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ON HERBRAND'S THEOREM
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The Herbrand theorem [1] asserts that with every formula a, (of
the clagsical predicate calculus) in the normal prenex form we can asso-
ciate an infinite sequence ay, a,, ... of formulas without gquantifiers such
that a, is provable if and only if one of the formulas a, (n = 1,2, ...)
is provable.

In this note I shall deal only with a part of the Herbrand theorem,
viz. with the following implication:

(Hy) If ay.is provable, then one of the formulas a, (n =1,2,...) is
provable.

The construction of formulas a, is rather special. I recall it by the
following example. E. g., let o, be the formula
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where the formula 8, containg no quantifier. Let ¥V = (@, ,, ...) be the
set of all individual variables(). Let f, be a fixed mapping of V into V,
and let g, be a fixed mapping of ¥ x ¥ into V. Then the Herbrand formula
a, (n =1,2,...) is the following one:

@) D) 3 Bolmsy folma)s 31, g0 (2, 2),

i=17=1
and the considered part (H,) of the Herbrand theorem asserts that if (1)
is provable, then one of the formulas (2) is provable (the remaining part
(H,) of the Herbrand theorem asserts that, under some additional hy-
pothesis about f, and g,, if one of the formulas (2) is provable, so is (1)).

(1) For simplicity we assume that the predicate caleulus under consideration
contains no terms except individual variables. In the opposite case some obvious
modifications are necessary.
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. We see that the Herbrand formulas a, have the form of disjunction:
3) an =yt Fbn
viz. they are a partial disjunction of an ‘“infinite disjunction”
(4) Bi+Bat+

Roughly speaking, if a, is provable, then (4) is also “‘provable”,
and, by (H,), there exists a positive integer « such that (3) is
provable.

In the usual set-theoretical interpretation of the classical predicate
caleulus, the logical formulas are interpreted as some subsets of & fixed
space X, the provable formulas are interpreted as the whole space X,
and the logical disjunction is interpreted as the seb-theoretical
union. Therefore the part (H;) of the Herbrand theorem reminds
us of the following well-known theorem of Borel on compact topo-
logical spaces:

(B) If X 4s compact and X = By+By+..., where B, are open, then
there ewists an integer n such that X = By--...4By.

The purpose of this paper is to show that (E,) is a direct consequence
of (B). More exactly, (H,) is a simple consequence of the Borel theorem
and of a representation theorem of Rieger (see [4], [5] and also
[3]). I recall here only the following immediate consequence of
Rieger’s theorem: ‘

(R) With every formula a of the predicate caleulus wnder consideration
we can associate o (Borel) subset (denoted here by ||lal|) of the Cantor discon-
tinuum O in such o way that:

lleall - A llawll;

| X a@) | = gna(wnu, [[]e@]= ﬁ lo ()3
(ii) ¢f a contains no quantifier, then the set |al| is open in C;

(iv) o is provable if and only if |la| = C.
In fact, suppose that the formula «, (see (1)) is provable. By (iv),

llall = C, d.e.
IS T1S [Ttesm ] =
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It follows from (ii) that

ST 160 @iy @iy a7 @l = €
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Congequently, by the well-known rules of distributivity for sets,

o 00

”22“50 ai, F)s @y 9@, @)l = C

Je®y gadby i=1 =1

where @, is the class of all mappings of ¥ into V and @, is the class
of all mappings of ¥ xV into V. In other words, we have
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for every fe®; and ge®P,. Consequently
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Since f, contains no quantifier, it follows from (iii) and the Borel
theorem that there exists an integer »n such that

> 3T 1Bo (ws, fo (@), @, g0 (e, )l = O

=1 j=1

By (i), we have

TS Bl o) @15 9o (@0, ) | = O,

=1 F=1

i.¢e. |lay]| = €. This proves, however (see (iv)), that a, is provable.

Notice that this set-theoretical proof is valid also for open theories
(in the Rieger theorem, ¢ denotes then a compact totally chsconnected
space, which does not alter the proof).

The proof of the second part (Hy) of the Herbrand theorem can also
be translated into the set-theoretical language. However, il seems from
the known proofs (see e.g. [2]) of (H,) that the substitution rule plays
an essential part in proving (H,). Since the logical substitution rule has
no analogue in the General Theory of Sets, thls tranglation does not
geem to be convenient.
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ON A COMBINATORICAL PROBLEM
BY
C. HYLTEN-CAVALLIUS (LUND)

1. This paper deals with the following problem:

A matrix is said to be of type (R, K),, where 0 < s < RK, if it has B
rows and K columns and if s of its elements are 1 and the rest 0. Now
let R, K,r, k%, where 1 <r< R and 1<k <K, be four given natural
numbers. - Whlch is the greatest number s __A(R K,r, k), such that
there exists a matrix of the type (B, K),, which does not contain any
minor of the type (r, k), 4. e. & minor W1th r rows and % columns and all
elements equal to 1%

This problem was (for B = K, r = k) raised by K. Zarankiewicz
in [3]. It is properly a logical problem and can be formulated in the follo-
wing way: Let F and T be two sets with B and K elements, respectively.
How many elements s can a relation between E and F (i.e. a subset @
of ExF) contain, without containing any subset of the type E’'x F',
where B’ and F' are subsets of F and F with r and & elements, respecti-
vely? In the following, however, we use the matrix formulation.

In [2] T. K6vari, V.T. S6s and P. Turdn proved that
(1) Anymy g, §) < gn-HIG—1) al=0,
where [#] denotes the integral pa.rt of x. They also showed the asymptotlc
formula .

(2) limA (n,n, 2, 2)%‘”3’2 = 1.
N0

The same method as was used in [2] to prove (1) can also, as mentioned
there, be used to give an estimate of A(R,X,r,k). This gives
#

(3) AR, E, 7, 1) < (r—DE+ (k—1)""E*"'R

after a slight sharpening of the estimates influencing the fivst term in the
second member.

In this paper I will in section 2 give a special method for estim-
ating A (R, K, 2, k) from above, which gives another estimate than that
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