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THE NUMBER OF COUNTABLE ISOMORPHISM
TYPES OF COMPLETE EXTENSIONS OF THE

THEORY OF BOOLEAN ALGEBRAS

BY

PAUL IVE RSO N (PELLA, IOWA)

There is a conjecture of Vaught [17] which states: Without The Gen-
eralized Continuum Hypothesis one can prove the existence of a complete
theory with exactly ω1 nonisomorphic, denumerable models. In this paper
we show that there is no such theory in the class of complete extensions of
the theory of Boolean algebras. More precisely, any complete extension of
the theory of Boolean algebras has either 1 or 2ω nonisomorphic, countable
models. Thus we answer this conjecture in the negative for any complete
extension of the theory of Boolean algebras. In Rosenstein [15] there is a
similar conjecture that any countable complete theory which has uncount-
ably many denumerable models must have 2ω nonisomorphic denumerable
models, and this is true without using the Continuum Hypothesis.

This paper is an excerpt of the author’s thesis, which was written under
the guidance of Professor G. C. Nelson. A more detailed exposition of the
material may be found there.

1. Preliminaries. Let L be a linear ordering. We define a derivative
operation on L in two steps. First we identify any two elements which have
a dense linear ordering between them, denoting the resulting ordering by
La. Then in La we identify any two elements that have only a finite number
of elements between them, denoting the result by L1. This process can be
iterated into the transfinite by taking an appropriate limit construction at
limit ordinals. As an example, consider

L = (1 + η + 1) · ω + ω2 · (1 + η + 1) + 1 ,

La ∼= ω + ω2 · (1 + η + 1) + 1 ,

L1 ∼= 1 + ω · (1 + η + 1) + 1 ∼= ω · (1 + η + 1) + 1 ,

(L1)a ∼= L1 , L2 ∼= 1 + η + 1 ,

(L2)a ∼= 1 + 1 , L3 ∼= 1 .



182 P. IVERSON

The language of Boolean algebras is the language with nonlogical sym-
bols 〈∩,∪, c, 1, 0〉. The theory T of Boolean algebras is the theory in this
language with the usual axioms for Boolean algebras. The following classi-
fication of complete theories of Boolean algebras is due to Tarski [16] and
Ershov [5] and can be found in Mead [9, Sections 3.2 and 3.3] as well. Let
B be a Boolean algebra. The partial function ∆ : B → B is defined by

∆(x) = sup{y ∈ B : y ≤ x and y is an atom of B} for x ∈ B .

By means of ∆ we define an ideal of B,

I(B) = {x ∈ B : ∆(x) exists} .

We also define inductively a sequence of Boolean algebras Bk, k ∈ ω:

B0 = B, Bk+1 = Bk/I(Bk) .

Definition 1. The elementary characteristic EC(B) = 〈p, q, r〉 of a
Boolean algebra B is defined as follows:

1. EC(B) = 〈0, 0, 0〉 if B is trivial, i.e. 0 = 1.
2. EC(B) = 〈ω, 0, 0〉 if B0 is not trivial for all p ∈ ω.
3. If Bp is not trivial and Bp+1 is trivial, then EC(B) = 〈p, q, r〉, where:

a) q is the number of atoms in Bp (q = ω if Bp has infinitely many
atoms),

b) r = 0 if Bp has no atomless elements, and r = 1 otherwise.

Theorem 2. A theory T ′ is a complete extension of the theory T of
Boolean algebras iff there is an ordered triple 〈p, q, r〉 with p, q ∈ ω ∪ {ω}
such that every model of T ′ has elementary characteristic 〈p, q, r〉.

From Theorem 2 it follows that two Boolean algebras are elementarily
equivalent iff they have the same elementary characteristic. Thus the nota-
tion B ≡ 〈p, q, r〉 for EC(B) = 〈p, q, r〉 is well defined, and will be frequently
used.

As examples of Boolean algebras we will use interval algebras. In the
rest of this paper it will be assumed that L is a linear ordering with a
first element f and a last element t. We define the interval algebra of L,
denoted by D(L), to be the subalgebra of the power set of [f, t) generated
by {[x, y) : x, y ∈ L and x ≤ y} with the usual operations on sets of union,
intersection, and relative complement in [f, t). It is easily shown that D(L)
is a Boolean algebra with ordered basis L.

Now we define a derivative operation for Boolean algebras, which, in
the case of interval algebras, will be the same as taking derivatives on the
linearly ordered basis as above. This operation on Boolean algebras was
introduced and studied by Nelson in [14, Chapter 2]. Its connections with
the derivatives of La and interval algebras were first stated there. The idea
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of making such a connection appears in Feiner [6], but for a different notion
of derivative.

