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§ 1. Introduction. In this note T will present some theorems on
sampling in a plane. They are a contribution to the study of problems
cousidered first for the linear case by Cochran. In the linear case Cochran
[1] has proved that the systematic sampling is more efficient than both
stratified and random sampling provided that the correlation function
of the process in question is eonvex. Another result has been recently
obtained by Hijek [3], who has shown that systematic sampling is
the most efficient in a class of samplings where the expected number
of sampling points falling in a fixed interval is proportional to the
length of the interval. The plane case has been considered by several
authors (see e.g. Quenouille [6], Williams [9]). Nevertheless it seems
that this note brings in some new points to the set of problems under
congideration. I have proved my theorems in connection with the
problem of estimating gangue parameters (see [10], [11]) and I shall use
this problem to illustrate the theory. The theorems of this note,
although formulated for a plane, admit a straightforward generalization
to the n-dimensional case.

§ 2. Probabilistic deseription of a gangue. We can distinguish
two ways of treating probabilistically a problem of estimating a certain
parameter, say a volume, of a gangue lying on a given domain, say on
an exploitation block. The first consists in restricting the considerations
to the already investigated domain and in regarding the measurements
of a parameter, say thickness, ag statistically independent observations.
The thicknesses ¥, ..., ¥, measured at certain points of the investiga-
ted domain D are then regarded as realizations of n independent random
variables with the same distribution function F(x) defined for a given
o as the ratio of the area of a part of D on which the thickness is less
than z to the area of the whole domain D. Disregarding the shape of
the distribution function ¥#(z), we can characterize the distribution of
the random variables ¥, ..., ¥, by two numerical constants, their comimon
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expected value m and their common variance s Our problem is then
to estimate m on the basis of the values ¥, ..., y,. Current statistical
methods based on the concept of statistical independence of observa-
tions can be applied. Such were the very first applications of statistics
to the problems of estimating parameters of geological gangues (see e. g.
[7]) and they are thus presented in monographic geological literature
(see e. g. Kreiter [4] or Smirnov [8]).

However, in order to justify the statistical independence of obser-
vations one must measure thickness at points chosen on D at random
and independently. Usually we do not do so but distribute the points
of measurements more or less systematically over D, believing rightly
» that greater exactness of estimation can be reached in this way. There-
fore the use of current statistical methods'in evaluating geological measu-
rements is not satisfactorily justified. Moreover, the question arises how
great sn improvement of the exactness of estimation (if any) can be
reached if a random distribution of measurement points is replaced by
another, more systematical one. This question cannot be answered on
the Dbasis of the already described method of treating the problem.

The second method of treatment (adopted by me in [10] in connec-
tion with the estimation of gangue parameters and considered also by
other authors, for the most part in connection with forestry and agricul-
tural surveys, e. g. in [2] and [5]) consists in referring the postulates of
goodness of estimation to the totality of blocks in a large gangue. Usually
the size of an exploitation block can be considered very small as compa-
red with the whole gangue, being often many kilometers long and broad.
Not only the position of & measurement point on a block but algo the po-
sition of the block on the gangue will be considered as random. In
2 more picturesque manner, we seek the volume of the gangue covered by
a small carpet placed at random on a large gangue. This carpet plays
the role of an exploitation block chosen at random. In this interpreta-
tion one describes the probabilistic structure of a gangue with the aid
f’f & family of random variables y(p), where the random variable %(p)
is assigned to the point p of a bloek D and represents the value of the
parameter at that point. The distribution funection F(x;p) of a random
variable y(p) iz conceived for a given z as the ratio of the measure of
those positions of the block D for which the value of the parameter at
the point p is less than = to the measure of all possible positions of that
block. A similar meaning is given to the joint distribution function
F(w,...,2;p,...,9) of a system Y(P), ..., y(g) of random variables
assigned to the points p, ..., ¢ of D.

The following assumptions on the random variables y(p) suggest
themselves naturally:
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(a) all random variables y(p) have the same distribution; in parti-
cular, for each p the expected value Ey(p) = m and the variance D’y (p)
2
=8 .
(b) the correlation coefficient R(y(p), y(q)) between random variab-
-

les ¥ (p) and y(¢) depends only on the vector pg joining the points p and g,
ie.

—m
R(y(p), y(@) = f(pa);

. — -
obviously f(pg) = f(gp);

- -

(e) im f(pg) = 1, where |pg| denotes the length of a vector pg.

ngl—0
Sometimes it is possible to assume also that

- - -
(d) f(pg) = g(lpgl), i. e. that the correlation function f(pgq) depends

— -
only on the length |pg| of the vector pg and not on its direction.

