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ON THE STRUCTURE OF G-SPACES ∗

BY

JESÚS M. F. CAS T ILLO ∗∗ (BADAJOZ)

§1. Introduction. We study the class of those locally convex spaces
which are reduced projective limits of Banach spaces with approximable
linking maps, named G-spaces. Obviously each nuclear space is a G-space
and each G-space is a Schwartz space with the Approximation Property.
The first implication is strict, and it is an open question, posed by Ramanu-
jan, whether the second is so or not. It was proved by Nelimarkka that
each Fréchet–Schwartz space with the Bounded Approximation Property is a
G-space. Therefore we find the following situation:

Fréchet–Schwartz + BAP ↘
G-space → Schwartz + AP

↗Fréchet nuclear

(where the first two arrows cannot be reversed).
In this paper we introduce two “local” versions of the BAP: with respect

to a finite number of seminorms (property G) and with respect to bounded
sets (property L). These properties characterize the Schwartz G-spaces as
precisely the G-spaces, and the co-Schwartz L-spaces as the spaces whose
strong dual is a G-space. It follows that each Schwartz space with BAP is
a G-space.

There is another sense in which it could be said that an lcs locally has
BAP: when it possesses a fundamental system of neighborhoods of zero such
that the associated Banach spaces have BAP. Let us call Schwartz spaces
with this property G∗-spaces. The question of whether G- and G∗-spaces co-
incide arises, and extends a (somewhat different) question of Schottenloher.
We prove that:

A Hausdorff lcs is a G-space if and only if it is a locally complemented
subspace of a G∗-space

(the definition of local complementation is in the paper).

∗ This paper corresponds to a part of the author’s thesis [4].
∗∗ Supported by a Beca de la Caja de Ahorros de Badajoz.
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Since Schwartz spaces with local BAP are G-spaces, and Schwartz spaces
with local FDD are G∗-spaces, the above theorem generalizes (adding “local”
before the key words) the well-known structure theorem of Benndorf: An
lcs is a Schwartz space with BAP iff it is a complemented subspace of a
Schwartz space with an FDD.

Therefore, this paper shows, in essence, that the class of G-spaces is
an extension (obtained by localization) of the class of Schwartz spaces with
BAP. This generalization has been shown to be a suitable framework for the
study of approximation structures in Schwartz spaces, with the desirable
bonus of including the nuclear spaces.

§2. Preliminaries. An operator means a linear continuous map.
L(E,F ) denotes the class of all operators acting between the spaces E and
F . F and G will represent the ideals of L formed by finite rank and ap-
proximable operators respectively, that is, G is the closure of F in L in the
operator norm.

If E is a Hausdorff locally convex space (in short lcs), U(E) denotes
a fundamental system of absolutely convex closed neighborhoods of 0 in
E. For U ∈ U(E), with gauge pU , EU is the space E/ Ker pU endowed
with the norm ‖φU (x)‖U = pU (x), where φU is the quotient map. For
V ∈ U(E), V ⊂ U , the linking map TV U is defined by TV UφV (x) = φU (x),
and T̂V U ∈ L(ÊV , ÊU ) denotes its extension to the completions. B(E)
denotes a fundamental system of absolutely convex closed bounded sets of
E. When A ∈ B(E), with gauge pA, EA is the space span(A) endowed with
the topology of the norm pA. When B ∈ B(E), A ⊂ B, the operator iAB

is the canonical inclusion from EA into EB , and îAB its extension to the
completions.

An lcs E is said to be a G-space (resp. a Schwartz space) when for each
U ∈ U(E) there exists a V ∈ U(E) such that T̂V U is approximable (resp.
is compact). E is said to be a co-G-space (resp. a co-Schwartz space) when
for each A ∈ B(E) there exists a B ∈ B(E), A ⊂ B, such that îAB is
approximable (resp. compact).

By using the tensorial representation of finite rank operators, it is easy
to see that:

Lemma 1. Let X and Y be normed spaces and T ∈ G(X, Y ). Assume
that Z is a dense subspace of Y with T (X) ⊂ Z. Then T ∈ G(X, Z).

An equivalent definition of G-space can now be given as follows: an lcs
E is said to be a G-space when for each U ∈ U(E) there exists V ∈ U(E),
V ⊂ U , such that TV U ∈ G(EV , EU ).

