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It is well known that in Hilbert space any closed subspace is the range
of a contractive projection, namely the orthogonal projection. Kakutani
[Ka] showed that for a Banach space of dimension at least 3 the space is
(isometrically) a Hilbert space if and only if each closed subspace admits
a contractive projection. Lindenstrauss and Tzafriri [LT] showed that if
each closed subspace of a Banach space is complemented then the space is
equivalent to a Hilbert space.

Let X be a reflexive Banach space. Then if X has dimension at least 3
and is not a Hilbert space, there will be nonzero subspaces which admit no
norm one projections. However, if T is a linear contraction on X, the mean
ergodic theorem [Kr, p. 72] yields the fact that the fixed point set of T is
the range of a contractive projection. Indeed, this theorem asserts that for
each x in X,

Px = lim
N→∞

I + T + . . . + TN

N + 1
x

converges, defining a contractive projection onto Fix(T ) , the fixed point
set of T , and, as P is obtained as a limit of functions of T , we also obtain
PT = TP . Moreover, if Q is a projection (of any norm) onto Fix(T ) which
commutes with T then Q = P .

The result above was generalized by Lloyd in [L1]–[L3]. If X = Y ∗ and
T = S∗, where S is a linear contraction on Y , then there is a contractive
projection P from X onto Fix(T ) which commutes with T . His “construc-
tion” is the following: Let λ be a Banach limit. For x in X and y in Y define
〈y, Px〉 = λ〈y, Tnx〉 = λ〈Sny, x〉. A slight variant of this construction is to
replace Tn above by (1/Nk)

∑Nk

n=1 Tn where {Nk} is any fixed strictly in-
creasing sequence of nonnegative integers. This alternate approach shows
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that if T is not weak-* mean ergodic, then P is not unique (but depends on
{Nk} at least).

R e m a r k. The projection given by the mean ergodic theorem not only
automatically commutes with T , it commutes with each operator which
commutes with T . We cannot in general hope to construct a projection to
have this stronger commutivity property. First note that if P1 and P2 are
any two projections onto Fix(T ) which commute with each other we have
P1 = P2 trivially. Now if P3 could be found with the stronger commutivity
property and P1 and P2 are each projections onto Fix(T ) which commute
with T then P3 would commute with both P1 and P2. So by the first obser-
vation P1 = P3 = P2. Thus the existence of a doubly commuting projection
would imply uniqueness of the T commuting projections. However, for the
shift operator on `∞ (which can be taken to be of a finite measure) the
space of constants is the fixed point set. There are many shift invariant
projections onto this space.

In the case of a Markov operator T on L∞ (where T = S∗ with S a
positive contraction on L1 satisfying S∗1 ≤ 1), the projection obtained by
Lloyd’s method is also positive (but it is not unique if, e.g., S∗1 = 1 and S
has no nonzero fixed points).

Bruck [Br, p. 68] has given an example of a positive linear contraction
T on C[0, 1] such that Fix(T ) is not the range of any contractive projection
(nor even the range of any nonlinear nonexpansive retraction).

The purpose of this paper is to study the problem for positive linear con-
tractions in L∞. We deal with a commutative semigroup S of contractions,
and denote the set of common fixed points by Fix(S).

The important tools are:

1. The binary ball intersection property, enjoyed by L∞: If Bα is a col-
lection of closed balls such that any two balls intersect, then

⋂
Bα 6= ∅.

(This notion makes sense in any metric space; see [AP] for discussion).
2. Baillon’s fixed point theorem for S-invariant order intervals [B] (for

a single contraction T see [Si] or [So]).

Proposition 1. Let S be an amenable semigroup of linear contractions
in a dual Banach space X = Y ∗.

1. There exists a linear contraction R such that RT = R for every T ∈ S,
and Rx = x for x ∈ Fix(S).

2. If every T ∈ S is the dual of an operator T̂ on Y , then R is a
projection onto Fix(S) which commutes with S.

3. If there exists a contractive projection onto Fix(S), then there exists
one which commutes with S.
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P r o o f. 1. Let λ be an invariant mean on S. Define R by 〈y, Rx〉 =
λ(〈y, Tx〉) for y ∈ Y , x ∈ X. Clearly R is linear with ‖R‖ ≤ 1, Rx = x for
x ∈ Fix(S). By the invariance, RT0 = R for any T0 ∈ S.

