B0(E). It
is clear that B0(E) ⊆ B(E) where B(E) stands for the Borel σ-algebra
of E. The situation where the last inclusion becomes equality presents a
considerable interest for topological measure theory.

The following well-known definition will be needed later on. Let E be a
set and let Φ be a family of mappings defined on E. We say that Φ separates
points of E if, for any two distinct points x, y ∈ E, there is φ ∈ Φ such that
φ(x) 6= φ(y).

Further, let T be a family of subsets of E. Then T is said to separate
points of E if this is true for the family of all characteristic functions of sets
in T .

Theorem 4.1. Let E be a Polish space. Then every σ-algebra generated
by any countable family of Borel sets separating points of E coincides with
the Borel σ-algebra of E.

The proof can be derived without much difficulty from the following well-
known fact from descriptive set theory: the image of a Borel set under an
injective Borel mapping from a Polish space into a separable metric space
is again a Borel set.

The next result follows directly from Theorem 4.1.

Theorem 4.2. Let E be a Polish space. Suppose that Φ is an arbitrary
countable family of real Borel functions on E, separating the points of E.
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Then the Φ-cylindrical σ-algebra of E is equal to the Borel σ-algebra of this
space.

Using the last theorem it is not difficult to obtain the following result
(see, e.g., [34]).

Theorem 4.3. Let E be a Polish space and let Φ be a family of contin-
uous real functions on E. Then the following two conditions are equivalent :

1) Φ separates points of E;
2) the Φ-cylindrical σ-algebra B(E, Φ) and the Borel σ-algebra B(E) are

identical.

A special case of Theorem 4.3 is the next result, having various applica-
tions in measure theory and probability theory.

Theorem 4.4. Let E be a complete separable metrizable topological vec-
tor space, let E∗ be its topological dual space and let Φ be a subset of E∗.
The following two conditions are equivalent :

1) Φ separates points of E;
2) the Φ-cylindrical σ-algebra B(E, Φ) coincides with the Borel σ-algebra

B(E).

We remark that some examples in [6] indicate that each of the follow-
ing assumptions imposed on E: completeness, separability, metrizability, is
essential for the validity of Theorem 4.4. At the same time, one can find
non-Polish topological vector spaces for which the equivalence of 1) and 2)
still holds.

Example 4.2. Let R(ω) denote the vector space of all finite real se-
quences. We introduce a norm in R(ω) by putting ‖x‖ =

∑
n∈N |xn| for

x ∈ (xn)n∈N ∈ R(ω) (note that the definition is correct, since the number of
non-zero terms in the sum above is finite). It is easy to see that R(ω) with
‖ · ‖ is a separable normed vector space. Now, let Φ be an arbitrary family
of continuous linear forms on R(ω), separating points of R(ω). It is easy to
see that B(R(ω), Φ) = B(R(ω)). On the other hand, it is quite obvious that
R(ω) is not complete, in fact it is of the first category in itself.

In relation to the example above it is natural to pose the following

Problem 4.1. Characterize all topological vector spaces E such that
B(E, Φ) = B(E) for every family Φ ⊆ E∗ separating points of E.

In a sense, the next problem is related to Problem 4.1.

Problem 4.2. Give a characterization of all topological vector spaces E
such that B(E, Φ1) = B(E, Φ2) for any two families Φ1, Φ2 ⊆ E∗ separating
points of E.
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An interesting result concerning cylindrical and Borel σ-algebras was
obtained in [9]. Let E be a Banach space and let B(E,E∗) stand for the
cylindrical σ-algebra in E induced by the collection of all continuous linear
forms on E. Suppose that B(E,E∗) = B(E). Does this imply that E is
separable? The answer turns out to be negative. Let Y be a set and denote
by l1(Y ) the Banach space of all absolutely summable real functions on Y .
In other words,

f ∈ l1(Y ) if and only if
∑
y∈Y

|f(y)| <∞.

Next, let P(Y ) denote the σ-algebra of all subsets of Y and let P(Y )⊗
P(Y ) stand for the σ-algebra in Y × Y defined as the product of two copies
of P(Y ). Finally, let P(Y ×Y ) denote the σ-algebra of all subsets of Y ×Y .
The following result holds (see [9]).

Theorem 4.5. If , for an infinite set Y , the equality P(Y ) ⊗ P(Y ) =
P(Y × Y ) is satisfied , then the Borel σ-algebra of the Banach space l1(Y )
coincides with the cylindrical σ-algebra induced by the family of all contin-
uous linear forms on this space.

Taking for Y the first uncountable cardinal ω1 we have, by a classical
result of Sierpiński, P(ω1)⊗P(ω1) = P(ω1×ω1). Thus we see that although
the Banach space l1(ω1) is non-separable, its Borel σ-algebra coincides with
the cylindrical σ-algebra induced by all continuous linear forms on that
space.