The assumptions (a), (b) and (c) characterize the family y(p), pe D,
of random variables as a plane stationary continuous stochastic process.
Tf in addition the condition (d) is fulfilled, the process y(p) is called iso-
tropic. Disregarding the shape of the distribution funetion F(z; p) we
describe the correlation properties of this process by numerical constants

e
m and s and by a correlation function f(pg). The probability distribution
of the variables y(p) plays the role of a theoretical counterpart of the
possible positions of an exploitation block D.

The problem now is to estimate the mean value

n=nD) = %L{y(zﬂ)dp

(dp stands here for a differential of area, and |D| for the area of D), if
the values of some of the variables y(p) are known.

§ 3. Three methods of sampling. In the sequel we will compare
gtandard errors of the estimation of % on the basis of n observations when
the » measurement points py, ..., p, are chosen in three different ways.
The first method — random sampling — consists in choosing each measu-
rement point independently from the others and with uniform probabi-
lity distribution over D. The second method — stratified sampling —
congists in choosing each measurement point independently of the others
and so that the i-th point has uniform probability distribution over Dj,
where D, ..., D, are n disjoint parts of D. Finally the third method —
systematio sampling — consists in choosing the first point from D, with
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uniform probability distribution over .D; and to take for the i-th measu-
rement point, ¢ =2,3,...,7n, a point of D; corresponding to a point
chosen on D, by a translation establishing the congruence of D, and D,
the symbols Dy, ..., D, standing now for n parts of D which are disjoint
and congruent by translation.

For the estimate of n we always take the arithmetic mean of random
variables ¥(pi), ..., ¥(pn), Where p,,...,p, are the chosen points. Let
us denote this mean by 7, in the case of random sampling, by 7y in the

case of stratified sampling and by 7, in the case of systematic sampling. |

Let us further denote by s2, sk, 53, the squares of standard errors of estim-
ation for the three methods of sampling, i e. let us pub

8§ = E(p—m), sy= E(’?‘ﬁst)z7 'S'gy = E(n_ﬁsy)z'

Our aim is o find explicit formulae for those errors (§4) and to prove
some theorems concerning their comparison (§§ 5 and 6).

§ 4. Standard errors of estimation. In the sequel 5(4) will denote,
for an arbitrary domain A, a random variable defined by the formula

1
(4.1) n(d) = o £ [vwap.

We are now going to prove
TarOREM 1. (a) For an arbitrary domain D we have

(42) # = (- D(D));

(b) if the domain D is the swm of disjoint domains Dyy ...y Dy, con-
gruent by translation, or if the process y(p) s isotropic and the domains
Dy ..., D, are congruent, then

(4.3) 8 = :I (s2—D*y(Dy));

(¢} if the domain D is the sum of domains Dy, ..
and congruent by translation, then

2 n ki3 —_—
(44) =2z ' ') —Dn(D),

i=1 J=1

«y Dy, which are disjoint

where pe D; is the centre of gravity of D .
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Proof. We shall ugse the following identity, which holds for an
arbitrary domain A:

(45) D) = o [ [ { [ 1w} a
i A

We assume also, without loss of generality, that m = 0.
Let us begin with (a). We obviously have

1
fr = ;(y(Pl)erer(Pn)),

where Py, ..., P, are » mutually independent random variables, each of
which has uniform probability distribution over D, and which are inde-
pendent of the stochastic process y(p). We have further, in view of m = 0,

(4.6) 8¢ = B(n(D)—#,)
= B (D)—2En(D)7,+ En?

1
= D*y(D)—2En(D)- ;b-(y(Pl)+-..+y(Pn))+Eﬂ3

2 n
= D*n(D)— = > En(D)y(P)+En}.

i=1

In virtue of the definition of #(D) we have for each particular point
P eD

1
@) En(D)y0) = By(o) 157 [ [yerae

— e [ 160,
D

Since, moreover, for each ¢ =1, 2,...,n, the random variable P;
is independent of the process y (p) and therefore also independent of (D),
we have for ¢ =1,2,...,n

@8 Eq@wE) = 5 [ [ B0
D

- et [[{ [0 = oo
D D

the last equality being & consequence of (4.5).


GUEST


256 S. ZUBRZYCKI

We have further

(49) n = B[ ) .y 2

n n
1
= ;;2 ZEy(P)y(P»
i=1 f=

. -

Since for every two points p, gD we have By(p)y(q) = §*f(pq),

and for 4 5= § the random variables P; and P; are independent and uni-
formly distributed over D, we have for ¢ 4

)= o [J1[[1wnadjap = 5.

