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can always choose 2’ so that f p(z)de > 0, we can conclude that for
0

gufficiently large o the considered integral becomes positive. The lemma
is thus proved.

Proof of theorem 4. Let us consider two domains D; and Dj.
If p(v) is the probability density of the distance of two points chosen
at random and independently of D, and Dy, respectively, and if x, is the
distance between the centres of gravity of D; and D;, then we can apply
the lemma to p(z) and z,. Thus for sufficiently large a we get inequality
(6.5). This, however, is nothing else but another form of inequality (5.3),
for a given 7 and 4. Since this reasoning is applicable to each pair of domaing
D;, D;, we can choose o so large that inequalities (5.3) hold for all ¢ and
4, ¢ 5 4. This proves our theorem.

Finally let us note that the following question is still open:

P 254. Is always systematic sampling, for isotropic processes ¥(p)
with the exponential correlation function and domains D composed of
squares or of regular hexagons, more efficient than stratified sampling?
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REMARKS ON COMPACT SEMIGROUPS

BY
J. LOS (TORUN) axp 8. SCHWARZ (BRATISLAVA)

The purpose of this note is to show that some theorems concerning
Hausdorff compact (=: bicompact) semigroups can be proved by a uni-
fied method based on a very simple topological lemma.

Theorem 1, Corollary to Theorem 2 and Theorem 2a are known;
we bring them into our considerations to emphasize the method presen-
ted in the paper and for the convenience of the reader, since they are
needed in the rest of the paper. The remaining results seem to be new,
though probably they may be partly known to those who are occupied
with compact semigroups. The results of section 1 and a part of the re-
sults of section 2 are closely comnected with some results stated in a pa-
per of Wallace [1] (see also Wallace [2]).

1. We shall be concerned with functions f of & variables running
k
over a set X and with values in the same set X. We shall write f(X) or
k k 13
fO(X) instead of F(Xx...x X) and f®(X) instead of F[/™V(X)x...
I8 % times
X (X))
LeEMMA 1. Let X be a compact space and f(%y, ..., %) & continuous
k

function for which ;f(jf) C X. Let X;, & < a, be a decreasing family of non-
-empty closed subsets of X. Suppose that for each & < a there emist &, &,
k I

=N X,
E<a

Proof. Let ¢, v, be two ordered sets of ordinal numbers both con-
K

£ < & < & < a such that [(Xy) = X,. Then (N X,)

£<a

final in « and such that ]‘(XU',},E) = X"s' (The existence of such sequences
follows, from the suppositions.) Since X, is a decreasing family we have

NX =T, =X, #0.

é<a §<a
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If each of the elements 2y, ...

, & 18 in DXE, then f(zy, ..., ;) is con-

tained in every X, y )€ ﬂX,‘,(_t = () X,. This proves
¢ &

v hence f(wy, ...

I

that f( ﬂXE)C ﬂXE

Suppose on the other hand that ze ﬂ X;. Then for every & the ele-
ment & belongs to XWE. Hence X%x... waef\j“ (%) is for every ¢
& non-empty closed set. From the compactness of X we get

[nX%X... Jnf‘l(m)_—_ﬂ[xwéx...
4 &

xQXWE xX”]nf‘l(w) # 0.

Hence there exist y,, ...,y such that [g/l,...,yk]sﬂX% Koo X (X~ ()
¢ e

weey Yr) = @ and yieﬂX% = (X, for
] &

k

, k. This proves that mX C N X,).

for every & Then we have f(y;,

i=1,2,..

¢
In what follows we shall oft;en need the following special case of
Lemma 1:

LeMMA 2. Let X be a compact space, 4 a non-empty closed subset
of X and f a contmuous function of k wvariables with f(A)CA Write
k
I= ﬂf("’ A) = J“”"’(A Then f(T) =

2. THEOREM 1. Let 8 be a compact semigroup. Put T — ﬁS‘ Then
T 0 and T? = o
Proof. Cons1der the functlon of two variables f(z,, ®,) = o, ma

We have f( S) S* and j""( ) = 8 for every n 1. Further f"""’( )

—ﬂSz —{’]Si T +# 9. Lemma 2 implies f(T)

n T, i.e. T* =T,
qed

THEOREM 2. Let 8 be a compact semigroup and A o closed subsemi-
group of 8. For every aeA there exisis a unique maximal subsemigroup
R9(4) C A with the property aR¥(A) = R“(4). The set R\Y(A) is at the
same vime a closed right ideal of A.

