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ON CONSTRUCTIBLE FALSITY IN THE CONSTRUCTIVE
LOGIO WITH STRONG NEGATION
BY
A. BIALYNICKI-BIRULA axp H. RASIOWA (WARSAW)

This article is a continuation of paper [9] of Rasiowa, in which an
algebraic characterization of the system < of the construetive proposi-
tional caleulus with strong negation was given. The terminology and
the notation is here the same as in [9]. The knowledge of [9] is here assu-
med.

The idea of the above-mentioned constructive logic with strong
negation is dve to David Nelson, who introduced in paper [7] a new con-
structive interpretution for logical connectives of the number theory
and characterized a formal system of the number theory satisfying this
interpretation. An analogical system of the number theory was later
investigated by Markov [6]. The system of the propositional calculus
with strong negation was examined by Vorobiev [12] and [13].

TUnder Nelson's interpretation of logical connectives the strong ne-
gation of a conjunction ~(a-g) is valid in case when at least one of the
formulas ~a, ~f is valid and a formula ~[Ja(x;) is valid if and only

Tr
if there exists such an &, that ~a (zz) is valid.

We deal in this paper with the above-mentioned system o and with
the system §* of the functional calculus based on o§. The algebraic charac-
terization of < is here generalized on J*. Using algebraic and topological
methods we prove that according to the idea of Nelson a formula ~(a-g)
is provable in ¢ or in &* if and only if at least one of the formulas ~a,
~p is provable. Similarly, a formula ~[]a(x;) is provable in <* if and

I

only if for some z, the formula N(a(:z)) is provable. The above mentio-

ned theorems are equivalent to the theorems stating that a disjunction

a+f is provable in & or in J* if and only if at least one of the formulas

a, f is provable and that a formula >'a(x;) is provable if and only if for
g

some w, the formula a(:llc;) is provable. The decidability of formulas of
d* having the prenex normal form follows from the last theorem.
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Moreover, the algebraic method of examination of the systems o§
and 5” permiﬁ us to show other theorems concerning provability in thege
systems. E. g. a formula without the sign of strong negation is provable
in & or in &~ if and only if it is provable in the Heyting propositional eal-
culus or in the Heyting functional calenlus, respectively. This result
concerning provability in & was first stated by Vorobiev.

Some other connections between provability in <§ and in the Heyting
propositional calenlus lead to the possibility of constructing simple functio-
nally free <){-lattices of sets, e.g. it is proved that every “{-lattice connec-
ted with the Heyting algebra of all open subsets of an n-dimensiona
Euclidean space is functionally free. -

We also give a very simple decision method for formulag of ¢§ ha-
ving the form o = f# (strong equivalence) where a and f are formulas
without the sign of implication and without the sign of intuitionistic
negation.

§ 1. The constructive propositional caleulus with strong negation.
The construction of the system I of the consiructive propositional caleu-
lus with strong megation can briefly be described as follows. The gystem
o contains as primitive symbols the parentheses, the propositional va-
riables p, p,, ..., and the following connectives: the disjunction sign +,
the conjunction sign -, the strong negation sign ~, the implication sign —,
the negation sign 7]. We assume that the notion of a formula is familiar.
The propositional variables are formulas of order one. If a is a formula
of order # then ~a and ~a are formulas of order n-+1. If o and g are
formulas whose orders are not greater than n and the order of at least
one of them is %, then the formulas a+f, o, a~> 8 are of the order
n-+1.

The set of of all awioms of the system o is composed of all formulas
of the following forms:

) a=>(B—>a) (2)(a—>(f~ y)) = (& = B) > (o — ),

(3) (a:f)—>a, (4) (@)~ B, (B) (y—a)=>((y = p)— (y — («*B)))

(6) a—>(atp), (7) f—(atp)y (8) (a—7)—((B~>9p) > ((atB) =)
{9) (e T18) = (f— "), (10) TJa—>(a->f), (11) ~a -+ (a-> p),
(12) ~(a = ) — (a-~B), (13) ~(a-f) <> (~a+~f),

(14) ~(a+B) & (~a-~P), (15) ~"Ja<> ¢, {(16) ~r~a > a,

where a, 8,y are arbitrary formulas of & and ‘o « f is written ingtead
of (a— f)-(8— a). In the sequel we §hall often write o = g instead of
(¢ ) (~ae ~B). A formula is said to be provable in provided
that it belongs to the smallest set T of formulas containing all the axioms
and closed under the modus ponens, i.e. such that if «, ¢ — B<C, then
BeT. In particular, every formula of § being a substitution of a formula
provable in the Heyting propositional ealeulus is provable in d, e. g.

©
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(17)

a—> (B> (a:f)), (18) (a— f) > ((B—>p) = (a > ),
(19)

(a—>(ﬂ—>y)) e-(ﬂ—>(a—>y)).

1.1. For a formula a(psy, -3 Diy)y where py, ..., i, ore all propo-
sitional variables appearing in a, there ewists a formula a® (Dyys -1 P4,
Piys-os Py,) comtaining at most the propositional variables Digy oy Piys
Piys -3 P;, ond for every k =1,...,n at least one of the variables Py
Dy, where Ji = ji, for k £ 1,5, # 4, k, 1 = 1,...,n, such that the sign ~
of the strong mnegation does not appear in o, and the formula

a(p’b'l: cevy pin) (—-)ao(piu sy iy Py ey ’\‘p‘iﬂ)ET’}
where a® (Diyy o+ Pips ~Piyy---y ~Py,) 18 the formula obtained from of
by substitution ~py, for py, k=1,..., n.

This last formula will also be denoted by s(af).

The easy proof by induction with respect to the order of a formula
a uging (3)-(8) and (12)-(19) is omitted.

Obviously, if o'{p,,..., Diyy Diyy -+ 95,) fulfils the condition of
theorem 1.1 for the formula «, i.e. o« s(a®)¢C, then the formula ob-
tained from «° by substitution of Pmy, for py s k= 1,..., n, where my, 4,
for k,1=1,...,n and my = m, for k + I satisties the same condition.

It is easy to show that

1.2. Let @ (Piys -- -, Py o3 Pig )y az(pily e Dagy Pigggreees pik+l+m)7
where i, # i for r % s be any formulas of S. Let a®
and ag (pily Ty pikipik+l+l ERRRE] pik+z+m7 Piys-ees Pz pik+l+1 IARES ] pjk+l+m)
where Jo 7 js for v # 5 and jr 45, 1,8 =1, ..., k-l--m be the formulas
satisfying the conditions of theorem 1.1 for ay and ay, respectively. Then the
formula s(af~+a3) > (a4 ay) is provable in S, i.e. - od fulfils the con-
dition of theorem 1.1 for the formula -+ ag.