Let E be a Hausdorff topological space and let Φ be a family of continuous
real functions on E. Given a probability measure on the Φ-cylindrical σ-
algebra in E, the question arises whether that measure can be extended to a
Borel measure on E. One can at the same time demand that the extension
have certain additional properties (such as being a Radon measure). Some
aspects of this problem are considered in [34]. Clearly, the above question
is a special case of the following more general problem.

Let (E,S, µ) be a σ-finite measure space and let S be an arbitrary σ-
algebra of subsets of E, containing S. The problem is to find necessary
and sufficient conditions for the existence of the extension of µ to S. These
conditions, as is naturally understood, should be formulated in measure-
theoretic terms.

Example 4.3. Consider the unit interval [0, 1] with the σ-algebra S con-
sisting of all Borel sets of the first category in [0, 1] and their complements.
We define a probability two-valued measure µ by putting, for X ∈ S,

µ(X) =
{

0 if X is of the first category,
1 if [0, 1] \X is of the first category.
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It is clear that µ is a separable measure. Moreover, the metric space
associated with µ consists of just two points. It is easy to see that the mea-
sure µ cannot be extended to a probability Borel measure on [0, 1]. Indeed,
every such extension would have to be concentrated on a first category set,
which contradicts the definition of the original measure µ.

A much more complicated example in [8] exhibits a two-valued prob-
ability measure, defined on a certain σ-algebra of Borel subsets of [0, 1]ω,
with no extension to a probability Borel measure. That example was used
in [8] to conclude that Problem 6 in Marczewski’s paper [33] has a negative
solution. We remark, however, that, as seen from the context, the measures
considered in [33] are assumed to be non-atomic. Therefore the formulation
of Problem 6 in that paper should read: is it always possible to extend a
non-atomic separable probability measure from the σ-algebra of Borel sub-
sets of a Polish space E to the whole Borel σ-algebra of E? Recall that
every non-atomic separable probability measure is metrically isomorphic to
the classical Lebesgue measure on [0, 1]. Therefore Marczewski’s Problem 6
is in fact interesting for such measures only (Example 4.3 shows that with-
out non-atomicity condition the problem is trivial). On the other hand,
using Example 4.3 one can provide a solution of Marczewski’s problem even
for non-atomic measures. Indeed, let λ be Lebesgue measure on the Borel
σ-algebra of the interval [0, 1]. Put ν = µ × λ, where µ is the measure
defined in Example 4.3. Then it is not hard to show that ν is a non-atomic
separable probability measure on the unit square [0, 1]2 and that it cannot
be extended to a Borel measure on the square.

It is worth noticing that in the paper [21] a relation is established between
Marczewski’s problem mentioned above and the existence of Lebesgue non-
measurable subsets of [0, 1]. Moreover, in [21] it is shown that Gödel’s
constructivity axiom implies the existence of a coanalytic topological space
E, a countably generated σ-algebra S ⊆ B(E) and a non-atomic probability
measure µ such that µ is defined on S and has no extension to a measure
on B(E). Note also that, on the other hand, for every countably generated
σ-algebra S ⊆ B(E) and every non-atomic probability measure µ defined on
S there exists an extension of µ to a measure on B(E) (see [8]).

5. Miscellaneous families of probability measures. Let again E
be a basic set and let S be a σ-algebra of its subsets. In the present section
we shall consider various families of measures defined on S and single out
some classes of such families. For the sake of simplicity we restrict ourselves
to probability measures though the notions introduced below make sense for
σ-finite measures, too.

Let (µi)i∈I be a family of probability measures defined on S. Such a
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family is called orthogonal if for any two distinct i, j ∈ I the measures µi

and µj are mutually singular, i.e., if there are disjoint subsets X,Y ∈ S such
that µi(X) = µj(Y ) = 1.

It is clear that the sets X and Y may depend on the pair (i, j). Removing
this dependence we arrive at the concept of weakly separating family of
probability measures. A family (µi)i∈I of probability measures on S is called
weakly separating if there exists a collection (Xi)i∈I ⊆ S such that µi(Xj) =
δij for every pair (i, j) ∈ I × I (δij denotes the Kronecker symbol). It is
quite obvious that every weakly separating family of measures is orthogonal.
A family (µi)i∈I of measures on S is said to be strongly separating if there
exists a collection (Xi)i∈I ⊆ S such that

(∀i, j ∈ I)(i 6= j ⇒ Xi ∩Xj = ∅), (∀i ∈ I)(µi(Xi) = 1).

Let us note that under the Continuum Hypothesis every weakly separat-
ing family (µi)i∈I with card(I) ≤ c is strongly separating.