An lcs E which is a subspace of an lcs F is said to be complemented in
F when a continuous projection P from F onto E exists.



G-SPACES 83

Definition 1. We will say that E is locally complemented in F when
there exists a fundamental system of neighborhoods of 0, U(F ), such that
for each U ∈ U(F ) ÊU∩E is complemented in F̂U .

The idea of local complementation is taken from [11, Lemma 14], which
also proves that if E is complemented in F then it is locally complemented.

Let E and F be lcs and T ∈ L(E,F ). For each V ∈ U(E) and U ∈ U(E)
such that U ⊂ T−1(V ), T can be interpreted as an operator in L(ÊU , ÊV ).
The induced map is defined by the equation T (φUx) = φV (Tx), and then
extended to the completions.

For general facts about the Approximation Property (AP) and the
Bounded Approximation Property (BAP) we refer to [7], [9] and [8]. An
lcs E has AP when for each precompact set K and each 0-nbhd U ∈ U(E),
a finite rank operator T ∈ F(E) exists such that (IdE −T )(K) ⊂ U . E is
said to have BAP if the identity on E belongs to the closure of an equicon-
tinuous set of finite rank operators on E, the closure being taken in the
topology of uniform convergence on precompact sets. When E is a separa-
ble Fréchet space this is equivalent to the existence of a sequence of finite
rank operators pointwise convergent to the identity.

If E is an lcs and (An) a sequence of finite rank operators witnessing
BAP in E, then the sequence (Bn) such that B1 = A1, and Bn = An −
An−1 (n ≥ 2), is called a partition of the identity of E. When a partition
(Bn) can be found satisfying not only

∑
n Bnx = x uniformly over compact

sets but also BnBm = δnmBn then it is said to be a Finite-Dimensional
Decomposition (FDD) of E.

§3. Internal structure. We will say that a net (Ai)i∈I of operators on
E is equicontinuous with respect to U ∈ U(E) when the set

⋂
i A−1

i (U) is a
0-nbhd in E; and we will say that it is equibounded with respect to B ∈ B(E)
when

⋃
i Ai(B) is a bounded subset of E.

It is clear that (Ai)i∈I is equicontinuous with respect to U if and only
if (φUAi)i∈I is equicontinuous; and equibounded with respect to B if and
only if (AiiB)i∈I is equibounded.

Definition 2. A locally convex space E is said to be a G-space when
for each U ∈ U(E) there exists a net (Ai) of finite rank operators of F(E),
equicontinuous with respect to U , and such that for each x ∈ E the net
(Aix) converges to x in the seminorm pU .

Theorem 1. Let E be an lcs. E is a G-space if and only if E is a
Schwartz G-space.

P r o o f. Let E be a Schwartz G-space. Let (Ai) be a net of finite rank op-
erators of E pointwise convergent to the identity with respect to pU . By the
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equicontinuity with respect to U , taking V ⊂
⋂

i A−1
i (U), we may consider

the net in L(EV , EU ), keeping the convergence feature. Since now ‖Ai‖ ≤ 1,
we get the convergence of (Ai) to T̂V U uniformly on compact subsets of ÊV .
E being a Schwartz space, the net (AiT̂WV ) is norm convergent to T̂WU for
some W ∈ U(E). Thus E is a G-space.

On the other hand, it is clear using the tensorial representation of fi-
nite rank operators and the isomorphism (EU )′ = E′

U that a G-space is a
G-space.

Definition 3. An lcs E is an L-space when for each B ∈ B(E) there
exists a net (Ai) of finite rank operators of F(E), equibounded with respect
to B, such that for each x ∈ B the net (Aix) converges to x in the topology
of E.

Theorem 2. Let E be an lcs. The strong dual E′
b of E is a G-space if

and only if E is a co-Schwartz L-space.

P r o o f. Let E be a co-Schwartz space. By Theorem 1 we only need to
prove that E′

b is a G-space. Let A ∈ B(E), and find B ∈ B(E) such that A
is relatively compact in EB ; let (Ai) be a net of finite rank operators of F(E)
pointwise convergent to the identity on EB . We use the equiboundedness
of (Ai) to find a C ∈ B(E) containing Ai(B) for all i ∈ I; this yields
that for any neighborhood V of 0 there is some scalar k > 0 such that
B ⊂

⋂
i A−1

i (kV ), which implies that ‖Ai‖ ≤ k as operators in L(EB , EV ),
and, therefore, that the convergence of (Ai) to the identity with respect to
pV is uniform on compact sets of EB . We thus have

sup
x∈A

pV (x−Aix) ≤ n−1 for large i .