(Daysy ooy Pig iy Piyseeesy pz'k_,_z)

§ 2. The constructive functional caleulus with strong negation.
Let I, denote always the set of all positive integers. The system o* of
the functional calculus based on the constructive propositional calculus
with strong negation contains as primitive symbols the parentheses,
the individual variables @, , @,, ..., the functional variables F, Py, ...(kel,)
where »(%) for keI, is the number of arguments of F, all connectives
appearing in <, and quantifiers >, I] where icI,. We assume that the

notions of formula and of a free and ‘bound oceurrence of an individual
variable in a formula are familiar. The set «7* of all axioms of * consists
of all formulas of the forms (1)-(16) given in § 1, where a, 8, y are arbi-
trary formulas of &* and g «> £ i3 written instead of (« — ) - (B — a).
The set T* of all provable formulas is the least set of formulas fulfilling
the following conditions: (i) T contains all the axioms, (ii) if a, a— BeT®,
then 8¢T™; (iii) if aeT* and g is obtained from by the admissible repla-

Colloquium Mathematicum VI 19
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(iv) it & »[1,95““‘

T*; if there is no fleu oceur-

cement of all free occurrences of @; by w, then B¢ T";
then ¢ — BT if voc—»/)’e’?“ then o> T
*, then a— ] I feT"; if there is no free occur-

then Zw-»ﬁe( (v) it a-— NZﬁET*

N[]cx ~peT” then ~a-+feT*; if there is no free

rence of 2; in a d]ld a -~ feT

rence of w; in f and a— BT
then ¢ — Nﬂsf‘ ; if
, then ¢ -+ ~2/3e( ; if there is no

then ~”a - BT,

occurrence of x; in a and a—> ~feT”
. ek
free occurrence of #; in f and ~u > fe'C’,

For instance, the following EolmuLm <u'e pmvxble in ",
(17 ) a— ya, (18%) NZa = 0, ]]a»-—rx ("0 )~ Nna,

ZNCL - N]Ia, (2‘) Nna - S’Nu’ YNa = NZa,

(247) ~ va_>n~a, (25%) ]7 a_>/; w,(na»nﬁ) ‘(26" ” amm

(Z“>Zm o) fIaﬁF%Ha[M) 28>zw+ﬂ«42h42m
(Ha+Hﬁ)—>H atp), (3% S’( . : 2‘[}

§ 3. W-lattices. Let B =(B, +,-, ~> be a gquasi-Boolean algebra,
(see [2]), 1. e. a distributive lattice with the unit element ¢ and the zero
element O, such that the following conditions are satistied for the opera-
tion ~ of the quasi-complement:

~(~ea)=¢, ~(ab)=~at+~b for any a,beB.

Clearly, every Boolean algebra is a quasi-Boolean algebra.
Let X be 2 non-empty set and let g be an involution of 9, i.e.
a one-to-one mapping of X onto X such that

9(g(@) ==
Setting
(20) ~Y =X —g(X)

it i3 easy to verify that every family of subsets of & which contains X
and is closed under thus defined operation ~ of the quasi-complement,
as well as under the set-theoretical operations of sum and produet, is
a quasi-Boolean algebra. It will be called a quasi-field of sets. It is
known (see [2]) that

3.1. For every quasi-Boolean algedra B, there exist o set X and an
involution g of X such that B is isomorphic with a subalgebra of the qUaSi-
~field of all subsets of X. More precisely, the set X consists of all prime
filters of B, amd the involution g is defined as follows:

-

for every e .

for every X C X
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(21) 9(q) = B—q,
where § is the set of all elements ~& such that beq, and the isomorphism
hoof B into the quasi-field of all subsets of O is given by the equality
(22) h(@) = F (aeq).
e\’

An algebra 4 = (4,6, 4, +; ~, =, 7 it said to be an i-lattice
(cf. [9]) provided that
(n,) A is quasi-ordered by the relation < defined as follows:

6 <bif and only if a->0 = e,

i.e. the relation < is reflexive and transitive;

(n;) the abstract algebra (4, +,0, ~> is a quasi-Boolean algebra
with the unit element e and the zero element O = ~e; the relation C
defined by the equivalence

aCh if and only if @« < b and ~b < ~a

is the partial ordering relation of this lattice;
(13) @ < ¢ and b < ¢ imply a-+-b < e,
(ns) ¢ < @ and ¢ < b imply ¢ < a-b,
(Ws) ~(a—b) < (a-~b),
(ng) (@-~b) < ~(a-=1),
(ny) & < ~7] &,
( ) ~ Tla < a,
Ng) G-~ < b,
(nm) a<b-cif and only if ¢ b < ¢,
(ny) Tla = a— 0.

Let &X; be a topological space in which Int is the operation of inte-
rior, and let H(X;) be a Heyting algebra(*) of open subsets of X, con-
stituting the class of neighbourhoods of X,. Let —; denote the opera-
tion of pseudocodifference in H(S;) and let 7}, denote the operation
of pseudocomplement in H(X(,), i.e., .

X - ¥ = Int((%, —X)+ ¥) for any X, ¥ e H(9,),
X = Int (%, —X).

Let 9, be a set of the same cardinal as %,. Let f be a one-to-one
mapping of X, onto X, such that f(w) = & for weX;-X, and such that

(23)

(24) A XaC N (F(Inb (0 —X)+-X).
XeH(X1)
We shall set X = X, +F(X;) = X;+X,. Then the mapping g

(1) For the notion of the Heytling algebra of sets see e. g. [9].
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of & onto X defined as
f(x) for
&)  tor

zeX,,

g(w) = {Dégfa

i an involution of %X.

Let B(9() be the class of all subsets of X defined as follows: a subset
X C X belongs to B(X) if and only if it fulfils the conditions
i) X-XyeH(EX,), -

(i) there exists YeH(X,) such that X-X; = Xy—g(¥),
{iil) X-% C ¢(X) X,.

Then B(%X) is a 9C-lattice under the set-theoretical operations of
sum and product, the operation ~ of quasi complement defined by (20)
and under the operations — of the 9-codifference and ™| of the )-com-
plement defined as follows:

(25) X ¥ = (XX~ ¥-00)+(X—g(X-90)+ Y,
X =X—-> A (ct [9]).

Notice that

(26) . X< Yif and only if A, X CX,Y.

The 9-lattice B(X) will be called an 9-lattice of sets connected with
the Heyting algebra H(9X,).

Its every subalgebra B, () will be called an N-lattice of sets. Let
H,(%(;) be the class of subsets of %; of the form

X9, where X eB,(%X).

