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§1. Introduction

1.1. Preliminaries. We assume everywhere X to be a connected compact
polyhedron and f : X → X to be a continuous map. Let p : X̃ → X be the
universal covering of X and f̃ : X̃ → X̃ a lifting of f , i.e. p ◦ f̃ = f ◦ p.
Two liftings f̃ and f̃ ′ are called conjugate if there is γ ∈ Γ ∼= π1(X) such
that f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix f is called the fixed
point class of f determined by the lifting class [f̃ ]. A fixed point class is
called essential if its index is nonzero. The number of lifiting classes of f
(and hence the number of fixed point classes, empty or not) is called the
Reidemeister number of f , denoted by R(f). It is a positive integer or
infinity. The number of essential fixed point classes is called the Nielsen
number of f , denoted by N(f). The Nielsen number is always finite. R(f)
and N(f) are homotopy invariants.

We may define a few dynamical zeta functions in Nielsen fixed point
theory (see [1, 5, 6, 12]). The Reidemeister and Nielsen zeta functions are
defined as power series:

Rf (z) = exp
( ∞∑

n=1

R(fn)
n

zn

)
, Nf (z) = exp

( ∞∑
n=1

N(fn)
n

zn

)
.

Rf (z) and Nf (z) are homotopy invariants. We study Rf (z) in §3 and then
compute Nf (z) via Rf (z) in §4.

Let G be a group and ϕ : G → G an endomorphism. Two elements
α, α′ ∈ G are said to be ϕ-conjugate iff there exists γ ∈ G such that
α′ = γ · α · ϕ(γ−1). The number of ϕ-conjugacy classes is called the
Reidemeister number of ϕ, denoted by R(ϕ). We assume everywhere that
R(ϕn) < ∞ for every n > 0 and consider the Reidemeister zeta function of ϕ,

Rϕ(z) = exp
( ∞∑

n=1

R(ϕn)
n

zn

)
,

introduced in [5, 6]. We study Rϕ(z) in §2.
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The results of this paper were partly announced in [6].

1.2. Historical notes. Nielsen developed his theory of fixed point classes
and defined the number bearing his name in his study of surface homeo-
morphisms in 1927, using non-Euclidean geometry as a tool. Through the
hands of Reidemeister and Wecken, it became a beautiful theory applicable
to self-maps of polyhedra. Reidemeister gave a combinatorial treatment and
considered the number bearing his name in 1936 [13]. It is interesting that
the Lefschetz numbers

L(f) =
dim X∑
k=0

(−1)k tr[f∗k : Hk(X, R) → Hk(X, R)]

appeared almost simultaneously [10] with the Nielsen numbers, but the Lef-
schetz zeta function

Lf (z) = exp
( ∞∑

n=1

L(fn)
n

zn

)
=

dim X∏
k=0

det(E − f∗k · z)(−1)k+1

was defined by A. Weil [17] in 1949 when he studied the fixed points of
iterates of the Frobenius endomorphism. In the theory of discrete dynamical
systems the Lefschetz zeta function was introduced by Smale in 1967 [15].

§2. The Reidemeister zeta function of a group endomorphism

Problem. For which groups and endomorphisms the Reidemeister zeta
function is a rational function? Is Rϕ(z) an algebraic function?

When Rϕ(z) is a rational function the infinite sequence {R(ϕn)}∞n=1 of
Reidemeister numbers is determined by a finite set of complex numbers—the
zeros and poles of Rϕ(z).

Lemma 1. Rϕ(z) is a rational function if and only if there exists a finite
set of complex numbers αi and βj such that R(ϕn) =

∑
j βn

j −
∑

i αn
i for

every n > 0.

P r o o f. Suppose Rϕ(z) is a rational function. Then

Rϕ(z) =
∏

i

(1− αiz)/
∏
j

(1− βjz) ,

where αi, βj ∈ C . Taking the logarithmic derivative of both sides and then
using the geometric series expansion we see that R(ϕn) =

∑
j βn

j −
∑

i αn
i .