Let B be a Boolean algebra, and let

A0(B) = (0) (the zero ideal) ,

At0(B) = {a ∈ B : a is an atom of B} ,

Al0(B) = {a ∈ B : a is an atomless element of B} ,

A1(B) = (At0(B) ∪Al0(B))
(the ideal generated by At0(B) ∪Al0(B)),

B1 = B/A1(B) .

Suppose that Aβ(B) and Bβ = B/Aβ(B) have been defined for β < α.
Then there are natural homomorphisms hβ : B → B/Aβ(B). For β < α we
let

Atβ(B) = {b ∈ B : hβ(b) is an atom of Bβ} ,

Alβ(B) = {b ∈ B : hβ(b) is an atomless element of Bβ} .

Then we define

Aα(B) =
( ⋃

β<α

Atβ(B) ∪
⋃

β<α

Alβ(B)
)

, Bα = B/Aα(B) ,

hα : B → B/Aα(B) is the natural homomorphism .

We begin by applying this approach to the problem of computing the
elementary characteristics of a Boolean algebra.

Theorem 3. Let L be a linear ordering with the property that every
infinite interval of the form [a, b) contains an infinite dense subinterval.
Then

D(L)1 = D(L)/I(D(L)) = (D(L))1 ∼= D(L1) .

2. The number of countable isomorphism types. Now we state
the main result of this paper.

Theorem 4. For Γ a complete extension of the theory T of Boolean
algebras, Γ has either exactly one countable model (up to isomorphism), or
2ω nonisomorphic, countable models.

We will give the proof in cases depending on the elementary characteristic
of Γ . In each case we will either demonstrate that the theory is ω-categorical,
or give examples of 2ω nonisomorphic, countable models of Γ .

The first case is for the elementary characteristics 〈0, ω, 0〉, and 〈0, ω, 1〉.
In [14, Theorem 2.2.8] Nelson has proved the result for this case and has
given the explicit examples we use for the characteristics 〈0, ω, 0〉, and
〈0, ω, 1〉. It is known that there are 2ω nonisomorphic countable Boolean
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algebras, and the usual examples given are similar to those in [14] and have
characteristics 〈0, ω, 0〉, or 〈0, ω, 1〉. Here the other complete extensions of
the theory of Boolean algebras are considered. Apparently the result was
not known up to now for these theories.

For each f ∈ 2ω−{0} for which f is not identically zero let L(f) be the
linear ordering given by

L(f) =
( ∑

i∈ω−{0}

f(i) · (ωi · η + 1)
)

,

where 0 · (ωi ·η+1) = 0. We consider the interval algebras D(1 + L(f) + 1).
For each f ∈ 2ω−{0}, D(1 + L(f) + 1) is infinite and atomic and so D(1 +
L(f)+1) ≡ 〈0, ω, 0〉. Furthermore, suppose f is different from g and let both
be elements of 2ω−{0}. Then there is an i ∈ ω − {0} such that f(i) 6= g(i).
Suppose f(i) = 0 and g(i) = 1. Then D((1 + L(f) + 1)i) is infinite atomic
while D((1 + L(g) + 1)i) contains an atomless element. Thus

(D(1 + L(f) + 1))i ∼= D((1 + L(f) + 1)i)

6∼= D((1 + L(g) + 1)i) ∼= (D(1 + L(g) + 1))i .

So there is a distinct model for each f ∈ 2ω−{0} and therefore, there must
be 2ω nonisomorphic, countable models of T with elementary characteristic
〈0, ω, 0〉.

To give examples of countable models with other elementary character-
istics, we let L0 be the linear ordering defined by

L0 = (1 + η + 1) · ζ .

We state a useful preliminary lemma, whose proof can be found in Iverson
[7].

Lemma 5. D(1 + L0 · L + 1)1 ∼= D(1 + L0 · L + 1)1 ∼= D(1 + L + 1) .
Furthermore, if D(1+L+1) ≡ 〈n, p, q〉, then D(1+L0 ·L+1) ≡ 〈n+1, p, q〉.

Inductively, suppose there are 2ω nonisomorphic, countable models of T
with elementary characteristic 〈n, ω, 0〉 for some n ∈ ω and suppose that
the models have linearly ordered bases 1 + An(f) + 1 for f ∈ 2ω−{0}. Then
consider the linear ordering 1+L0 ·An(f)+1 for each f ∈ 2ω−{0}. We have

D(1 + L0 ·An(f) + 1) ≡ 〈n + 1, ω, 0〉

by Lemma 5. Furthermore, for f 6= g the inductive hypothesis yields that

D(1 + An(f) + 1) 6∼= D(1 + An(g) + 1) .