Then (see [9], (iii)) H,(%X;) is a Heyting algebra of sets, being a subalgebra
of the Heyting algebra H(;). The algebra H,(X;) will be called the ba-
sic Heyting algebra of B, (X).

It follows immediately from the above construetion of an 9(-lattice
B(X) that

3.2. For every Heyting algebra H(X,) there exists an Y-lattice of sets
B(X) such that H(X,) is ils basic Heyting algebra.

It has been proved (see [9], (3.8)) that

3.8. For every W-lattice A there ewists an N-lattice of sets B, (X) iso-
morphic with A.

We shall say that a quasi-Boolean algebra B = (B, -+, -, ~> can
be extended to an- -lattice provided that there exists an N-lattice
A=<(4, 6,4+, ~,—, 1> such that B is isomorphic with a subalge-
bra of the quasi-Boolean algebra {4, +, -, ~>.

icm
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3.4. A quasi-Boolean algebra B = (B, +, -, ~> can be estended to
an WN-lattice if and only if the following condition is satisfied:

27) (a*~a@)+(b+~b) = (b+~b) for any a, beB.

The necessity of (27) follows from the fact that in every 9-lattice
this condition is satisfied (see (n,)(n,) § 3).

To prove the sufficiency, let us suppose that B is a guasi-Boolean
algebra fulfilling condition (27). First of all we shall show that
(28) either g(q) Cq or qC g(q) for every prime filter q of B, where the

mapping g is defined by equality (21).

In fact let us suppose that non qC g(q). Hence there exists an a
such that aeqand a¢g(q). It follows from a¢g(q) that ~aeq. Thus a-~aeq.
We shall show that g(q) C . Let us suppose that beg(q). It is easy to
see that ~be¢q. But it follows from (27) that a~a C b4 ~b. Conse-
quently, b+ ~beq. Since q is a prime filter, and ~beq, we infer that
beq.

Let X; be the set of all prime filters such that qC g(q), and let 9,
be the set of all prime filters q for which the condition g(q) C q is satis-
fied. Let X be the set of all prime filters of B. Obviously we have

X =N, +X,.

Morcover, it is easy to verify that ¢(%X;) = X,. We shall treat X; as
a topological space with the discrete topology, i.e. we set Int X = X
for every X D X,. Let H(,) be the Heyting algebra of all subsets
of X,. Let B(X) be the class of all subsets of X fulfilling the condition
XX, Cg(X-X,). Then it is easy to see that this class coincides with
the class of all subsets of X satisfying conditions (i), (ii), (iii). Hence,
B(X) is an 9-lattice of sets. Moreover the class of all elements of B(X)
of the form X = h(a), aeB, where h is defined by (22), is a subalgebra
of the guasi-Boolean algebra of all subsets of & (under the set-theoretical
operations of sum and product and the quasi-complement defined by (20))
isomorphic with B.

The following abstract algebra €, = <{C,, +, -, ~)> iz an example
of a quasi-Boolean algebra satisfying condition (27): {C,, +, > is the
three-elements lattice consisting of elements O, a, ¢, where O is the zero
element and e is the undt element. The operation ~ in C, ig defined as
follows:

~O =¢, ~e =0, ~a =a.

The ' quasi-Boolean ‘algebra €, = (C,, +, *, ~> which consists
of four elements O, a, b, e where O is its zero element, e is its unit element,
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a+b = ¢, and in which the operation of quasi-complement is defined
by means of the equalities

N{L:“,Nb:b,NO:B,Nﬂ:O’

is an example of quasi-Boolean algebra not fulfilling condition (27),

It is known (see [1]) that every quasi-Boolean algebra can be repre-
sented as a subdirect union of two-clement Boolean algebras, of quasi-
-Boolean algebras €, and of quasi-Boolean algebras C,. It is easy to verify
that if a quasi-Boolean algebra fulfils condition (27), then it can be repre-
sented as a subdirect union of gquasi-Boolean algebras €, and of two-
-clements Boolean algebras.

Let ® be the class of all quasi-Boolean algebras satisfying condi-
tion (27).

A quasi-Boolean. ulgebra AR is said to be functionally free for the
class R provided that the following condition is fulfilled: any two quasi-
-Boolean polynomials @, ¥ are identically equal in every algebra of clags
R if and only if they are identically equal in A.

It follows from the remark given above that

3.5. The quasi-Boolean algebra C, is functionally free for class K.

Let B(X) be an 9C-lattice of sets connected with a Heyting algebra
H(X,) and let the operation ~ of quasi-complement in B(S() be defer-
mined by the involution g. Now let an 97-lattice B, (X) be a subalgebra
of B(X). -

Let us set A = Ay {w) and AL = 9(X1)+ {2y} where @y, @, ¢ X
and @; 7= . The set AT will be considered as a topological space with
the following topology: the open subsets of XY are all open subsets of X,
and the whole space X3. Then the following theorem holds:

3.6. (1) The class H(X?) consisting of all subsets X C X0 which be-
long to H(X,) and of X} is a Heyting algebra of open subsets of X?.

(i) The mapping

92(@) = g(@) for weX,  go(wy) =iy, g0(wy) = a,

is an dnvolution of X® = X}+XAY. Moreover, ¢'(2)==w for weX X3,
(i) A-NEC M (gt (X0 — X)) - X) where In'o is the operation
XeH(XY)
of intericy in Y.

(iv) The class B(X°) of subsels of X = 00+ consisting of the empty
set A, of X° and of all sets X = G {ws} where @eB(X) is an N-lattice of
sels connected with H(().

(V) The elass By(X") consisting of the empty set A, of the set X° and of
all subsets X = G+ (w5} where GeB,(X) is a subalgebra, of B(9°).
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(vi) The mapping h(X) = X-X for every X eB(X') 4s a homomor-
phism of By(X°) onto B ().