For ¢ = j we obviously have

(4.10) By (P;)y (P

1 A~y
(4.11) By(P)y(P) = jD (B wyap = .

In view of (4.10) and (4.11) it follows from (4.9) that

n—1

1 2
(#12) Byt = st n(n—1)Di(D) = S 4 T pty (D).

From (4.6), (4.8) and (4.12) we get

—1

sr—D”n(D)——ZDZ + +--D” (D)

82
2l
n

which proves (a).

"“ptym) = vy,

Subsequently, let us prove (b). We now have

- 1
Tst : ;L“(y(Pl)+---+y(Pn))7
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where Py, ..., P, are n mutually independent random variables, the
variable P; havmg uniform probability distribution over D;, which are
moreover independent of the stochastic process y(p). We have, as before,
(4.13) - s = B(n(D)—nq)*

= Ey’(D)— 2By (D) g+ B 7k

2 n
= D*n(D)— = 3 En(D)y(P)+Br.
i=1

- Owing to (4.7) and to the probability distribution of P; we can con-

clude that
En(DP) = 5 [ [{[ [ o0
B Dy D

= £f{fpff(13;)dq}dp

It follows that

(4.14) ZE”D)" ;ngff”ffmmq}
- uz)—ngf{fff@dq}dp — 2D (D).
D D

‘We have further, as before,
n

1
Eqy = s vZEfe/ y(Py).
=1

Since for ¢ % j the random variables P; and P; are independent and
have uniform probability distribution over D; and D; respectively, we
get for ¢ £

By (P;)y(P; !DIIIM fl“ fpg) dq}dp

For i = j we obviously have By (P,)y(P;) = Ey*(P;) = s
we have

. Therefore
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1 n n
Ery= 2y 3 3 By(P)y(P)

i=1 f=1

=51 iy [ [ roiaa avse]
7

(4.15)

ij=
i

2

-l Y wm [ {[f i) ar-
2 ’
_gﬁz‘gf{i}fﬂpq)dq} dp]‘
=%+E§%£f{£ff(23;)dq} dp—

"gﬁﬂﬂ{ﬁf@dq} ap

D

o n
8 . 1 ¢,
=2 4D (D)— — } Dy (D;
7(D) 2,;=1 7(Dy)

_ i D)=Lt
= 7 _;b‘ 7(Dy),

the last equality following from the fact that because of the assumed
congruence of the domains Dy, ..., D, we have D*)(D)) = ... = D*y(D,).
From (4.13), (4.14) and (4.15) we get

2
1
(416) g = D'(D)—2D% (D)+ — +D(D)— - Dy(Dy)

= > (#~D'n(D,),

- which proves (b).
In the third case, (c), we have

1
Ney = " (y(P1)+-~-+ﬁ‘/(Pn))7

where Py, ...., P, are now random variables independent of the process
y(p) and such that P; has uniform probability distribution over D;. But
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the variables Py,..., P, themselves are now dependent: their values
always correspond to one another in the sense of translations establishing
the congruence of particular parts of D. If we denote by »;,1=1,2,...,n
a vector by which D, should be translated to obtain the eoincidence with
D;, we can write with probability 1 the equalities

(4.17)

(obviously », = 0).
We have again

5oy = E(n(D)—1)"

Py =P+

(4.18)

2, %
= D (D)~ ;é’En(D)ymHEn@-

‘We have further

2 71
(4.19) — D'By(D)y(P) = 2D*y(D),

i=1

for the same reasons as in the case of (4.14).
As to the last term of (4.18), we obviously have

n n
1
Brly == D) D By (P)y(®).
i=1 j=1

But if P, = p, then, according to (4.17), P; = p ;. Therefore, in
view of the mutual independence of the system of random variables
Py, ..., Py and the process y(p), the expected value of 72y, under condi-
tion P, = p, is equal to

n n
1 —
2 Zzszf(l’—i‘%: 2+ ),
1=1 F=1
and thus is independent of p. This proves that

n n
1 —_—
Erg, = E Z 2 s f(pepy),

i=1 j=1

(4.20)

—_
where p,, ..., p, are any points such that p,p; = »;. From (4.18), (4.19)
and (4.20) it follows that (4.4) is true.
Theorem 1 is thus fully proved.
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§5. Comparison of errors. We now proceed to prove the following
theorem concerning the comparison of estimation errors:

TemorEM 2. {e) If a domain D is the swm of disjoint domains
Dy, D, ..., Dy congruent by translation, or if the process y(p) 48 isotropic
and the domains Dy, ..., D, are congruent, then
(5.1) 8% < 7.