The converse is proved by a direct calculation.

An endomorphism ϕ : G → G is said to be eventually commutative if
there exists a natural number n such that the subgroup ϕn(G) is commu-
tative.
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We are now ready to compare the Reidemeister zeta function of an en-
domorphism ϕ with the Reidemeister zeta function of H1(ϕ) : H1(G) →
H1(G), where H1 = HGp

1 is the first integral homology functor from groups
to abelian groups.

Lemma 2. If ϕ : G → G is eventually commutative, then

Rϕ(z) = RH1(ϕ)(z) = exp
( ∞∑

n=1

ordCoker(1−Hn
1 (ϕ))

n
zn

)
.

P r o o f. R(ϕn) = R((H1(ϕ))n) = ordCoker(1−Hn
1 (ϕ)) (see [7, 9]).

Theorem 1. Suppose that H1(G) is torsion-free. Let ϕ be eventually
commutative and assume that no eigenvalue of H1(ϕ) is a root of unity.
Then Rϕ(z) is a rational function and equals

(1) Rϕ(z) =
( rg H1(G)∏

i=0

det(E −
∧i

H1(ϕ) · σz)(−1)i+1
)(−1)r

where σ = (−1)p, p is the number of µ ∈ Spec H1(ϕ) such that µ < −1, and
r is the number of real λ ∈ Spec H1(ϕ) such that |λ| > 1;

∧i denotes the
exterior power.

P r o o f. From the assumptions of the theorem it follows that R(ϕn) =
R(Hn

1 (ϕ)) = ordCoker(1−Hn
1 (ϕ)) for every n > 0.

Now we have

ordCoker(1−Hn
1 (ϕ)) = |det(E −Hn

1 (ϕ))| 6= 0 .

Hence R(ϕn) = (−1)r+pn det(E − Hn
1 (ϕ)). It is well known from linear

algebra that det(E −Hn
1 (ϕ)) =

∑k
i=0(−1)i tr

∧i
Hn

1 (ϕ). Then we have the
“trace formula” for the Reidemeister numbers:

(2) R(ϕn) = (−1)r+pn
k∑

i=0

(−1)i tr
∧i

Hn
1 (ϕ) .

From (2) it follows that

Rϕ(z) = exp
( ∞∑

n=1

R(ϕn)
n

zn

)

= exp
( ∞∑

n=1

(−1)r ·
∑k

i=0(−1)i tr
∧i

Hn
1 (ϕ)

n
(σz)n

)

=
( k∏

i=0

(
exp

( ∞∑
n=1

1
n

tr
∧i

Hn
1 (ϕ) · (σz)n

))(−1)i)(−1)r
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=
( k∏

i=0

det(E −
∧i

H1(ϕ) · σz)(−1)i+1
)(−1)r

.

Corollary 1. Let the assumptions of Theorem 1 hold. Then the poles
and zeros of the Reidemeister zeta function Rϕ(z) are complex numbers
which are reciprocal to the eigenvalues of the matrices

∧i
H1(ϕ) · σ, 0 ≤ i ≤

rg H1(G).

Proposition 1. Let the assumptions of Theorem 1 hold. Then the func-
tional equation for the Reidemeister zeta function Rϕ(z) is

(3) Rϕ

(
1
dz

)
= (Rϕ(z))(−1)rg H1(G)

· ε ,

where d = detH1(ϕ) and ε is a complex number.

P r o o f. Via the natural nonsingular pairing (
∧i

H1(G))∧ (
∧k−i

H1(G))
→ C the operators

∧k−i
H1(ϕ) and d(

∧i
H1(ϕ))−1 are adjoint to each other.

Fix an eigenvalue λ of
∧i

H1(ϕ). It contributes a term (1 − λ/(dz))(−1)i+1

to Rϕ(1/(dz)). Write this term as(
1− dz

λ

)(−1)i+1

·
(
−dz

λ

)(−1)i

and note that d/λ is an eigenvalue of
∧k−i

H1(ϕ). Now multiply over all λ.
One finds that

ε =
( rg H1(G)∏

i=1

∏
λ(i)∈ Spec

∧i
H1(ϕ)

(1/λ(i))(−1)i
)(−1)r

.