(vil) If X+Y = X° for X, Y eB,(X"), then either X = X* or ¥ = X°.
More generally, for a set { X}, .ar of elemenis of By (X°) for which there ewists

the sum in By(X°), if Y X, =X’, then for some pell, X, = X .
ueM

(i) is known, see e. g. [11]. (ii) obvious. Statement (iii) easily follows
from the fact that 97 9 = X;- 9 and X, 9 C (N (g(Int (9 — X))+ X),

: XeH(X3)
since B(X) is connected with H(%X).
To prove (iv) it is sufficient to show that a subset X of X° belongs
to B(X") if and only if it satisfies the conditions
(a) AT X <H(XY), .
(b) X3- X = X3—g¢"(Y) where YeH(OD),
() N1 X CA3-¢°(X).
It is easy to verify that the empty set 4, X°® and every set X = G-+{wz,}
where G'eB(X) satisfy conditions (a), (b), (¢). Conversely, let us suppose
that X fulfils all the conditions (a), (b), (¢) and X = 4, X = X°. We
shall prove that X = G- {x;} where GeB(X). First of all we shall show
that @, ¢ X, In fact, if #, ¢ X, then by (a) XX} = X}. Hence by (e) X2 C X.
Thus X = X which contradicts our hypothesis. Now we ghall show
that @,e X. Indeed, ~X 7% A, ~X %=X and ~X fulfils conditions
(a), (D), (¢). Consequently ¢ ~X. Thus x,¢g*(X). Since z, = ¢°(z,)
we obtain @, X. Hence X = G--{w,} where ¢ C X. We shall prove that
GeB(X). It follows from (a) that XX = @ X, eH(YX;). Condition (b)
for the set X implies that X3 X = N, G+{zs} = X\2—¢°(Y) where
Y eH(X,). In fact, it ¥ = XI, then we should have X = &°, which con-
tradiets our hypothesis. Consequently, X, G = N,— g(¥), where ¥ eII(NX,).
Since condition (c) is satisfied for X, we infer that G-X, C ¢(@)X;.
Hence G eB(X). This completes the proof of (iv). To prove (v) let us no-
tice that the following equalities hold in B(X(°):
(29) ~A =X ~X =4, ~(E{w,}) = (X —g(@) +{a},
hence, if @eB,(X), we infer that X — g(G) B, (X).
(30)  A+X =X, XX = X, (G +{wa}) + (G2 +{22})
= (G1‘|‘G2)‘|‘{X2}- ’
) AX =4,%F =X, (6:1+{2.]) (@aH-oa)) = Gy Cot-{as}.
(3%) if XCX, then X > ¥ = X°
) N> T =Y if ¥ #£X°
) X0 it Xy-G =4
) (Gt >4 = { G-} it Xy G 5 A, where
G, =@ — A in B(X),
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X0 it X, G C Xy Gy
(85)  (Gi+{me}) ~ (Got-{me}) = { G3+{w2}lin 'the other case, where
@ =@, > Gy in B(X).
It easily follows from (29)-(35) that B,(X°) is a subalgebra of B(X).
Equalities (29)-(35) imply also that the mapping h(X) = X X for
XeB, (X9 is a homomorphism of B;(X?) onto B, (X), i. e. that (vi) holds.
Condition (vii) follows immediately from (v).
3.7, Let A be an NW-lattice and let {a,}, pe M, be a set of elements of A.
Then:

(i) the emistence of the sum > a, (the product [] ~a,) implies the ewi-
! M M

I HE
stence of the product [[~ua, (the sum Da,) and the following equality holds:
el neM

NZ% = l Iwaﬂ.

ueM nel

(i) the ewistence of the product [la, (the swm 3 ~a,) implies the ewi-
M uel

ne
stence of the sum Y ~a, (the product []a,) and the following equality holds:
uesl weld

The easy proof is omitted.

§ 4. Algebraic treatment of formulas of the constructive pro-
positional calculus with. strong negation. Bvery formula « of the system
d of the constructive propositional ecaleulus with strong negation will
be interpreted as a polynomial aq of an YW-lattice A = (4,e, +, -, ~,
—> 712, by treating every propositional variable Dy t=1,2,...,a8 a va-
riable running over the set 4 and every connective of o as the correspon-
ding algebraic operation of 4. Let v be g valuation of all propositional
variables of o, i. e.'a mapping of the seb of all propositional variables
into 4. The value of the polynomial a, for the values of its variables
fixed by » will be denoted by a4-

The following theorems were proved in [9]

4.1 If a is a provable formula of Sy then ay, = ¢ for every V-lattice
A and every valuation v in A.

4.2. There exists an YW-lattice of sets By = (By(Np), Nyy +, + ~y =,
1> and a valuation v, in B, such that for every formula a of 5, a is provable
if and only if Apgo, = Xp.

- Bvery formula a of § such that neither the sign — nor the sign ~J
appears in o may be interpreted in a familiar way as a quagi-Boolean
polynomial ey of a quasi-Boolean algebra, C.
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Let €, be the guasi-Boolean algebra of theorem 3.5.

4.3. Let a,p be arbitrary formulas of § without the sign —,7]. Then
the formula o = B is provable in S if and only if agy = P, tdentically, i.e.
top = Bop Tor every valuation o.

Since the signs — and ] do not appear in « and § we may interpret
these formulas as guasi-Boolean polynomials gy e, Of Cy. Let v be a va-
luation of propositional variables of &§ in C,. On account of 3.4 C, can
be extended to an 9f-lattice 4 =<4, e, +,, ~, >, 71>. Let b be an
isomorphism of €, into the quasi-Boolean algebra {4, -+, -, ~>. Let
us set w(p;) = h(v(p;) for ¢ =1,2,... The formula a = § being pro-
vable in f we infer from 4.1 and (ny), (n,) that a, = fa,. Since v(p;)eC,
we obtain ag, = fg,-

Conversely, let us suppose that a= # is not provable in o. Then
by 4.2 and (n,), (n,) it follows that ARy, 7 Brgw,- Since the signs —, 7] do
not appear in a, # we can treat ap, and Bm, 28 quasi-Boolean polynomials
of the quasi-Boolean algebra (Bo(%), +, -, ~>. Consequently, by 3.5,
there exists a valuation v in ¢, such that Ao 7 ﬂcoq,.

Let us suppose now that « is a formula of o§ such that the sign ~ does
not appear in a. Then a can be interpreted in the familiar way as a poly-
nomial ap@,)of a Heyting algebra H(S(,) of sets. If « ig a valuation of the
propositional variables of & in H(Y,), then the symbol egy Will denote
the value of ageyy for the values of its arguments fixed by w.

Let B,(X) be an 9{-lattice of sets and H,(5(,) its basic Heyting al-
gebra (see § 3).

4.4. For every formula a of § without the sign ~ and for every va-
luation v in B, (X)

gy O X1 = @y

where w(p;) = v(p;) X, for p; appearing in a and u(p;) is on arbitrary
element of H,(X,) for p; which do not appear in a.
The easy proof by induction with re§pect to the length of « is based
on the following equalities:
) (X+T)% = (XX +(T-X),
(i) (XX) Ay = (X-Ap) (Y- Xa),
(iid) (X—>X)X =X > YN,
(iv) (T1X)-90 = T1.(X-X),
which hold for every X,YeB,(X). Bqualities (i), (ii) are obvious, (iii),
(iv) follow immediately from (25). ) )
Let Z(41y...y%, J1y+.0s7n), Where j, #=j, for r #s and j, 5= 4,
for r,s =1,...,7n, be the set of formulas 7] (ps,py), ¥ =1,...,n.
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We shall say that a formula § without the sign ~ is provable in the Hey-
ting propositional caleulus from the set Z(iy, ..., %, fy, ..., Jn) Provi-
ded that it belongs to the least set Ong(Z(iy,..., 4, J,..., i)
which contains the set Z (4, ..., %, ji ..., 7a), all the formulas of the form
(1)-(10) § 1 where a, B, y are arbitrary formulas of § without the sign ~,
and which is closed under the operation of modus ponens.