Finally, we introduce the notion of a family of probability measures ad-
mitting a statistical estimation. For that purpose we assume in addition
that the set I of indices is endowed with a measurable structure, i.e., that
a σ-algebra of subsets of I is given. This σ-algebra is assumed to contain
all singletons. Now we say that a family (µi)i∈I of probability measures
on S admits a statistical estimation if there exists a measurable mapping
f : E → I with the property (∀i ∈ I)(µi({x ∈ E : f(x) = i}) = 1). The
mapping f is then called a statistical estimation for the family (µi)i∈I . It is
clear that every family of measures admitting a statistical estimation must
be strongly separating. As we shall see below, the converse is in general
false.

The classes of families of probability measures just presented were first
introduced in [13], originating from various problems in statistics of random
processes. At the beginning we shall be concerned with various set-theoretic
characteristics of the families of measures having the properties mentioned
above. In the sequel the cardinality of E is assumed to be c (continuum),
though the results below carry over with easy modifications to the case of
an arbitrary uncountable basic set E.

Theorem 5.1. There exist a σ-algebra S in the unit interval [0, 1] and
a family (µi)i∈I of probability measures on S such that

1) every measure µi (i ∈ I) is an extension of Lebesgue measure on [0, 1];
2) the family (µi)i∈I is orthogonal ;
3) card(I) = 22c

.

In other words, Theorem 5.1 shows that on [0, 1], there exists an or-
thogonal family of measures (µi)i∈I having the greatest possible cardinality,
equal to the cardinality of the injective family of all measures on [0,1]. We
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note at this point that every measure µi (i ∈ I) can be required to have
additional properties. In particular, we can demand that every µi satisfies
the Marczewski axiom, i.e., that any µi-measurable set can be represented
as (X ∪ X1) \ X2, where X is a Lebesgue measurable subset of [0, 1] and
µ∗i (X1) = µ∗1(X2) = 0 (see [15]).

The proof of Theorem 5.1 is based on the method of independent families
of sets, first employed by Marczewski.

The following result is a direct consequence of Theorem 5.1.

Theorem 5.2. There exist a σ-algebra S of subsets of [0, 1] and a family
of probability measures (µi)i∈I on S such that

1) every µi (i ∈ I) is an extension of Lebesgue measure on [0, 1] and
satisfies the Marczewski axiom;

2) the family (µi)i∈I is weakly separating ;
3) card(I) = 2c.

In other words, Theorem 5.2 indicates that on [0, 1] there exists a weakly
separating family of probability measures (µi)i∈I having the greatest possi-
ble cardinality, equal to the cardinality of the class of all subsets of [0, 1].

Further, it is easy to see that if (µi)i∈I is a strongly separating family of
probability measures on a σ-algebra of subsets of [0, 1], then the cardinality
of the set I of indices does not exceed continuum. Without much trouble
one can construct a strongly separating family of Borel probability measures
on [0, 1] such that each measure from this family is isomorphic to Lebesgue
measure and such that the cardinality of the family is c.

Among families of probability measures defined on a common σ-algebra
of sets, one can distinguish so-called statistical structures (see [25]). Let
E be a basic set and let S be a σ-algebra of subsets of E. Let (µi)i∈I

be a family of probability measures on S. We assume that a σ-algebra T
of subsets of I is given, providing thus a measurable structure in I. The
family (µi)i∈I is called a statistical structure if for every X ∈ S the mapping
gX : (I, T ) → (R,B(R)) given by gX(i) = µi(X) (i ∈ I) is measurable with
respect to the σ-algebras T and B(R). It is evident that statistical structures
can be orthogonal, weakly separating, strongly separating and, besides, they
can admit a statistical estimation. The last property is possible only in the
case where T contains all singletons, which is usually assumed in practice.

It is an interesting question whether for a given statistical structure there
exists at least one statistical estimation. It is clear that a necessary condition
is the strong separation of the statistical structure in question. However,
this condition is not sufficient, which can be seen from the following result.

Theorem 5.3. Put E = [0, 1] × ω1 × ω1 and let I be a set of indices
having the first uncountable cardinality ω1. Then it can be effectively shown
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(i.e., without the Axiom of Choice) that there exist a σ-algebra S in E, a
family of probability measures (µi)i∈I and a σ-algebra T in I such that

1) all measures µi are defined on S,
2) each µi is metrically isomorphic to Lebesgue measure on [0, 1];
3) (µi)i∈I is a strongly separating statistical structure;
4) T contains all singletons;
5) there is no statistical estimation for (µi)i∈I .

For a proof see [22]. We remark that the strong separation of this sta-
tistical structure (µi)i∈I is shown effectively, too.

In [13] a construction is given, however with the help of the Continuum
Hypothesis, of another strongly separating statistical structure (µi)i∈I with
the following properties:

1) all measures µi are defined on the Borel σ-algebra of the unit square
[0, 1]2;

2) each µi is isomorphic to Lebesgue measure on [0, 1];
3) I is an uncountable Polish space, equipped with its Borel σ-algebra;
4) (µi)i∈I does not admit any statistical estimation.

Note, finally, that it is not known whether one can effectively construct
a strongly separating statistical structure having the above four properties.
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