The variable z disappears because
k∑

i=0

(−1)i dim
∧i

H1(G) =
k∑

i=0

(−1)iCi
k = 0 .

Theorem 2. Suppose that ϕ : G → G is eventually commutative and
H1(G) = Zp (p > 1 prime). Then Rϕ(z) is a rational function.

P r o o f. For every n > 0, R(ϕn) = ordCoker(1−Hn
1 (ϕ)). Let H1(ϕ)(1)

= d. Then (1 − Hn
1 (ϕ))(Zp) = (1 − dn)Zp. So Coker(1 − Hn

1 (ϕ)) =
Zp/(1 − dn)Zp, which is known to be the cyclic group of order (1 − dn, p).
If p|d then R(ϕn) = 1 for every n > 0 and Rϕ(z) = 1/(1− z). If (p, d) = 1
then dp−1 ≡ 1 (mod p) and the sequence R(ϕn) is periodic with period k
(1 ≤ k ≤ p−1 and k|p−1). Thus R(ϕn) = p if k|n and R(ϕ′′) = 1 otherwise.
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Direct calculation shows that

Rϕ(z) =
(1− zk)
1− z

(1−p)/k

.

We will write [α] for the ϕ-conjugacy class of α ∈ G.

Lemma 3 [9]. For any α ∈ G we have [α] = [ϕ(α)].

We say that ϕ : G → G is nilpotent if for some positive integer n,
ϕn : G → G is the trivial homomorphism.

Theorem 3. If ϕ is nilpotent , then Rϕ(z) = 1/(1− z).

P r o o f. For any α ∈ G we have [α] = [ϕ(α)] = [ϕn(α)] = [e], i.e.
R(ϕ) = 1. The same is true for every n > 0.

2.1. The Reidemeister zeta function and group extensions. Suppose we
are given a commutative diagram

(4)

G
ϕ−→ Gyp

yp

G
ϕ−→ G

of groups and homomorphisms. In addition let the sequence

(5) 0 −→ H −→ G −→ G −→ 0

be exact. Then ϕ restricts to an endomorphism ϕ|H : H → H.

Definition 1. The short exact sequence (5) of groups is said to have a
normal splitting if there is a section σ : G → G of p such that Im σ = σ(G)
is a normal subgroup of G. An endomorphism ϕ : G → G is said to preserve
this normal splitting if ϕ induces a morphism of (5) with ϕ(σ(G)) ⊂ σ(G).

In this section we study the relation between the Reidemeister zeta func-
tions Rϕ(z), Rϕ(z) and Rϕ|H(z).

Theorem 4. Let the sequence (5) have a normal splitting which is pre-
served by ϕ : G → G. Suppose that Rϕ(z) and Rϕ|H(z) are rational func-
tions. Then so is Rϕ(z).

P r o o f. From the assumptions of the theorem it follows that for every
n > 0

R(ϕn) = R(ϕn) ·R(ϕn|H) (see [7]) .

Lemma 1 implies that there exist finite sets of complex numbers αi, βj and
µi, νj such that

R(ϕn) =
∑

j

βn
j −

∑
i

αn
i , R(ϕn|H) =

∑
j

νn
j −

∑
i

µn
i .
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Then R(ϕn) = (
∑

j βn
j −

∑
i αn

i ) · (
∑

j νn
j −

∑
i µn

i ). Now we multiply out
and again use Lemma 1.

2.2. Infinite product formula. Let µ(d), d ∈ N, be the Möbius function,
i.e.

µ(d) =


1 if d = 1,
(−1)k if d =

∏k
i=1 pi, pi distinct primes,

0 if p2|d for some prime p.
We define the numbers S(d), d ∈ N, by

S(d) =
∑
d1|d

µ(d1)R(ϕd/d1) .

Theorem 5.