The following lemmas ave well known (cf. [4], [5], [10]):

4.5. If B is a formula of <§ without the sign ~ and fe Ony VAC
dis +eey Gu))s then for every Heyting algebra of sets H(S,) and every valuation
win H(X,) such that (71 (P, Py ey = Xy for & =1, ..., m, the follo-
wing condition is satisfied:

ﬂﬂ(b\‘l)u = Ay.

4.6. There ewists o Heyting algebra of sets H(,) end o valuation
w i H(X,) such that

(M (s, Pilmecge = X1 for k=1,...,n

and for every formaula f of oS without the sign ~, fe Ong (Z(ig, ..., 14, Figeery
in)) if and only if Breyu = S1.

The following theorem can easily be “proved by using the method
applied in the paper of Rasiowa [8].

L7 If atPeCny(Z(is, ooy in,y fuy ..y Ju))y then either ae Cig %y,
coey Ty Ty "'7?’%)) or Be OWH(Z(iM oo Bny Jaseeey 771))

Let a(psy, ..., ;) be an arbitrary formula of & and let «° (Pigs ey
Diys Piyy -+, Pz,) be the formula. satisfying the condition of theorem 1.1
for the formula «.

4.8. Ij H(X,) is @ Heyting algebra of sets such that for the given formula
¥ (Piyenn,y Piyy Diys ey Dy,) there exislts a valuation w such that
(i) e # X, ’

(i) (7 i Pillmeege = Xy for k=1, ey My
then for every N-lattice of sets B(X) conneoted with H(ST,) there ewists a va-
luation v in B(X) such that

In@e # X

Let us suppose that H (X;) and u satisfy the hypothesis of the theo-
rem for a formula a(Pryy oy Py, ) et B(X) be an 9-lattice of sets connec-
ted with H(YX,) and let g be the involution of o determining B(SX).

On account of (ii) we have /

(pi'k : pfk)u(:‘(lju = /.
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Consequently the following subsets of
Oy == ’M(Pik)'l-(0(3\’1)—0('“(?1;5)) k=1,...,n

fulfil conditions (i), (ii), (iii) of § 3 and thus belong to B(%). Let v be the
valuation in. B(9) defined as follows:

(i) = ay, v(pj,) = ~a, for k =1,...,n and »(p;) =X
for ¢ %4, and 1 % jj.
Then by 4.4 and (i) we infer that
(a"(pil, vy Piy s Piyaeeey pin))n(:X)v'gcl
= (a?(pila coy Dips Prys -y pfn))ﬂ(i\’l)u #= Xy -
In consequence
(ao(p,;l, sy Payy 0 Pipy eeey Pin))B(i")n
= (@2 (Biys - Piys Diyy -1 Piy)metys # X
4.9. 4 formula a(p;, ..., Di,) of S is provable in S if and only if the
formula
a®(Piyy--ns Dy Diys o3 Piy) € Ong(Z iy ooy by G1y oeey 7n)}
holds.
Sufficiency. Let us suppose that a(Piyy vy Py,) ¢ C. Consequently
by 1.1 q'o(pil 7 vy Digy Piys ooy 1,)€T. By 4.2
(36) (au (p‘ila ceey Pagy iy e Npin))Bo(EXo)vu #* Xy
where B,(XX,) and v, are the 9){-lattice of sets and the valuation in By ()
appearing in the formulation of 4.2. Let H(X;) be the basic Heyting
algebra of B,(%X,). Then by (4.4)
(o (Piys ooy Piys ~Piyy -oes NZ’::"))BD(E\‘O)% Ny
= (ao By oo Payy Pigs -5 P:’n))n(i\’l)u
where u(p;) = ~v(py) N1 for k=1,...,n and u(p;) = vu(pi)-?ﬁ
for¢ 4, k =1,...,n. Consequently, by (36) and (iii), § 3, we obtain
(37) (aa(pi,, veey Pigy Pigy ooy pin))'ﬂ(ﬂl)u # Xy
On the other hand it is easy to verify by using (35) of paper [9] and
(n,) that
(X-~X)-X, == 4.
Hence (71(Ps,, P1))mepe = Thd =X, Thus, by (37) and 4.5
“0('[)1'1) cos Piyy Py e pj")EGnH(Z(f&'“ sy Bny J1y ey In))
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Necessity. Let us suppose, that ay(ps,..., P4, sy, ooy 05,)¢C0ng
{(Z (s, ..vs inyfry -+es fn))- Then Dby 4.6 there exist a Heyting algebra
of séts H(S(,) and a valuation uin this algebra such that (7] (P, pfh))n(SYl)u
=X for k=1,...,n and ofer)u % X Let B(X) be an N-lattice of
setis connected with H(X;). Then by 4.8 apey) 7%= X for a suitable valu-
ation » in B(X). Hence by 4.1 a is not provable in .

Tt follows from the definition of the set Ong(Z(d1, ..., 4n,fy, ..., in))
and from the deduction theorem for the Heyting propositional caleulus
without the rule of substitution that, for a formula’ a"(pil, coey Py Pry s
ooy Dig)y B s Tor v 3£ s and §, # s, 1y 8=1,...,m, of & in which the
sign ~ does not appear, o"e0n(Z(iy, ..., 1,1, ...y 0n)) if and only if
the formula 7 (p; ps) ... T1(ps, ps,) = ® is provable in the Heyting
propositional caleulus (2). Since the Heyting propositional calculus is de-
cidable, we infer from 4.9 that the system o is also decidable (cf. [137).

The following theorem can be proved by means of 4.7 and theorem
4.9:

4.10. Let a;-+a, be a formula provable in . Then either a, ov ay is pro-
vable in J.

The first proof. Let us suppose that Diyy +-5 Py, axe all propo si-
tional variables in a, + a,. Let (o, +a,)° be constructed as in theorem 1.2,
Le. (g+a)® = of+0af. Since a4 a,¢T, then by 4.9 (ay+as)’e Ongy
@iy --es 21, Diys--er 01,)). Consequently, by 4.7 at least one of the
formulas of, of belongs to this set. Let us suppose that of e Ong(Z(psyy ...,
Diys Diyy ~oes pin)) and that pg, ..., Pi,, ™ < arve all propositional va-
riables appearing in a;. Then making use of 4.6 and 4.5 we eagily infer that

GQEOWH(Z('EI, coey oy Jry ey j1n))'

In fact, let us suppose that o} does not belong to Ong(Z(iy, ..., iy 31, - - Im)) -
By 4.6 there exists a Heyting algebra of sets H(%,) and a valuation u
such that

(i PrNmccge = X for b =1,...,m
and
(ag(piﬂ ey Py Piysve ey pim))u(:\fl)u, 7% Xy,
Let us set
U1 (Py) = u(py,) b=1,...,m,
u (p5,) = u(p;,) k=1,...,m,
U (p;) = /A in the other cases.