(f) In order that, for a domain D which is the swm of disjoint domains
Dy, ..., Dy, congruent by translation, we have the relation
Siy < Sit’

(5.2)

it is sufficient that for each ¢ and j we have

fveen) <|—,51-1['2—Lf{£fm?q)dq} a,

p; being the cenire of gravity of Dy; if we want relation (5.2) to hold also for
each domain D’ of the form Dyw D;, 4 £ §, then condition (5.3) is also
necessary.
Proof. For the sake of simplicity we shall agsume throughout the
proof that the expected value m is equal to 0. Let us begin with (e).
It immediately follows from definition (4.1) that

(5.3)

5.4 7(D) = (D)o (D).

By virtue of our assumptions, (D) is thus an average of » random
variables with equal variances. Further, we have

sz

Since, by the Schwarz inequality, we have for each 4 and §

(5.5) D (D) = )0 (Dy).

(5.6) En(Di)7(Dy) < D*n(Dy),

the equality being possible for ¢ 5% j only if the variables #(D;) and y(Dy)
are equal with probability 1, it follows from (5.4)-(5.6) that D?5(D)
< D*y(D,). This, together with (4.2) and (4.3), proves (5.1).

As to (f), let us consider the difference si,—s%. Owing to (4.3), (4.4),
(4.5) and (5.5) we can write the following chain of equalities:
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£ v w, § 1
5.7 2 2 O .o\ T2 S e
B) shy—sh = 5 D D Hpp)—D(D)— =+ - Diy(D,)

=1 j=1

- [Z 2 (1 0eb)— B (D0 (D) — 5"+ n- Dy (D) ]

n n

g;’[s i) = 8+ 34D (Dy)— B (D)0 (D) ;

511—*

we have used here §;; to denote 1 for ¢ = j and 0 for ¢ s j. Since the va-
riables #(D,), ..., n(D,) have equal variances and since, according to
~>

{c) of §3, f(pp) =1, we get from (5.7)

1 n .
=5 ) 1) —By(D)n(D;)]
=1

57

= E [1omi- 55 | j ) Rt

Tl

This identity proves the sufficiency of (5.3). Now in the case of a do-
main D’ of the form D;w D;, i 54, the equality (5.8) reduces to

== floi— T ff‘fjf(pq)dq} p.

This proves the pecessity of (5.3).
The proof of theorem 2 is thus completed.

§ 6. Exponential correlation function. In this section we shall be
concerned with 150(‘1 opic processes, that is with the processes whose correla,—

tion function f( pg) depends only on the length Ipql of the vector pq or,
‘which amoun‘cs to the same, on the distance d = d(p, ¢) of the points p

and ¢, f(pq) = g(d).
Among those processes we are especla]ly interested in those having
the exponential correlation function, i. e, in those for which g(d) = =",

_where a is a positive constant. It is remarkable that it is exactly the expo-

nential function that fits observations of different kinds considerably
well (see e.g. [5], [107).
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Now, it is easy to see that for svitably narrow and long rectangles
D, stratified sampling may be more efficient than systematic sampling.
But it is somewhat surprising that this can happen for domaing D; as
round as circles. Namely we have

TaEOREM 3. If the process y(p) has the exponential correlation function,
% 6. if .

_

(6.1) fpg) = ¢™*

d standing here for the distance of the points p and ¢, and if the domain D
has a diameter less than 1[a and is composed of disjoint circles Dy, ..., D,
of equal size, then stratified sampling is more efficient than systematic sam-
pling, i. e. we have
(6.2) 8% < shye

This theorem shows that the roundness of circles can in some cases
be a satisfactory guarantee against the doubling of observations, which
occurs when the sampling points are very near and which is the main
reason why systematic sampling is often more efficient than stratified
sampling.