Proof. Put f(») = aw and j@o(4) = ﬂa,iA R®(4)., Lemma 2

implies /(R (4)] = aR®@ (4) = R®(4). Obvmusly R®(A)is a closed right
ideal of 4. It remains to show that R (A) is the greatest subsemigroup

icm
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A, C A with the property ad, = 4,. Let 4, be any subsemigroup with
this property. Then 4; = a4, C aA. This relation implies 4, = ad, C a%4
and so on. Hence 4;C (N a'd = R® (4). This proves our assertion.
i=1

Remark. Suppose in Theorem 2 that 4 is the closure of the set
Z,={a,a? a,...}. Clearly Z, is a commutative semigroup. Put, for
brevity, R®(Z,) = G®. Then @Y CZ, and aG@ = G@ implies o"G¢?
= G for every n > 1. It is elementary to prove that the set of all teS
with 1@ = ¢@ is closed. Since Z, is the smallest closed set containing
{a, a2, ...}, we conclude that for every beZ, (and moreover for every
beG®) bG® = G holds. This shows that G@ is a group. Hence Z,
contains an idempotent ¢,, namely the unity element of @@, Since @ C Z,,
we have Q@ = GWe,C Z,e,C Z,6% = | bG® = @@, This implies G®

beZg,

=Z,6,. Finally, if Z, contained an 1dempotent 6% e, either ecZ,—aZ,# o
would hold or there would be an integer n > 1 with ¢ea"Z,— a"*'Z, # o.
The first possibility implies e = @, whence e =¢,, contrarily to the
supposition In the second case we should have ¢ = ¢"u, u<Z,. But then
6= ¢ = a"utea™'Z,, which is a contradiction. We have proved the
following known result:

CoROLLARY. If 8§ is compact, the closure of the set Z, contains a uni-
que idempotent e,. The set Zg-e =G9 is a group, further & minimal
ideal of Z, and the greatest subsemigroup @ of Z, with the property a@ = G.

If ¢, is the idempotent belonging to Z,, we [shall say in what
follows that a belongs to the idempotent e,.

THEOREM 2a. Let the suppositions of Theorem 2 be satisfied. If ‘a be-
Tongs to eq, then R™(4) = e, A.

Proof. The relation aR@(4) = R™(4) implies a"R@(4) = R@(4)
for every m > 1. The same argument as in the last Remark shows that
for every beZ, we have bR®(A)= RO A), especially ¢,R@(4) =
R®(4). Since a< A, we have Z, C A and ﬂ 0z, C ﬂa A,i.e.G9C R™(4),

especially e;eR™(4). Now we have R(“)(A) = eaR("’( )Ce, ACR®(A)-A
C R®(A4). This proves R¥(4) = e, 4

In the special case 4 = 8 we shall write R® instead of R®(S)
and get: s

THEOREM 2b. Let 8 be a compact semigroup. For every aeS there
exists a wumique maximal subsemigroup R having the property
aR® = R The set B is a closed right ideal of S, and if a belongs to e,
we_have R = ¢,8.
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Remark. Needless to say that there is a left dual version of this
theorem. For every aed there exists a closed subsemigroup L with
I®.4 = L™ and LY is maximal with respect to the requived property.
The set L@ is a left ideal of § and if @ belongs t0 ¢,, we have L™ = Se,.

TaeorEM 3. Let S be a compact semigroup. For every ae S there emists
a unique magximal subsemigroup M@ with the property M@aM® = M@,
The set M is a closed two-sided ideal of 8 and M D LM R holds.

2
Proof. Let us put f(z,y)=xay. Then f(S)= 8a8. In general
for every » >>1 we have f™(Sx8) = (8a)” '8 = S(a8)™ . Put

N (Sa)*"~18 = M@,

n=1

fe0 (8% 8) =

Clearly M is a closed two-sided ideal of S. Lemma 2 implies f(M©“x M)
= M9,i. e. MDaM® = M. 11§, is any subsemigroup with 8,a8; = §,,
then §; = §;a8; C SaS. This relation implies §; = 8,48,C (Sa8)«(Sasf),
ie. S, (8a)®S. Repeating this argument we get §; C (Sa)2 "~18 for every

> 1. Hence Sl C M™. This proves the statement concerning the ma-
ﬂmahty of M®@

For use in What follows, note first that for any idempotent ¢« 8 we
have Se D (8e)(Se) D §-e-¢-¢ = Se, whence (Se)? = Se. Suppose now
that @ belongs to ¢,. Since ¢, < Sa, we have Se, C Sa and Se, = (Se,)™

C (8a)® for a]l 7 21. Therefore Se, C ﬂ (Sa)* and L®R® = Se,-¢,8 =

= 86,8 C ﬂ (Say*8 = M. This comp_letes the proof of Theorem 3.