(!) For the Heyting propositional calenlus see 3]

icm
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Then it is easy to see that (71(pi, 95))more, = X1 for k=1,...,n
Aau, 7 X1- Thus by 4.5 af¢ Ong(Z(isy ...y iny f1y ..., ju) Which contra-
diets our hypothesis. Using 4.9 we infer that «,eT, which completes the
proof.

The second proof. Let us suppose that o, o, is provable in o.
Let By(X) be an -lattice of sets adequate for the system d, and let »
be a valuation in B, (X) such that for every formula « of o, « is provable
if and only if ap (), = X. Let us suppose that B,(XX)is a subalgebra of
an Y-lattice of sets B(X) connected with a Heyting algebra H(X,). Con-
gider the 97-lattice B, (X constructed as in theorem 8.6. Let us set h(X)
= XX for every XeB,(X°). Consider the following valuation w in
B () w(p) = X;eBy(X°) where h(X;) = o(p;), ¢ =1,2,... Tt follows
from 4.1 that

(al)Bl(QCO)w+ (%)Bl(%o)w = (+ az)Bi(?CO)w =

By 3.6 (vii) at least one of the summands must be equal to X°. Let us
suppose that (a)p, 0w = X°. Since by 3.6 (vii) b is 2 homomorphism of
B, (X°) onto B,(X) we infer that

h((al)Bl(E’CO)w) = (al)Bl(%)(w) = (al)Bl(&X‘)u =X =9

Consequently, o, is provable in J.
We immediately get from this theorem and from (3), (7), (13) § 1
the following corollary: .

4.11. A formula ~(a-B) is provable in S if and only if at least one of
the formulas ~a, ~f 4s provable in J.

We shall say that a Heyting algebra H (9 ;) fulfils the condition Adg
provided that: for every formula a(pi,...;Ps,s Psyy---2Ps,) Where
U F bgy Jr 5 Js fOr 7= 8 and 4, 5 §,, 1,8 =1, ..., n, in which the sign ~
does not appear, if a¢Cng(Z(ir, ..., %, J1,..-;7n)) then there exists
a valuation % in H(X;) such that

(38) (T4, Drae =X for E=1,...,n
and
(39) ag(X ) 7 Xi-

4.12. BEvery M-lattice of sets B(X) conmnected with o Heyting algebra
H(X,) satisfying the condition Adq is adequate for the system . More pre-
cisely, a formula o of &S is provable in  if and only if ap@n, = X for every
valuation v in B(X).

The proof immediately follows from 4.1, 4.9 and 4.8.
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4.13. The Heyting algebra H(F) of all open subsels of the real line
fulfils the condition Adg.

Let us suppose that a(Pay -y Piys Piiy - rs P1,) 600 (Z (i, «ory iy,
Jis s fn))- Then the formula = 7] (py py)... ] (P4, Pi,) = @ is mnot
provable in the Heyting propositional calculus. Since H(Z) is adequate
for this propositional caleulus (®), there exists a valuation » in H(E)
such that fggy, 7 E. Consequently

(j (PP} -+ 71 (.’Pin'?‘)!n))u(fd)qu gy -
Thus there exists a point weZ such that

we(TT(Day Pry) - TV (Pay 25, e Ay -

Hence, there exists an open interval 9, C H, such that xS, and
n

L) (t(piy)- 0 (ps) = A.

Let us put w(p:) = w(p;)X; and let H(X,) be the Heyting algebra of
all open subsets of 9(;. Then

S\f-l'all(E)u = Ay 7 Xy

since the mapping (6 = %G for every GeH () is 1 homomorphism
of H(E) onto H(X,) and @e¢X;— agmy. On the other hand

(T (Py Pr ) w = Int(00 —w (py,) w(py,)) = Int(9(;) = ;.

The Heyting algebras H(E) and H(Y,) being isomorphic, there exists
a valuation w, in H(E), such that ’

(—I (p‘tl‘.'pf/c))H(E)uo =5

and
Opay, 7 B

An analogical proot holds also for the Heyting algebra of all open
subsets of the n-dimensional Euclidean spaces and for the Heyting algebra
of all open subsets of the Cantor discontinuum. Tt follows immediately
from 4.12 and 4.13 that

4.14. BEvery N-lattice of sets B(() connected with the Heyting algebra
of all open subsets of the n-dimensional Buclidean space, or of the Cantor
discontinuum s adequate for the system 5 (4).

(*) Cf. e.g. [4]. This result is due to Tarski (Fundamenta Mathematicae 31
(1938), p. 103-134).

_(4) The proof is based on the results of MecKinsey-Tarski [4] stating that the
Heyting algebra of all open subsets of the n-dimensional Euclidean space or of the
Cantor discontinuum is functionally free,

icm®
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The following known theorem (cf. [13]) can easily be deduced from the
algebraic characterization of the system 5.

4.15. 4 formula a of I without the sign ~ is provable in & if and only
if 4t is provable in the Heyting propositional caloulus.

The sufficiency of thig condition is obvious. To prove the necessity
let us suppose that o is not provable in the Heyting propositional calcu-
Tus. Then there exist a Heyting algebra of sets H(X,) and a valuation
w in H(%X,) such that

(X e F XAy

Let B(X) be an 9{-lattice of sets connected with H(X,) such that
Ky g(NXy) = 4, where g is the involution determining B(9). Tt is easy
to verify thab, if XeH(X,), then X+ g(X)eB(X). In tact X+ g(X,)
fulfils conditions (i), (ii), (iii) § 3. Moreover, the valuation » in B(X) de-
fined as

2(ps) = w(p;)+g (1)

has the following property:
Bo@np = Ba)u+ 9(5(;) for every formula g of § without the sign
~. Consequently

ARy F XX+ g(X0)-

Thus by 4.1 « is not provable in .