(6) Rϕ(z) =
∞∏

d=1

d

√
(1− zd)−S(d) .

P r o o f. Since S(n) =
∑

d|n µ(d)R(ϕn/d), we have R(ϕn) =
∑

d|n S(d)
by the Möbius Inversion Theorem. Hence

Rϕ(z) = exp
( ∞∑

n=1

R(ϕn)
n

zn

)

= exp
( ∞∑

n=1

∑
d|n S(d)

n
zn

)
= exp

( ∞∑
d=1

∞∑
k=1

S(d)
dk

zdk

)

= exp
( ∞∑

d=1

−S(d)
d

ln(1− zd)
)

=
∞∏

d=1

d

√
(1− zd)−S(d) .

§3. The Reidemeister zeta function of a continuous map. Let
f : X → X be given, and let a specific lifting f̃ : X̃ → X̃ be chosen as
reference. Then every lifting of f can be uniquely written as γ ◦ f̃ , with
γ ∈ Γ . So elements of Γ serve as coordinates of liftings with respect to the
reference f̃ . Now for every γ ∈ Γ , the composition f̃ ◦ γ is also a lifting of
f , so there is a unique γ′ ∈ Γ such that γ′ ◦ f̃ = f̃ ◦ γ. This correspondence
γ → γ′ is determined by the reference f̃ , and is obviously a homomorphism.

Definition 2. The endomorphism f̃∗ : Γ → Γ determined by a lifting
f̃ of f is defined by

f̃∗(γ) ◦ f̃ = f̃ ◦ γ .

It is well known that Γ ∼= π1(X). We will identify π = π1(X, x0) and Γ in
the following way. Pick base points x0 ∈ X and x̃0 ∈ p−1(x0) ⊂ X̃ once
for all. Now points of X̃ are in 1-1 correspondence with path classes in X
starting from x0: for x̃ ∈ X̃ take any path in X̃ from x̃0 to x̃ and project
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it into X; conversely for a path c in X starting from x0, lift it to X̃ with
start point at x̃0, and take its endpoint. In this way, we identify a point
of X̃ with a path class 〈c〉 in X starting from x0. Under this identification
x̃0 = 〈e〉 is the unit element in π1(X, x0). The action of the loop class
α = 〈a〉 ∈ π1(X, x0) on X̃ is then given by

α = 〈a〉 : 〈c〉 → α · 〈c〉 = 〈a · c〉 .

Now, we have the following relationship between f̃∗ : π → π and

f∗ : π1(X, x0) → π1(X, f(x0)) .

Lemma 4 [9]. Suppose f̃(x̃0) = 〈w〉. Then the following diagram com-
mutes:

π1(X, x0)
f∗−→ π1(X, f(x0))

↘̃f∗
yw∗

π1(X, x0)

Lemma 5 [9]. Lifting classes of f are in 1-1 correspondence with f̃∗-
conjugacy classes in π, the lifting class [γ ◦ f̃ ] corresponding to the f̃∗-
conjugacy class of γ. So we have R(f) = R(f̃∗).

We will say that the fixed point class p(Fix(γ ◦ f̃ )), which is labeled with
the lifting class [γ ◦ f̃ ], corresponds to the f̃∗-conjugacy class of γ. Thus
f̃∗-conjugacy classes in π serve as coordinates for fixed point classes of f ,
once a reference lifting f̃ is chosen.

A reasonable approach is to consider homomorphisms of π which send
an f̃∗-conjugacy class to one element:

Lemma 6 [9]. The composition η ◦ θ,

π = π1(X, x0)
θ−→H1(X)

η−→Coker(H1(X)
1−f1∗−→ H1(X)) ,

where θ is abelianization and η is the natural projection, sends every f̃∗-
conjugacy class to a single element. Moreover , any group homomorphism
ζ : π → G which sends every f̃∗-conjugacy class to a single element , factors
through η ◦ θ.

Definition 3. A map f : X → X is said to be eventually commutative
if there exists a natural n such that (fn)∗π1(X, x0) (⊂ π1(X, fn(x0))) is
commutative.