2. For T0 ∈ S we have 〈y, T0Rx〉 = 〈T̂0y, Rx〉 = λ(〈T̂0y, Tx〉) = 〈y, Rx〉,
by the invariance of λ. Hence T0R = R for every T0 ∈ S. Hence R2 = R,
since 〈y, R2x〉 = λ(〈y, TRx〉) = λ(〈y, Rx〉) = 〈y, Rx〉.

3. Let Q be a contractive projection onto Fix(S), and define P = QR.
Then TP = TQR = QR = P for T ∈ S. Since Rx = x for every x ∈ Fix(S),
we have RQ = Q, hence P 2 = QRQR = Q2R = QR = P . Finally,
PT = QRT = QR = P for any T ∈ S.

R e m a r k. The first two parts are the abstract version of Lloyd’s re-
sult. Part (3) was suggested by Yoav Benyamini, and yields a different and
shorter proof than the authors’ original geometric proof of the next result.

Proposition 2. Let S be a commutative semigroup of linear contrac-
tions on L∞. Then there exists a contractive projection onto Fix(S) which
commutes with S.

P r o o f. By Baillon’s fixed point theorem, Fix(S) has the binary ball in-
tersection property, hence it is a P1-space [La, p. 93]. This shows that there
is a linear contractive projection onto Fix(S), and the previous proposition
finishes the proof.

R e m a r k. The novelty in Proposition 2 is the fact that we can find
a contractive projection which commutes with S. The proof uses the fact
that L∞ is a dual space, and is valid for any (space linearly isometric to)
C(K) with K hyperstonian. The result for any K extremally disconnected
compact Hausdorff space (i.e., for all P1-spaces) is also true, but requires a
different proof (which will appear elsewhere). Theorem 3 below will then
apply to C(K) for such K (with the same proof).

Theorem 3. Let S be a commutative semigroup of positive linear con-
tractions on L∞. Then there exists a positive contractive projection onto
Fix(S) which commutes with S.

P r o o f. We will show that the projection obtained in Proposition 2 must
be positive. In fact, any contractive projection P onto Fix(S) is positive.

Since T0 = 0, we can define

u =
∨
{ω ∈ Fix(S) : 0 ≤ ω ≤ 1} .

For T ∈ S we have Tu ≥ u ≥ 0 and T1 ≤ 1, since T is positive. Hence the
nonempty closed order interval [u, 1] is S-invariant, so by Baillon’s theorem
[B] must contain a fixed point u′ ∈ Fix(S). But u ≤ u′ ≤ 1, so by definition
u′ ≤ u and u is a maximal S-invariant function in [0, 1]. Moreover, if ω ∈
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Fix(S) with ‖ω‖∞ ≤ 1, then |ω| = |Tω| ≤ T |ω| for every T ∈ S, so the S-
invariant order interval [|ω|, 1] contains a fixed point ω′, hence |ω| ≤ ω′ ≤ u.

Now |2u− 1| ≤ 1, so applying the above to ω = P (2u− 1) yields

2u− P1 = P (2u− 1) ≤ u .

Hence u ≤ P1 ≤ 1, and therefore P1 = u, by the maximality of u.
Now for 0 ≤ f ≤ 1 in L∞ we have |1−2f | ≤ 1 and |P (1−2f)| ≤ u. Thus

u− 2Pf = P (1− 2f) ≤ u

and Pf ≥ 0. Hence P is positive.

As noted in Proposition 2, Fix(S) has the binary ball intersection prop-
erty. Hence Fix(S) is linearly isometric to C(K), for K extremally discon-
nected [La, p. 93]. If S consists of positive operators, the isometry will be
positive, as is shown below (by Theorem 3, we have to consider only S = {P}
with P a positive contractive projection).

Theorem 4. Let F 6= {0} be a closed subspace of L∞. Then the following
conditions are equivalent :

(1) F is the range of a positive contractive projection.
(2) In the induced order , F is a boundedly complete lattice with (strong)

order unit.
(3) There exists an extremally disconnected compact Hausdorff space K

with a positive linear isometry of C(K) onto F .

P r o o f . (1)⇒(2). Let P be a positive contractive projection with range
F . By [LS], F = Fix(P ) is a boundedly complete lattice in the induced order.
Now u as defined in the proof of Theorem 3 (with T = P ) is a maximal
element in the unit ball of F , by its properties obtained in that proof.