Proof. In order to prove (6.2) it suffices to show that for each ¢

and j, ¢ ;%j, we have
1D, ff{fffpgdq}dp’

~(6.3) f(pmf
here p; is the centre of D;. These mequahhes are opposite to (5.3).
To prove (6.3) it will be convenient to introduce in a plane of points
p an orthogonal system of coordinates # and y. Then we can write our
correlation function in the form

f (pq = (@, y) = e~
>
where » and ¥ play the role of coordinates of the vector pg. Now the func-

tion f(z, y) appears to be subharmonie in the domain 0 < Va2+¢? < 1/a,
as is shown by the equality

o & VaEiE 1
a7l @ 0+ (@, y) = a e g ).
0’ 6y2 ]/a-z_l_.yz
It easily follows from the properties of sibharmonic functions that
for each point p in D; we shall have, for j = i,

- 1 -
f(ppy) > o £ , f flpg)dq

icm
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Integrating this inequality over D; we get

= ff(ﬁ;-)dp > i [ robage

For the same reasons ag in the case of the last but one inequality
we have

— 1 —>
fwm>ﬁﬂ&ﬁwmw

The last two inequalities prove (6.3), which completes the proof
of theorem 3.

Theorem 3 shows, roughly speaking, that for a given exponential
correlation function there exist domains D for which stratified sampling
is more efficient than systematic sampling. However, for any domain D
systematic sampling becomes more efficient than stratified sampling
provided that the constant a in the exponential correlation function is
sufficiently large, as is shown by

THEOREM 4. If the process y(p) has the exponential correlation funciion
of the form (6.1) and D is the sum of disjoint domains D, <y Dy, congruent
by translation, then for sufficiently large a systematic sampling is more effi-
cient than stratified sampling, i. e. we have

(6.4) Say < Sk

This theorem is an immediate consequence of the following

Lumwma. If p(x) is a probability density on a half-line 0 < @ < co and
@, 8 any fized number such that

Iy
[ p@az> o,
]

then for sufficiently large a we have

L]
(6.5) %0 < f e “p(z)dw.
0
Proof of the lemma. We have
(o=}
f e~ (x) dw— e~ = e‘”ﬂf (e™%=%0) —1) p (2) dw.
(1] [}
Now it is seen that the function under the integral sign is positive
for # < z, and negative for ¥, < x. Moreover, on the half-line Py < & < 00
it is bounded from below by —1, and in each interval 0 < # < «’, where
o' << @y, it increases over all bounds when o tends to infinity. Since we
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z

can always choose 2’ so that f p(z)de > 0, we can conclude that for
0

gufficiently large o the considered integral becomes positive. The lemma
is thus proved.

Proof of theorem 4. Let us consider two domains D; and Dj.
If p(v) is the probability density of the distance of two points chosen
at random and independently of D, and Dy, respectively, and if x, is the
distance between the centres of gravity of D; and D;, then we can apply
the lemma to p(z) and z,. Thus for sufficiently large a we get inequality
(6.5). This, however, is nothing else but another form of inequality (5.3),
for a given 7 and 4. Since this reasoning is applicable to each pair of domaing
D;, D;, we can choose o so large that inequalities (5.3) hold for all ¢ and
4, ¢ 5 4. This proves our theorem.

Finally let us note that the following question is still open:

P 254. Is always systematic sampling, for isotropic processes ¥(p)
with the exponential correlation function and domains D composed of
squares or of regular hexagons, more efficient than stratified sampling?
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REMARKS ON COMPACT SEMIGROUPS

BY
J. LOS (TORUN) axp 8. SCHWARZ (BRATISLAVA)

The purpose of this note is to show that some theorems concerning
Hausdorff compact (=: bicompact) semigroups can be proved by a uni-
fied method based on a very simple topological lemma.

Theorem 1, Corollary to Theorem 2 and Theorem 2a are known;
we bring them into our considerations to emphasize the method presen-
ted in the paper and for the convenience of the reader, since they are
needed in the rest of the paper. The remaining results seem to be new,
though probably they may be partly known to those who are occupied
with compact semigroups. The results of section 1 and a part of the re-
sults of section 2 are closely comnected with some results stated in a pa-
per of Wallace [1] (see also Wallace [2]).

1. We shall be concerned with functions f of & variables running
k
over a set X and with values in the same set X. We shall write f(X) or
k k 13
fO(X) instead of F(Xx...x X) and f®(X) instead of F[/™V(X)x...
I8 % times
X (X))
LeEMMA 1. Let X be a compact space and f(%y, ..., %) & continuous
k

function for which ;f(jf) C X. Let X;, & < a, be a decreasing family of non-
-empty closed subsets of X. Suppose that for each & < a there emist &, &,
k I

=N X,
E<a

Proof. Let ¢, v, be two ordered sets of ordinal numbers both con-
K

£ < & < & < a such that [(Xy) = X,. Then (N X,)

£<a

final in « and such that ]‘(XU',},E) = X"s' (The existence of such sequences
follows, from the suppositions.) Since X, is a decreasing family we have

NX =T, =X, #0.

é<a §<a
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