By means of Lemma 4, it is easily seen that f is eventually commutative
iff so is f̃∗ (see [9]).

Theorem 1 yields

Theorem 6. Suppose that the group H1(X, Z) is torsion free. Let f be
eventually commutative and assume that no eigenvalue of f1∗ : H1(X, Z) →
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H1(X, Z) is a root of unity. Then the Reidemeister zeta function Rf (z) is
rational and

(7) Rf (z) =
( rgH1(X)∏

i=0

det(E −
∧i

f1∗ · σz)(−1)i+1
)(−1)r

where σ = (−1)p, p is the number of µ ∈ Spec f1∗ such that µ < −1 and r
is the number of real λ ∈ Spec f1∗ such that |λ| > 1.

Example 1. Let f : X → X be a hyperbolic endomorphism of Tn or of
a nilmanifold. Then Rf (z) is a rational function and the formula (7) holds.

Theorem 2 implies

Theorem 7. Suppose that f : X → X is eventually commutative and
H1(X, Z) = Zp (p prime). Then Rf (z) is a rational function.

Corollary 2. Let X = L(p, q1, . . . , qr), p prime, be a generalized lens
space and f as above. Then Rf (z) is a rational function.

3.1. The Reidemeister zeta function and Serre bundles. Let p : E → B
be a Serre bundle in which E, B and every fiber are compact connected
polyhedra and Fb = p−1(b) is a fiber over b ∈ B. A Serre bundle p : E → B
is said to be (homotopically) orientable if for any two paths w, w′ in B with
the same endpoints w(0) = w′(0) and w(1) = w′(1), the fiber translations
τw

∼= τ ′w : Fw(0) → Fw(1). A map f : E → E is called a fiber map if there
is an induced map f̄ : B → B such that p ◦ f = f̄ ◦ p. Let p : E → B be
an orientable Serre bundle and let f : E → E be a fiber map. Then for any
two fixed points b, b′ of f̄ : B → B, the maps fb = f |Fb and fb′ = f |Fb′ have
the same homotopy type; hence they have the same Reidemeister numbers
R(fb) = R(fb′) [9].

In this section we study the relation between the Reidemeister zeta func-
tions Rf (z), Rf̄ (z) and Rfb

(z) for a fiber map f : E → E of an orientable
Serre bundle p : E → B.

Theorem 4 yields

Theorem 8. Suppose that f : E → E admits a Fadell splitting in the
sense that for some e ∈ Fix f and b = p(e) the following conditions are
satisfied :

1) the sequence

0 → π1(Fb, e)
i∗−→π1(E, e) → π1(B, b) → 0

is exact ,
2) p∗ admits a right inverse (section) σ such that Im σ is a normal

subgroup of π1(E, e) and f∗(Im σ) ⊂ Im σ.

Suppose Rf̄ (z) and Rfb
(z) are rational functions. Then so is Rf (z).
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3.2. The Reidemeister zeta function of a periodic map. Let [f̃ ] be a
lifting class of f : X → X. Then the liffting class [f̃n] of fn is independent of
the choice of the representative f̃ , so we have a well-defined correspondence
between the sets of conjugacy classes of liftings f̃ and f̃n such that i([f̃ ]) =
[f̃n].

Lemma 7 [9]. Let f̃ : X̃ → X̃ be a lifting of f . Then i([α◦f̃ ]) = [α(n)◦f̃n],
where

α(n) = α · f̃∗(α) · . . . · f̃n−1
∗ (α) .

Theorem 9. Suppose that f : X → X is a periodic map with least period
m. Then

(9) Rf (z) =
∏
d|m

d

√
(1− zd)

−
∑

d1|d
µ(d1)R(fd/d1 )

.