(2)⇒(3). We show that F is an abstract M -space with unit. Let u be
the order unit in F , and f, g ∈ F nonnegative. Let α = ‖f‖∞, β = ‖g‖∞.
By maximality of u, 0 ≤ f ≤ αu, 0 ≤ g ≤ βu. Denoting the lattice op-

erations in F in the induced order by
F
∨, we have f

F
∨ g ≤ (α ∨ β)u, so

‖f
F
∨ g‖ ≤ ‖f‖ ∨ ‖g‖. The reverse inequality is obvious. Now by Kakutani’s

representation theorem F is isometrically and order isomorphic to C(K)
for some compact Hausdorff K. Since C(K) is order complete (F is), K is
extremally disconnected [La, p. 92].

(3)⇒(1). By the Nachbin–Kelley theorem, F is a P1-space [La, p. 92],
and there exists a contractive projection P from L∞ onto F . We will show
that P is positive. Let ϕ be a positive linear isometry of C(K) onto F , and
let u = ϕ(1). Then u is maximal in the unit ball of F , and the positivity of
P is proved by the arguments at the end of the proof of Theorem 3.
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R e m a r k s . 1. Our original proof, for (1)⇒(3), essentially constructed
the representation. U. Krengel suggested to just reduce the problem to
Kakutani’s theorem.

2. The proofs use only the lattice properties of L∞, but (unlike Theorem
3) they do not use the fact that it is a dual space. Hence L∞ can be replaced
in the theorem by C(K ′), K ′ Stonian.

3. In the case F = Fix(T ) for T a positive contraction this last result
gives an abstract Feller boundary for T .

Proposition 2 and Theorem 3 have the following analogues for nonex-
pansive maps on L∞.

Proposition 5. Let S be a commutative semigroup of nonexpansive
maps on L∞. If Fix(S) 6= ∅, then there exists a nonexpansive retract map
onto Fix(S) which commutes with S.

P r o o f. By Baillon’s theorem [B], if Fix(S) is nonempty, it has the bi-
nary ball intersection property. By [AP] there is a nonexpansive retract
map Q of L∞ onto Fix(S). Imitating the proof of part 1 of Proposition 1 we
obtain a nonexpansive map R with the same properties as in Proposition 1.
The computations in the proof of part 3 of Proposition 1 show that P = QR
is the desired retract map.

Theorem 6. Let S be a commutative semigroup of order preserving non-
expansive maps on L∞. If Fix(S) 6= ∅, then there exists an order preserving
nonexpansive retract map onto Fix(S) which commutes with S.

P r o o f. The case S = {Tn} was proved in [LS]. By using [B] instead of
[Si] in the proof, we obtain Theorem 6.

R e m a r k s . 1. The novelty in Proposition 5 (as in Proposition 2) is that
the retract map commutes with S. The proof of Proposition 5 uses the fact
that L∞ is a dual space, so it is not adaptable to general hyperconvex spaces.

2. The important feature in Theorems 3 and 6 is the order preserving
property. Unlike the proof of Theorem 3, the proof of Theorem 6 constructs
the retract map (as in [LS]) without using Proposition 5 (it uses [B], but not
[AP]). Hence Theorem 6 is valid for C(K) with K extremally disconnected
compact Hausdorff space.

3. We give below a simple proof of the fixed point theorem of [B] for
order preserving maps of a bounded interval into itself (nonexpansiveness
is needed explicitly only in order to deduce that Fix(S) has the binary ball
intersection property, which is used in the proof of Proposition 2. This is
easily deduced from the fixed point theorem).

Proposition 7. Let S be a commutative semigroup of order preserving
maps of a bounded order interval I ⊂ L∞ into itself. Then S has a fixed
point in I.
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P r o o f. Let T be the set of S-invariant subintervals of I, and order T
by inclusion. If {Iα} is a decreasing chain in T , then

⋂
Iα is an interval and

is S-invariant, so is the g.l.b. of {Iα}. (If Iα = {h : fα ≤ h ≤ gα},∨
fα and

∧
gα are defined in the boundedly complete lattice L∞, and⋂

Iα = {h :
∨

α fα ≤ h ≤
∧

α gα}). By Zorn’s lemma T contains a minimal
element Ī = {h : f̄ ≤ h ≤ ḡ} with f̄ , ḡ ∈ I.

Fix T0 ∈ S. By invariance of Ī , f̄ ≤ T0f̄ ≤ ḡ. For any T ∈ S, we have
ḡ ≥ T (T0f̄) = T0(T f̄) ≥ T0f̄ using commutativity. Hence {h : T0f̄ ≤ h ≤ ḡ}
is S-invariant, since all T ∈ S are order preserving. By minimality of
I, T0f̄ = f̄ . Since T0 ∈ S was arbitrary, f̄ is a fixed point for S.
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Reçu par la Rédaction le 28.8.1989