§ 5. The 9-lattice of sets B, (%) isomorphic with the Lindenbaum
algebra of the system §*. Given arbitrary formulas a, f of &* we shall
write « ~ p provided that the formula a = feT”. It is easy to prove that
the relation ~ is a congruence relation in the sense of modern algebra. For
every formula o let |a| denote the class of all formulas # of * such that
o = . Let 4, be the set of all cosets |a| where « is a formula of §*. We
define in 4, the algebraical operations -+, -, ~, —, 7] a8 |alo|f] = |aop}
if o is one of the hinary logical operations of J° and ofa| = |oq| if o is
one of the unary logical operations of &% If aeT” and f¢T* then a ~ .
The element |a| where aeT* will be denoted by ¢. It is known (ef. on
that .

5.1. The algebra L* = (Aq, €y, 4+, ~,~>,71) is an -lattice. The
inclusion |a| C |B| holds if and only if a— BeT* and ~f— ~aeTr.
The relation |a| < |B] holds if and only if « — BeT*.

Let B,(Y) be an 9{-lattice of sets isomorphic with L* and let * be
the isomorphism of L* onto B, (). We shall assume that B; (%) is a sub-
algebra of an I(-lattice of sets B(Q) connected with H(%,) and that
H,(Y,) is the bagic Heyting subalgebra of B, ().
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In the sequel the following notation we shall use. Given a lattice 4
and a set {a,},.2 of its elements we shall denote by (4) Z' a, and by

[lG
(4) ][] a, the sum of those elements in A and their product in A, respecti-
el
vely.

5.2. For every formula o of S* the following equalities hold:

©w (B.(Y) Zh( )—h( > a),
o ¥ fotgl) = T

am

pely Ly
(i) (muat) 3 i (a(52)]) = o2 (| 3w
pely Tk
(iv) (m) [T oo (o (2)]) = wew ([ ] ),
Dely N

where a(zz) s a formula obtained from o by the substitution of v, for wy,

all mecessary changes of bound variables being performed in a before the ope-
ration of substitution has been applied.
In fact, to show (i) let us notice that by 17, 18%, and 5.1

(40) B ( a (%) !) <

(41) ~h* (.; o) < ~h*j<k

Consequently,

a]) for  pel,,

(2 )Ch*(
R

On the other hand let us suppose that for some B
n* (o (22)]) g
Hence, by 5.1 we infer that for some p such that @, i8 not free in g.
«() gt ~B > ~a (g T
Using the rule (v), § 2, we obtain by means of 5.1
B (%’a() TN()

(42) [ pel,.

a “ for

for every pel,.

and

which, with (42), prove (i).

icm
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In a similar way it can be proved that (i) holds.
To show (iii) let us notice that by (40) and (26)

(43) ‘yl-h"( a(z:) ) C%-n"( for every pel,.
Now let us suppose that for some g
Yorh* (|a (@) cYen' B, for every  pel.

Consequently by (26)
 ([a(zz)]) < 8-

Thus for some p such that z, is not free in B

a(iz)—»ﬁe@*.
Using the rule (iv) § 2 and 5.1 we infer that
1 (> al) < n (8D

L

Consequently, by (26)
Yt (| D) a

) € u-n* (18-

Hence on account of (43) condition (iii) holds.
The proof of (iv) is analogous.

§ 6. Models of the system o*. Let B,(X) be an 9(-lattice of sets and
let J be a non empty set. Every mapping (J,B;(%X))M (or briefly <M
of all functional variables %, kel, into the sets (J ,B1(9C))E.,(k) of all
v (k)-argument functions defined on J with values in B,(%X) is said to
be a realization of S* in the set J and algebra B, (X). Let v be a valuation
of all individual variables of S* in J. Every formula e of §* may be in-
terpreted as a functional a(spe)m or briefly ap determined on J with
values in B(X) by treating
(a) all individual variables u, kel, as variables running over J,

(b) every functional variable Fy as M (Fy),

(¢) each of the logieal connectives 4+, -, ~, —, 7] ag the corresponding
operation in B, (X),

(d) the quantifiers Z‘ H as the signs of infinite sums (B, 9())21 and

of infinite products (B1(9C)) [I: respectively.

Trad

Colloquium Mathemsticum VI. 20
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A realization (J ,BI(S\{))‘JR (or briefly ON, if the set J and the algebra
B, (%) are fixed) will be called a pseudomodel of §* if the following con-
dition is satisfied: .

{im,) for every formula a of 5" and for every valuation v in J there exist
all infinite sums and products appearing in oy which correspond
to the logical quantifiers by the values of arguments of ay, fixed
by the valuation v.

I M is a pseudomodel of ™ in a set J and in an 9-lattice B, (%),
then for every formula o and for every valuation » in J the symbol agy,
will denote the value of ay, by the values of its arguments fixed by the
valuation v.

A psendomodel M of 5™ ina set J and in an W-lattice of sets B, ()
having H,;(¥X,) as its basic Heyting algebra, is said to be a model of §*
provided that the following conditions are fulfilled:

(ms) it (> @)y, = (B(X)) (ZN ay, = X, then
xp . : V(Zp)e
Xy X = (H(O) ( Z)”mw%;
'umk 6
(my) if ([] o) g, = (B1(9C)) (I)]J gy = X, then
3 V(%)
Ay X = (HX) [] (ame90).
v(@y)ed

6.1. If aeT™", then ag, =X for every model (T, By(SC) M of S im
every set J and n every N-lattice of sets B (), and for every valuation v
n J.

The easy proof by induction with respect to the length of a proof
of @ making use of 4.1, (n,), (ny), (ili) § 3, (m,), (my), (mg) and (3.7) is
omitted.

) .Let Us now use the notation of § 5 and let N be the mapping asso-
ciating .wmh every Fy, keI, the »(k)-argument function g determined
on Igm‘oh values in B, (%f) which will be defined as follows: Qie(Ty ey o)
= 1" (| Py (y, ..:,(I}i,,(k))l) eBy(Y). The following theorem may eagily be
proved by the induction with respect to the length of a formula a with
the aid of theorem 5.2

6.2. Mis a model of S* in the set I, of positive integers amd in the N-lattice
of sets B, (Y) isomorphic with the Lindenbawm algebra L* of the system 3*.

More exactly, for every formula o and every valuation v

gy == h‘*(lavl);
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where a, 18 a formula obtained from a by substituiing the individual variable
Tp(ayy JOT @ (the necessary changes of bound variables being performed
before the operation of substitution). .

In particular, for the valuation vy(xy) =k, kely, we obiain

(44) vy = B*(la]).
The following theorem results immediately from 6.2 and 6.1.

6.3. A formula a of S* is provable if and only if

Oorpg = Y.
It is easy to show
6.4. Let p = a(z{) Then for every model M and valuation v

Banw = Ganpr
where v'(w;) = v(®;) for 1 £k and v’ () = v{(@p).