Now, the net (A′
i) ⊂ F(E′

b) satisfies

pA◦(a−A′
ia) ≤ pV ◦(a) sup

x∈A
pV (x−Aix) ≤ pV ◦(a)n−1 for large i ,

where V is some neighborhood of 0. This gives the pointwise convergence
of (A′

i) with respect to pA.
We only need to prove the equicontinuity of (A′

i) with respect to A.
Following the preceding reasoning we have

pA◦(A′
ia) ≤ pC◦(a) sup

x∈A
pC(Aix) ≤ 1 when a ∈ C◦ .

To prove the converse implication, assume that E′
b is a G-space or,

equivalently (see [11]), E is a co-G-space. Given A ∈ B(E) we can find
a B ∈ B(E) such that iAB is a compact operator, and then a C ∈ B(E)
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such that iBC is an operator approximable by a sequence

An =
k(n)∑
i=1

ai ⊗ yi

of finite rank operators, where ai ∈ (EB)′, yi ∈ EC and where we assume
that pC(x−Anx) ≤ n−1pB(x).

Applying the lemma of [14] we will find functionals bi belonging to the
dual of EB endowed with the induced topology, such that

|bi(x)− ai(x)| ≤ (nk(n)pC(yi))−1 when x ∈ A .

We extend, by using the Hahn–Banach theorem, the bi to functionals
(with the same names) bi ∈ E′, and form the operators

Bn =
k(n)∑
i=1

bi ⊗ yi

which belong to F(E). If U ∈ U(E) then

pU (x−Bnx) ≤ MpC(x−Bnx) ≤ 2Mn−1 when x ∈ A ,

where M is a constant which depends on U and C (and thus on A). E is
therefore an L-space.

Properties G and L can be regarded as generalizations of BAP, in some
sense intermediate between BAP and AP: it is clear that in Banach spaces
BAP, L and G are equivalent. In general, BAP implies both G and L, but
the converse is not true (take a Fréchet nuclear space E without BAP (see
[6]): E is clearly a G- and dual-G-space, and hence a G- and L-space). On
the other hand, it can be proved, with the same techniques as for Theorems
1 and 2, that a G-space has AP and that an L-space whose compact sets
form a Schwartz bornology (see [8]) also has AP.

It is an open question whether any Schwartz space with AP is neces-
sarily a G-space. This was posed by Ramanujan in [12, problem 22]. Neli-
markka gave in [11] a partial answer: Fréchet–Schwartz spaces with BAP are
G-spaces. Our Theorem 1 extends this result to general Schwartz spaces.

Remarks about UAP. The Uniform Approximation Property was defined
in [3] as follows: a Hausdorff lcs E has UAP when for each U ∈ U(E) there
exist a V ∈ U(E) and a sequence (Tn) of finite rank operators in F(E)
such that pU (x − Tnx) ≤ n−1pV (x) for all x ∈ E. It turns out that an lcs
has UAP if and only if it is a G-space [3]. Analogously, we define co-UAP
as follows: for each A ∈ B(E) there exist a B ∈ B(E) and a sequence
(An) of finite rank operators in F(E) such that pB(x − Anx) ≤ n−1 for all
x ∈ A. An lcs is a dual-G-space if and only if it has co-UAP [4]. These
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properties are relevant when studying approximation structures in Schwartz
and co-Schwartz spaces [5].

§4. External structure. Besides Hilbertizable spaces, very little is
known about the structure of the Banach spaces associated to a Schwartz
space E: there is a fundamental system U(E) of 0-neighborhoods such that
for all U ∈ U(E), EU is a subspace of c0; this is false for c0 replaced with
any other lp, 1 < p < +∞.

We will treat this question for G-spaces. Theorem 1 suggests the follow-
ing

Definition 4. We call an lcs E a G∗-space when it is a Schwartz space
and has a fundamental system of neighborhoods of zero whose associated
Banach spaces have BAP.