Remalk 1. In general it is not true that L@R® = M®@. This
-can be shown on the following example. Let § = {0, by, ba, by, by} be
a semigroup with the following multiplication table:

| 0 by by by by

ol o o o o oo
S Y N R
by . 0O 0 by O by
by Lo 0 by O by
by 0 by 0 be 0

We have L% = {0}, R" = [0}, further LCORC) = {0}, but M
= 8b;8 = 8.

Remark 2. Call an element aeS regular, if it is contained in a sub-

group of S. If a belongs to ¢, and « is regular, then a is contained in the -

maximal group H (e,) belonging to e,. Then there is an o' ¢ H (e,) with
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a0’ = a’'a = ¢, We also have aa’a = a and Sa D (Sa)(Sa) D Saa’'a = Sa,
whence (Sa)2= Sa and M® = Saf. Since 8e, = Sa’aC 8%aC Sa
= Saa'a C 8%a'a = S?e, C Se,, we have USe, = Sa. Therefore M®©@
= Sal = Se 8 = (Sey)(e.8) = LOR®, We have proved:

CorROLLARY, For every regular aeS we have M@ = L@ RO,

Remark 3. The same relation can easily be proved for every aelS,
it § is commutative.

THEOREM 4. Let S be a compact semigroup. FHor every aeS there
exists a unique maximal subsemigroup P® with the property aP®@q — PO,
The semigroup P@ is closed and ROL® =P holds. .

Proof. Let us put f(z) = axa. Then F(8) = aSa and f*(8) = a"Sa"

The set 0 (8) = (Ma"8a” = P@ £ g is a closed subsemigroup and

n=1
Lemma 2 yields aP®q = P@,

If S, is any subsemigroup with S§; = aS;a, then S, C aSa. This
implies 8; = 8,4 C a(aSa)a = a?Sa® and so on. Hence §,C P, which
proves that P is the greatest subsemigroup with the required property.

The relation aP@Wa = P® implies a"P@g" =P for every inte-
ger n > 1. If o belongs to ¢, we conclude (as above) that e, P@e, = P,
Note that e,8%¢,C e,8¢, =(e,8)e, C e,8-Se,, whence ¢,58%¢, = ¢,8¢,
and therefore RYL® = ¢,8- Se, = ¢,8¢,. Now, since aRO L@ g = R@LE
implies a(e,S¢,)a = ¢,8¢, and P®@ is the greatest subsemigroup with
this property, we necessarily have e,Se,C P®. On the other hand
we have e,S¢, D e,PPe¢, =P®. Hence P® =¢,8, = Ry,IY, q.e.d

Remark. Since L@[R®] is a left~[right] ideal of S, we clearly
have ROL® - R~ L@ On the other hand, if zeR@~IL®, there
are elements u,veS such that 2z = ue, = ¢,v. This implies 2z = e,2e,,
ie. zee,Se, = ROL®, hence ROL® = RO ~ IO,

To sum up, we have proved the following ‘‘inequalities”, which in
general cannot be strengthened:

PO = RO ~ I = ROLO Ciﬂ C LORO ¢ M@,
C

3. In this section we consider another kind of functions f(x).

TeBOREM b. Let § be a compact semigr oup and Ty the set of those
aeS which have roots of every degree k™ (n =1,2,3,...). Then Ty is a clo-
sed non-empty subset of 8 and every aeTk has o 'raot o;f degree k in Ty.

Proof. Put f(x) = « and £ (8) = T). Lemma 2 yields f,(Ts) = T.

= The lagt relation implies that for every beT; there is an aeT; with
fu(@) = a* = b.
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THEOREM 6. Let 8 be a compact semigroup and T the set of those aeS
which have in 8§ roots of every degree m = 1,2,3,... Then T is a closed
non-empty subset of 8 such that every aeT has roots of every degree in T.