P r o o f. Let R(fn) = Rn. Since fm = id, we have Rj = Rm+j for every
j. We show that R1 = Rk if (k, m) = 1. There are t, q ∈ Z+ such that
kt = mq + 1. Then (fk)t = fkt = fmq+1 = (fm)q ◦ f = f . From this and
Lemma 7 it follows that α

(k)
1 6= α

(k)
2 if α1 6= α2 and conversely, α1 6= α2 if

α
(k)
1 6= α

(k)
2 . Thus R1 = Rk. In the same way it is proved that Rd = Rid if

(i,m/d) = 1, where d|m. By direct calculation we hence obtain

Rf (z) = exp
( ∞∑

n=1

R(fn)
n

zn

)

= exp
( ∑

d|m

∞∑
n=1

S(d)
d

(zd)n

n

)
= exp

( ∑
d|m

−S(d)
d

ln(1− zd)
)

=
∏
d|m

d

√
(1− zd)−S(d)

(see [4], [12] for details), where the integers S(d) are calculated recursively
via the formula S(d) = Rd−

∑
d1|d,d1 6=d S(d1). Moreover, if the last formula

is rewritten as Rd =
∑

d1|d S(d1) and the Möbius Inversion Theorem is used,
then S(d) =

∑
d1|d µ(d1)Rd/d1 .

The Mostow–Margulis rigidity theorem (see [16]) and Theorem 9 give

Theorem 10. Let f : Mn → Mn, n ≥ 3, be a homeomorphism of a
compact hyperbolic manifold Mn. Then

Rf (z) =
∏
d|m

d

√
(1− zd)−S(d) ,
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where m is the least period of the periodic map to which f is homotopic and

S(d) =
∑
d1|d

µ(d1)Rd/d1 .

§4. The computation of the Nielsen zeta function

4.1. The Jiang subgroup and the Nielsen zeta function. From the homo-
topy invariance theorem (see [9]) it follows that if a homotopy {ht} : f ∼=
g : X → X lifts to a homotopy {h̃t} : f̃ ∼= g̃ : X̃ → X̃, then we have
index(f, p(Fix f̃ )) = index(g, p(Fix g̃)). Suppose {ht} is a cyclic homotopy
{ht} : f ∼= f ; then it lifts to a homotopy from a given lifting f̃ to another
lifting f̃ ′ = α ◦ f̃ , and we have

index(f, p(Fix f̃ )) = index(f, p(Fix α ◦ f̃ )) .

In other words, a cyclic homotopy induces a permutation of lifting classes
(hence of fixed point classes); those in the same orbit of this permutation
have the same index. This idea is applied to the computation of Nf (z).

Definition 4. The trace subgroup of cyclic homotopies (the Jiang sub-
group) I(f̃ ) ⊂ π is defined by I(f̃ ) = {α ∈ π| there exists a cyclic homotopy
{ht} : f ' f which lifts to {h̃t} : f̃ ∼= α ◦ f̃ } (see [9]).

Let Z(G) denote the center of a group G, and let Z(H,G) denote the
centralizer of a subgroup H ⊂ G. The Jiang subgroup has the following
properties:

1) I(f̃ ) ⊂ Z(f̃∗(π), π) ;
2) I(id

X̃
) ⊂ Z(π) ;

3) I(g̃ ) ⊂ I(g̃ ◦ f̃ ) ;

4) g̃∗(I(f̃ )) ⊂ I(g̃ ◦ f̃ ) ;
5) I(id

X̃
) ⊂ I(f̃ ) .

The class of path-connected spaces X satisfying the condition I(id
X̃

) = π =
π1(X, x0) is closed under homotopy equivalence and the topological prod-
uct operation, and contains the simply connected spaces, generalized lens
spaces, H-spaces, homogeneous spaces of the form G/G0 where G is a topo-
logical group and G0 a subgroup which is a connected compact Lie group
(for the proofs see [9]).

Theorem 11. Suppose that f̃∗(π) ⊂ I(f̃ ) and L(fn) 6= 0 for every n > 0.
Then

(10) Nf (z) = Rf (z) = exp
( ∞∑

n=1

ordCoker(1− fn
1∗)

n
zn

)
.