The relation with G-spaces is given by the following:

Theorem 3. An lcs E is a G-space if and only if it is a locally comple-
mented subspace of a G∗-space.

P r o o f. The “if” part is clear. We will prove the “only if” part: let us
assume that E is a Fréchet G-space. We shall give a rather detailed outline
of the proof.

Using UAP it is possible to find a fundamental system of continuous
seminorms (pk)k∈N in E, and sequences (Bk

v )v∈N of finite rank operators of
F(E) satisfying:

1. x =
∞∑

v=1

Bk
v x (convergence in pk) ,

2. pk(Bk
v x) ≤ xvpk+1(x) , x ∈ E ,

where (xv) is a rapidly decreasing sequence with all terms positive. So we
have for some constants Cn

∞∑
v=1

vnpk(Bk
v x) ≤ Cnpk+1(x) .

In this way the seminorms

qk,n(x) =
∞∑

v=1

vnpk(Bk
v x)

define the same topology in E as the (pk), and we have pk(x) ≤ qk,n(x) ≤
Cnpk+1(x).

Let (Ak)k∈N be a partition of N into an infinite number of infinite sets.
Let k : N → N be the counting function on Ak : k(v) = the vth member
of Ak.
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We define F = {(yn) ∈ EN : yk(v) ∈ Bk
v (E), pk(yk(v))v∈N ∈ (s) for all

k ∈ N, and there exists xk ∈ E such that the series
∑∞

v=1 yk(v) converges
to xk in the seminorm pk}.

For Y = (yn) ∈ F we put

sk,n(Y ) =
∞∑

v=1

vnpk(yk(v)), tk,n(Y ) = max
{

qk,n

( ∞∑
v=1

y(k+1)(v)

)
, sk,n(Y )

}
.

It is easy to see that both formulae define seminorms on F . A fundamental
set of seminorms for a locally convex separated topology on F is given by

1h,m(Y ) = max
k≤h

n≤m

{sk,n(Y )} , 2h,m(Y ) = max
k≤h

n≤m

{tk,n(Y )} .

Both topologies coincide since 1k,n(Y ) ≤ 2k,n(Y ) ≤ Cn1k+1,n(Y ).
We define T : E → F by x 7→ (xn), where

xk(v) = Bk
v (x) .

T is linear, injective and bi-continuous:

sk,n(Tx) =
∞∑

v=1

vnpk(Bk
v x) = qk,n(x) ,

thus 1h,m(Tx) and qh,m(x) are equivalent (as well as 2h,m(Tx) and qh,m(x)).
We have proved that E is a subspace of F .
We shall now see that F is a G-space: Define Ck

v : F → F by Y 7→ (zn),
where {

zn = yj(v) when n = j(v) and j ≤ k;
zn = 0 otherwise.

Since yk(v) ∈ Bk
v (E), Ck

v is a finite rank operator. Moreover,

1h,m

( t∑
v=1

Ck
v (Y )

)
= max

k≤h

n≤m

{ t∑
v=1

vnpk(yk(v))
}
≤ 1h,m(Y ) ,

which proves that for each t ∈ N,
∑t

v=1 Ck
v is a continuous operator in

L(F1h,m
, F1h,m

) with ‖
∑t

v=1 Ck
v ‖ ≤ 1.

To conclude that each associated Banach space F̂1h,m
has BAP, we only

need to prove that Y =
∑∞

v=1 Ck
v (Y ) (convergence in 1h,m). We will prove

simultaneously that F is a G-space showing that it has UAP:

1h,m

(
Y −

t∑
v=1

Ck
v (Y )

)
= max

k≤h

n≤m

{ ∞∑
v=t+1

vnpk(yk(v))
}

≤ t−1 max
k≤h

n≤m+1

{ ∞∑
v=t+1

vnpk(yk(v))
}
≤ t−11h,m+1(Y ) .
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Finally, we shall prove that E is locally complemented in F . We need the
system (2h,m): Define P : (F, 2h,m) → (T (E), 2h,m) by Y 7→ P (Y ) = (zn),
where

zk(v) = Bk
v

( ∞∑
v=1

y(h+1)(v)

)
.