So, since

(D(1 + L0 ·An(f) + 1))1 ∼= D((1 + L0 ·An(f) + 1)1) ∼= D(1 + An(f) + 1)



THEORY OF BOOLEAN ALGEBRAS 185

and the same holds for 1 + An(g) + 1, it must be true that

D(1 + L0 ·An(f) + 1) 6∼= D(1 + L0 ·An(g) + 1) .

Finally, it is clear that all of these Boolean algebras are countable, since all
of their linearly ordered bases are countable. So there are 2ω nonisomor-
phic, countable models of T with elementary characteristic 〈n + 1, ω, 0〉 and
linearly ordered bases

1 + An+1(f) + 1 = 1 + L0 ·An(f) + 1 for f ∈ 2ω−{0} .

By induction it follows that for any n ∈ ω there are 2ω nonisomorphic,
countable models of T with elementary characteristic 〈n, ω, 0〉.

Now we consider the elementary characteristics of the form 〈n, ω, 1〉. For
n = 0 we use the interval algebras of the form D(1 + L(f) + 1 + η + 1) for
f ∈ 2ω−{0}. As before, if f 6= g, then f(i) 6= g(i) for some i ≥ 1. Then one
of D((1+L(f)+1+η +1)i) and D((1+L(g)+1+η +1)i) is infinite atomic
and the other contains an atomless element, so

D(1 + L(f) + 1 + η + 1) 6∼= D(1 + L(g) + 1 + η + 1) .

Furthermore, every element of D(1+L(f)+1+η+1) is a finite sum of atoms
and atomless elements so EC(D(1+L(f)+1+η +1)) = 〈0, ω, 1〉. Therefore
there are 2ω nonisomorphic, countable Boolean algebras with elementary
characteristic 〈0, ω, 1〉. Now we proceed inductively as before, using L0 to
antidifferentiate. The details are completely analogous. It follows that for
any n ∈ ω there are 2ω nonisomorphic, countable Boolean algebras with
elementary characteristic 〈n, ω, 1〉.

Next we consider the characteristic 〈n, m, 0〉 for n, m ∈ ω. For any
m ∈ ω the interval algebras of the form D(1 + η + L(f) + 1) give 2ω non-
isomorphic, countable models of T , which can be shown to have elementary
characteristic 〈1,m, 0〉 (see Iverson [7] for details). Then, inductively, using
L0 to antidifferentiate and applying Lemma 5, for any n, m ∈ ω, n 6= 0, we
get 2ω nonisomorphic, countable models of T with elementary characteristic
〈n, m, 0〉.

To show that for any n, m ∈ ω there are 2ω nonisomorphic, countable
models of T with elementary characteristic 〈n, m, 1〉, we use the interval
algebras

D(1 + (η + L(f) + 1 + L0 · η) ·m + 1)

for the ground step of the induction. These have characteristic 〈1,m, 1〉.
The arguments are exactly analogous to those above.

For elementary characteristic 〈ω, 0, 0〉 we consider the linear ordering

1 + (L0 + L0 · L0 + L0 · L0 · L0 + . . .) · L(f) + 1
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for f ∈ 2ω−{0}, which we call A(f). We have D(A(f)) ≡ 〈ω, 0, 0〉 by Theo-
rem 3, since

D(A(f))n
∼= D(A(f))n ∼= D(A(f)n) ∼= D(A(f))

for any n ∈ ω. Applying Theorem 3 gives 2ω nonisomorphic, countable
models of T with elementary characteristic 〈ω, 0, 0〉.

Finally, we consider the cases where the models have only finitely many
atoms. It is easily seen that for any m ∈ ω there is only one countable
isomorphism type of T with elementary characteristic 〈0,m, 0〉, as well as
there is only one countable isomorphism type of T with elementary charac-
teristic 〈0, 0, 1〉, and it follows that for any m ∈ ω there is only one countable
isomorphism type of T with elementary characteristic 〈0,m, 1〉.

If a countable model of T has only finitely many atoms, then any other
countable model of T with the same complete theory is isomorphic to it.
Otherwise there are 2ω nonisomorphic countable models with the same the-
ory. So the theorem is proved and Vaught’s conjecture is answered in the
negative for any complete extension of the theory of Boolean algebras, with-
out the use of the Continuum Hypothesis. On the other hand, we have given
more evidence to support the conjecture that a complete countable theory
with uncountably many nonisomorphic denumerable models has 2ω noniso-
morphic denumerable models (without using the Continuum Hypothesis).

Finally, by applying results of Burris and Nelson, it readily follows that
this result can be extended to all countable primal algebras using the notion
of bounded Boolean powers (see Iverson [7] for details).
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