P r o o f. We have f̃n
∗ (π) ⊂ I(f̃n) for every n > 0 (by property 4) and the

condition f̃∗(π) ⊂ I(f̃)). For any α ∈ π, p(Fix α◦ f̃n) = p(Fix f̃n
∗ (α)◦ f̃n) by
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Lemmas 3 and 5. Since f̃n
∗ (π) ⊂ I(f̃n), there is a homotopy {ht} : fn ∼= fn

which lifts to {h̃t} : f̃n ∼= f̃n
∗ (α) ◦ f̃n. Hence index(fn, p(Fix f̃n)) =

index(fn, p(Fix α ◦ f̃n)). Since α ∈ π is arbitrary, any two fixed point
classes of fn have the same index. It immediately follows that L(fn) = 0
implies N(fn) = 0 and L(fn) 6= 0 implies N(fn) = R(fn). By property 1),
f̃n(π) ⊂ I(f̃n) ⊂ Z(f̃n

∗ (π), π), so f̃n
∗ (π) is abelian. Hence f̃n

∗ is eventually
commutative and R(fn) = ordCoker(1− fn

1∗).

R e m a r k 1. The conclusion of Theorem 11 remains valid if we use the
condition “there is an integer m such that f̃m

∗ (π) ⊂ I(f̃m)” instead of the
stronger condition f̃∗(π) ⊂ I(f̃), but the proof is more complicated.

Corollary 4. Let I(id
X̃

) = π and L(fn) 6= 0 for every n > 0. Then
the formula (10) is valid.

Corollary 5. Suppose that X is aspherical , f is eventually commuta-
tive and L(fn) 6= 0 for every n > 0. Then the formula (10) is valid.

Theorem 12. Suppose that H1(X, Z) is torsion-free and there exists an
integer m such that f̃m

∗ (π) ⊂ I(f̃m). Let L(fn) 6= 0 for every n > 0. Then
the Nielsen zeta function Nf (z) is rational and

(11) Nf (z) = Rf (z) =
( rg H1(X)∏

i=0

det(E −
∧i

f1∗ · σz)(−1)i+1
)(−1)r

where σ and r are the same as in Theorem 6.

P r o o f. From the assumptions of the theorem it follows that for every
n > 0

0 6= N(fn) = R(fn) = ordCoker(1− fn
1∗) = |det(E − fn

1∗)|
= (−1)r+pn det(E − fn

1∗) .

Thus we have the “trace formula” for the Nielsen numbers:

(12) N(fn) = (−1)r+pn

rg H1(X)∑
i=0

(−1)i tr
∧i

fn
1∗ .

Now (11) follows from a calculation as in Theorem 1.

Corollary 6. Suppose that the assumptions of Theorem 12 hold. Then
the functional equation for the Nielsen zeta function Nf (z) is

(13) Nf

(
1
dz

)
= (Nf (z))(−1)rg H1(X)

· ε ,

where d = det(f1∗), ε ∈ C.



164 A. FEL ′ SHTYN

Example 2. Let f : Tn → Tn be a hyperbolic endomorphism of Tn.
Then Nf (z) = Rf (z) is rational and the formulas (11–13) hold. In this case
d = det(f1∗) is the degree of f .

Corollary 7. Under the hypotheses of Theorem 12 the poles and zeros
of the Nielsen zeta function are complex numbers reciprocal to the eigenval-
ues of the matrices

∧i
f1∗ · σ, 0 ≤ i ≤ rg H1(X, Z).

4.2. Polyhedra with finite fundamental group. For a compact polyhedron
X with finite fundamental group π1(X), the universal covering space X̃ is
compact, so that we can explore the relation between L(f̃ ) and
index(p(Fix f̃)).

Definition 5 [9]. The number µ([f̃n]) = # Fix f̃n
∗ , the order of the

fixed-element group Fix f̃n
∗ , is called the multiplicity of the lifting class [f̃n],

or of the fixed point class p(Fix f̃n).

Lemma 8 [9]. L(f̃n) = µ([f̃n]) · index(fn, p(Fix f̃n)).