Let M be a model of S*in a set J £ and in an 9-lattice of sets By (X)
and let B,;(X° be an 9-lattice of sets appearing in the formulation of
theorem 3.6 (v). In the sequel we shall use the notation infroduced to
describe the construction of B,(XX°). Let us suppose that for every %el,

M(Fr) = -
We shall define a realization ON° of S* in the set J and in B, (X°) as follows:

ONO(Fr) = wi where

DA (IR jv(k)) =,

0ri - iy
VRO <o o) Wilizs -+ ) +-{@s} in the other case.

6.5. MO is a model of 3*. More precisely, for every formula o of S* and
for every valuation v in J one of the following conditions holds:

agoy = A, age, = X0 apd, = a‘mv+{”2}'

Moreover, if ame, = A then ag, = A and if ago, = X then agy, = X.
The proof by induction with respect to the length of o with the aid
of (29)-(35) of theorem 3.6 and the definition of B,(X°) is omitted.
Let h(X) = X-X for X eB,(X%. Then by 3.6 & is a homomorphism
of B;(X% onto B,(X). It is easy to show that
6.6. For every set {X,} . of elemenis of B (X°) the ewistence of the
sum (B, (X)) M X, (the product (B,(X°)) q{ X,) is equivalent to the evistence
ueM .

of the sum (Bz(EX)) Dh(X,) (the produ(:t!zBl(CX)) [1h(X,)) and the following
weM palM
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equalities hold:

B,(X0) ) X,) = (B.X) D) WX,

peld neM
B,(90) [] X,) = B.0) [ [ (X,
pelM neld

The following theorem may easily be deduced from 6.5 and 6.6

6.7. For every formula f of 5" and every valuation v in J°, b (Bas,o) = Bup g

We shall use the previous theorems to show the following property
of formulas of &*:

6.8. (i) If a formula a4 is provable in 5", then either o or B is pro-
vable in I°.

(if) ff a formula Za w) is provable in S*, then there emists a positive

integer p such that the ]‘ormula a(mk) is provable in S*.

We shall show only (ii), since the proof of (i) is quite analogous to that
of (ii). Let us suppose that Za (@) €C*. Consider the model 9 in the et

I, and in the 9-lattice of setﬂ B,(%Y) isomorphic with the Lindenbaum
algebra L® of the system ¢§*, which appears in the formulation of 6.2.
Let us set v(wx) = & for every k=1,2,... Let N° be the model of S*
in I, and B{(2) constructed for M in the same way as a model TN°
has been constructed for a model M to formulate theorem 6.5.

The 9-lattice of sets B,(°) is constructed for B,(Y) just as
B;(X°) has been constructed for B,(X) (cf. 3.6). It follows from 6.1 that

(Salgos'= Y, 1.
(45) (BUYY) D) ogow = Y.

o(Zp)a 20
Consequently, by 3.6 (vii) there exists p eI, such that

v(w) for 1 #Fk,

Ay = Y°  where o' (m;) = ‘ )
P for i=1Fk.

Thus, by 6.4, ( ( k))gm = ap,

Hence, using 6.7 we obtain
0
Y=uy) ( (wk) )m ’

In consequence, by 6.3, a(”") Tt
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Since the system <§ of the construetive propositional calculus with
strong negation is decidable, it is easy to show by a method similar to
that used in the paper of Rasiowa and Sikorski [11] that

6.9. Bach formula B from S* of the form

[ ]
f=8..8a

Ty Ty,

@)
where a containg no quantifiers and 5 is either the sign of > or [] is deci-
Ty, Ty, Tpey
dable. kl 5

It follows immediately from the last theorem and from (3), (7), (13)
§1, (21*), (22%) § 2 that

6.10. A formula ~(a*B) is pro'uable in S” if and only if ot least one of
the formulas ~a, ~f is provable in S*. A formula ~[]a(z) is provable

g
in S* if and only if there ewists m, such that a formula ~a( Z) is provable
in J*.

We shall now prove that

6.11. A formula o of S* without the sign ~ 4s provable in 3* if and
only if it is provable in the Heyting functional caleulus.

The sufficiency of this condition is obvious. To prove the necessity
let us suppose that a is not provable in the Heyting functional calculus ®).
Then it is known (see [10]) that there exists a complete Heyting algebra
of sets H(S(,) and a realization I of all functional variables of ¢§* in the
set I, and H(X,) such that

anogp 7# Xy, where w(m) =k for kel,.

Let B(X) be an 9-lattice of sets connected with H(SX;) such that
X1 9(X,) = A, where g is the involution determining B(XX). Let us
suppose that M(Fy) = ¢x, kel,. Let us set for every kel

M*(Fy) = @i, Where  gr(iyy .oy Ggy) = @rllyy -vs toy) +9(X1).

It is easy to verify that IM* is a model of §* and for every formula § with-
out the sign ~

Bawo = Buwt+ 9 (1)
Consequently
‘ s %= X = X3+9(X)

Thus, by 6.1. @ is not provable in J*.

(%) For the Heyting functional calculus see [3].
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ON CONVERGENCE OF MAPPINGS

BY
G. T. WHYBURN (CHARLOTTESVILLE, VIRG.)

1. Introduction. The idea of a mapping, that is a single valued
continuous transformation, as an extension of the function concept lies
deep in the history of topology. Indeed it is closely interlaced with the
very beginnings of topology, as is apparent to any student of complex
function theory with its strong emphasis on mappings generated by diffe-
rentiable functions. In more recent times, however, one of the most po-
werful and stimulating influences in the development of topology and
ity applications has been the method of generation of mappings by decom-
position of the domain space into disjoint closed sets, together with the
dual operation of generating a decomposition of a domain space by means
of 4 given mapping defined on that space. The early recognition by Ku-
ratowski [1] of the equivalence of these operations in an appropriate
setting and his formulation of some of the then eurrent work on upper
semi-continuous decompositions in terms of mappings surely represents
a distinet landmark in the development of Analytic Topology and has
lead to major advances in this area of mathematical work. It is a pri-
vilege and a pleasure, therefore, for the author to dedicate this paper
6 his long-time friend and colleague Casimir Kuratowski on the occasion
of the 40 anniversary of his first mathematical publication. The author’s
mathematical life and work have been immeasurably stimulated and
enriched through personal and professional association with this great
mathematician and by his masterful and exceptional skill in topological
writing and exposition. ;

We shall be concerned in this paper with sequences of mappings
from one locally compact separable metric space to another®. Conditions
for the almost uniform convergence of such sequences having some appli-
cability in the case of function sequences will be studied. The existence

* This research was supported by the United States Air Force through the
Air Force Office of Scientific Research of the Air Research and Development Command,
under contract No. AF 49 (638)-71 at the University of Virginia.


GUEST