It is easy to see that P (Y ) = T (
∑∞

v=1 y(h+1)(v)). It is clear that P is linear.
It is also continuous:

2h,m(P (Y )) = 2h,m

(
T

( ∞∑
v=1

y(h+1)(v)

))
= qh,m

( ∞∑
v=1

y(h+1)(v)

)
≤ 2h,m(Y ) .

Since P (Tx) = T (
∑∞

v=1 Bh+1
v x) = Tx the restriction of P to T (E) coincides

with the identity on T (E).
When E is not metrizable, the same proof applies with only minor

changes: instead of a partition of N we need a partition of a set I with
the cardinality of a base of 0-nbhds of E.

Remarks. The system (2h,m) in F is needed in order to obtain the local
complementation of E in F ; the system (1h,m) is needed in order to obtain
associated Banach spaces with BAP. Note that those Banach spaces have
even an FDD. In fact, the constructed space F does have a local FDD (an
obvious definition in the same spirit as that of local BAP).

Following [6, pp. 169–170] it can be proved that:

Proposition 1. If E is a G-space with a local FDD , then it is a
G∗-space.

Having Theorems 1 and 3 we see that the class of G-spaces can be re-
garded as a generalization of the class of Schwartz spaces with BAP: in
Theorem 1 it is proved that the G-spaces are the Schwartz spaces with local
BAP. We look now to [2, Thm. 3]: “E is a Fréchet–Schwartz space with
BAP if and only if it is a complemented subspace of a Fréchet–Schwartz
space with an FDD”. The passage to “local” allows us to forget the metriz-
ability condition to obtain: “E is a Schwartz space with local BAP if and
only if it is a locally complemented subspace of a Schwartz space F with
a local FDD”. Theorem 1 asserts that such an E is exactly a G-space.
Proposition 1 says that F is a G∗-space, and thus we obtain the statement
of Theorem 3.

Remark about the origin of the embedding problem. An lcs E is said to
be a DFC-space if E = F ′

c for some Fréchet space F (here F ′
c represents the

dual space endowed with the topology of uniform convergence on compact
subsets of F ).

The question of Schottenloher cited in the introduction (see [13]) is:
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“Does every DFC-space E with AP have a fundamental system of neigh-
borhoods of zero (Ui) such that the associated Banach spaces Êi have BAP?”

First we note that:

Proposition 2 [4, 2.2.5]. Let F be a Fréchet–Montel space. Then the
following assertions are equivalent : 1. F has AP. 2. F is an L-space.
3. F ′

b is a G-space. 4. F ′
b is a G-space. 5. F ′

b has AP.

The proof follows from the techniques of Theorems 1 and 2. The equiva-
lence of 1, 3 and 5 can also be found in [11]. From the proof it can be clearly
seen that we can drop the assumption “Montel” on F , thus obtaining the
results for F ′

c instead of F ′
b.

Therefore the problem of Schottenloher can be viewed as the problem:
“Is each G-space a G∗-space ?”

for some special G-spaces.
In the first part of [10] M. L. Lourenço proves:
“If E is a DFC-space with AP, then E is a compact projective limit of a

family of Banach spaces with a monotone Schauder basis”.
This is tantamount to saying that special G-spaces (DFC-spaces with

AP) are subspaces of special G∗-spaces (with a local monotone basis). This
result of Lourenço gives, for those particular G-spaces, better information
about the “big” space, while our Theorem 3 gives a better knowledge of
the quality of the embedding. I believe that it is not possible to obtain
both at a time: a local complementation embedding in a bigger space with
a local Schauder basis. See [4] for some related problems and additional
information.

Whether each G-space is a G∗-space remains an unsolved question. On
the other hand, the universal Schwartz space [l∞, µ(l∞, l1)] is a G∗-space,
and thus each Schwartz space is a subspace of a G∗-space. We can prove
still more:

Proposition 3. Each Schwartz space is a subspace of a G∗-space with
BAP.

P r o o f. We use a result of Bellenot [1] which asserts that each Fréchet–
Schwartz space is a subspace of a G∗-space with BAP (in combination with
Theorem 1 and Proposition 1).

It is not hard to prove that each Schwartz space is a subspace of a prod-
uct of Fréchet–Schwartz spaces. Since the product of G∗-spaces is again a
G∗-space, the proof is complete.

Acknowledgment. Thanks are due to the referee for an outstanding
job.
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