Lemma 9 [9]. If R(fn) = ordCoker(1− fn
1∗) (in particular , if f is even-

tually commutative), then

µ([f̃n]) = ordCoker(1− fn
1∗) .

Theorem 13. Let X be a connected compact polyhedron with finite fun-
damental group π. Suppose that the action of π on the rational homology of
the universal covering space X̃ is trivial , i.e. for every covering translation
α ∈ π, α∗ = id : H∗(X̃, Q) → H∗(X̃, Q). Let f be eventually commutative
and L(fn) 6= 0 for every n > 0. Then

(14) Nf (z) = Rf (z) = exp
( ∞∑

n=1

ordCoker(1− fn
1∗)

n
zn

)
.

P r o o f. Under our assumption on X any two liftings f̃ and α ◦ f̃ induce
the same homology homomorphism H∗(X̃, Q) → H∗(X̃, Q), hence the same
L(f̃ ). Then from Lemma 8 it follows that any two fixed point classes are
either both essential or both inessential. The statement is now a consequence
of Lemma 9.

Lemma 10 [9]. Let X be a polyhedron with finite fundamental group π

and let p : X̃ → X be its universal covering. Then the action of π on the
rational homology of X̃ is trivial iff H∗(X̃, Q) ∼= H∗(X, Q).

Corollary 8. Let X̃ be a compact 1-connected polyhedron which is a
rational homology n-sphere, n odd. Let π be a finite group acting freely on
X̃, and X = X̃/π. Then Theorem 13 applies.
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P r o o f. The projection p : X̃ → X = X̃/π is a universal covering
space of X. For every α ∈ π, the degree of α : X̃ → X̃ must be 1, because
L(α) = 0 (α has no fixed points). Hence α∗ = id : H∗(X̃, Q) → H∗(X̃, Q).

Corollary 9. If X is a closed 3-manifold with finite π, then Theorem
13 applies.

P r o o f. X̃ is an orientable simply connected manifold, hence a homology
3-sphere. Apply Corollary 8.

§5. Concluding remarks, problems, examples

5.1. “Entropy conjecture” for the Reidemeister numbers and the radius
of convergence R for the Reidemeister zeta function. Let h(f) be the topo-
logical entropy of f and set h = inf h(g), infimum being taken over all maps
g of the homotopy type of f .

Theorem 14. Let the assumptions of Theorem 11 or 13 hold. Then

h(f) ≥ lim sup
n→∞

1
n

log R(fn) ≥ 0 and 1 ≥ R ≥ e−h > 0 .

P r o o f. The statement follows from N.V. Ivanov’s inequality [8]

h(f) ≥ lim sup
n→∞

1
n

log N(fn) ,

the Cauchy–Hadamard formula and the homotopy invariance of R.

Problem. For what maps f the inequality

h(f) ≥ lim sup
n→∞

1
n

log R(fn)

holds?

5.2. Examples. Let f : X → X be a continuous map of a simply con-
nected compact polyhedron. Then Rf (z) = 1/(1− z).

For the next example, let ρ : M → M be an expanding map of an ori-
entable compact smooth manifold [14]. Then Rρ(z) and Nρ(z) are rational
functions and Rρ(z) = Nρ(z) = Lρ(σz)(−1)r

, where r = dim M , σ = +1 if ρ
preserves the orientation of M , and σ = −1 if ρ reverses the orientation of
M (see [12]).

In particular, if f : S1 → S1 is a continuous map of degree d, |d| 6= 1,
then Rf (z) = Nf (z) = (1− z)/(1− dz) if d > 0; Rf (z) = Nf (z) = 1/(1− z)
if d− 0; and Rf (z) = Nf (z) = (1 + z)/(1 + dz) if d < 0.

The author thanks V. B. Pilyugina, Boju Jiang, F. Przytycki, V. G. Tu-
raev, N. V. Ivanov, O. Ya. Viro and A. M. Vershik for their help and interest
in the research.
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