Proof. If k[l, we clearly have T}, D T,;. Next we prove f,(T) = T,.
If ¢ceT), then o< for every integer v >> 1, especially ¢"e 77, therefore
fx(T}) C T;. Suppose conversely that ¢e T,. Then according to Theorem 5
there is & de T) with ¢ = @' = (4"%)". Since deT; implies @*¢ Ty, we have
ce fr(17), whence T; C f5(T). This proves our assertion. Now the sequence
Ty DTy DTy D... fulfils the suppositions of Lemma 1. Hence

T = ﬂl Ty # o and f,(T) = T for every %k > 0. This proves Theorem 6.
=

If 8 is commutative, T' is obviously a semigroup. Let us call a semi-
group U complete if every element from U has in U roots of every
degree % > 0. We then have: ’

ToeorREM 7. In a compact commutative semigroup 8 the sét of ele-
ments having roots of every degree k > 0 forms a complete closed subsemigroup.

This theorem is known for compact abelian groups (7' is then a group)
and need not hold for discrete groups.

We use this opportunity to prove a further theorem on (non-neces-
sarily commutative) complete compact semigroups.

TrEOREM 8. Let 8 be a complete compact semigroup. TLet ¢ be an
idempotent from 8 and H (e) the mazimal group belonging to e. Then H (¢) is
a complete closed group. .

Proof. Let acH(e). Then according to the supposition there is an
2 =g(n)e8 with 4" = a for every n > 1. Let n > 1 be arbitrary, but
fixed. We know that the set {, #%, #%,...) contains a unique idempo-
tent. Since {w,a’,4*,...} D {o", o™, 2™, ...} = (4, a%, a?,...} and a be-
longs to e, this idempotent is e. Hence x belongs to e. Now every element
wef belonging to ¢ satisties we = eve G C H(e). Since a = o™, we have
¢a = eg", whence & = (ex)", i. e. @ = 3 with ye H(e). We have proved
that for every » there is a y = y(n)e H(e) such that y" = a. This proves
that H(e) is a complete group. The fact that H (e) is closed is well known.
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ON FINITE COCYCLES AND THE SPHERE THEOREM
BY
J. H. C. WHITEHEAD (OXFORD)

1. Introduction. Let M be a closed (i.e. compact, unbounded),
connected 3-manifold. We describe a 2-sphere in M as fame if, and only
if, it is the image of § x1/2 in a homeomorphism of § x I into M, where
8 is a 2-sphere. We describe M as reducible if, and only if, it contains
a tame 2-sphere, S, which is essential in M (i. e. the identical map § — M
is not homotopic to a constant). In this case M may be ‘reduced” by
cutting through § and filling in the holes. If M is reducible, then (cf.
§ 6 below; also [3]) =, (M) is either cyclic infinite or a free product with
two non-trivial factors. In fact we shall prove (ef. [3]):

THEOREM (1.1). For M to be reducible it is necessary and sufficient
that 7, (M) be either cyclic infinite or a non-trivial free product.

‘We emphasize the fact that M need mot be orientable. Specker [9]
has proved that m=,(M) is a free Abelian group whose rank is 0,1 or oo
according as s, (M) has less than 2, 2 or co ends [2]. If =, (M) is eyclic
infinite or a non-trivial free product, it has 2 or co ends. Therefore if A1
is orientable (1.1) follows from the triangulation theorem [4] and the
sphere theorem [6,10].

In order to prove (1.1) we consider a certain II-module J(IZ, &),

. which is associated with a given group I7 and a given Abelian group G

(see §5 below). We write J(II, Z) = J(II), where Z is the group of in-
tegers. According to Specker [9] there is an operator isomorphism J (nl(M )),
a7, (M). Assuming that I7 is finitely presentable, we introduce a certain
gub-set X(II,Q@)C J(I1,G). In general XZ(I1,@) is not a sub-group of
J (II, @) but it contains the element 0. If IT = 1 or G = 0, then J (I7,4) = 0.
‘We write X (I1,Z) = X(II). We shall prove:

THEOREM (1.2). In order that a finiiely presentable group, I, be either
cyclic infinite or a non-irivial free product it is necessary and sufficient
that Z(I1, @) # 0 for a given G % 0.

CoroiLARY (1.3). If Z(II, @) 5 0, then XZ(II,G') # 0, where & 1is
any non-zero Abelian group.
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