12

L. GODEAUX

Pour p=8, nous avons pu construire par ce procédé une surface de genres $p_a=p_g=0$, $P_2=3$, $P_3=7$ (voir [11]).

8. Nous avons désigné par $r_1, r_2, \ldots r_{p-1}$ les dimensions des systèmes linéaires $|L_1|, |L_2|, \ldots, |L_{p-1}|$. D'après la théorie des homographies cycliques, on a

$$r_1 + r_2 + \ldots + r_{\nu-1} + p - 1 = p_q$$

Si la surface F est régulière, cette relation prend la forme

$$r_1+r_2+\ldots+r_{p-1}+p-1=p_a=p-1,$$

d'où $r_1=r_2=\ldots=r_{p-1}=0$. Donc, si la surface F est régulière, les courbes K_1,K_2,\ldots,K_{p-1} sont isolées.

Inversement, si ces courbes sont isolées, on a $p_q = p-1 = p_a$ et F est régulière.

TRAVAUX CITÉS

- [1] L. Godeaux, Sur certaines surfaces algébriques de diviseur supérieur à l'unité, Bulletin de l'Académie des Sciences de Cracovie, 1914, p. 362-368.
- [2] Exemple de surface de diviseur supérieur à l'unité, Bulletin des Sciences Mathématiques, 1915, p. 182-185.
- [3] Sur une surface algébrique de genre zéro et de bigenre deux, Rendiconti dell'Accademia Nazionale dei Lincei, 2^{me} série, 1931, p. 26-37.
- [4] Sur les involutions cycliques dépourvues de points unis appartenant à une surface régulière, Bulletin de l'Académie Royale de Belgique, 1932, p. 672-679.
- [5] Sur les surfaces algébriques de genres arithmétique et géométrique zéro dont le genre linéaire est égal à deux, ibidem, 1933, p. 26-37.
- [6] Sur certaines involutions cycliques dépourvues de points unis appartenant à une surface algébrique, ibidem, 1933, p. 986-991.
- [7] Sur la construction de surfaces algébriques non rationnelles de genres arithmétique et géométrique nuls, ibidom, 1934, p. 8-11.
- [8] Les surfaces algébriques non rationnelles de genres arithmétique et géométrique nuls, Actualités Scientifiques 123, Paris 1934.
- [9] Remarques sur les surfaces algébriques possédant une involution cyclique privée de points unis, Annales de la Société Polonaise de Mathématique 20 (1947), p. 241-250.
- [10] Applications de la théorie des involutions cycliques appartenant à une surface algébrique, Colloque de Géométrie algébrique, Liège et Paris 1949, p. 177-195.
- [11] Sur la construction de surfaces non rationnelles de genres zéro, Bulletin de l'Académie Royale de Belgique, 1949, p. 688-693.
- [12] Remarques sur la construction de surfaces algébriques non rationnelles de genre zéro, ibidem, 1949, p. 971-975.

Regu par la Rédaction le 26.8.1957

COLLOQUIUM MATHEMATICUM

VOL. VI

DÉDIÉ À M. CASIMIR KURATOWSKI

1958

POISSON DISTRIBUTIONS ON COMPACT ABELIAN TOPOLOGICAL GROUPS

BY

K. URBANIK (WROCŁAW)

I. Let G be a compact Abelian topological group. A regular completely additive measure μ defined on the class of all Borel subsets of G, with $\mu(G)=1$, will be called a *probability distribution*. Let $X_1,\,X_2$ be the pair of independent G-valued random variables with the probability distributions $\mu_1,\,\mu_2$. Let us denote by λ the probability distribution of the random variable $X_1,\,X_2$, where the product is taken in the sense of group multiplication in G.

It is well known that $\lambda = \mu_1 * \mu_2$, where the convolution * is defined by the formula

$$\mu_1 * \mu_2(E) = \int_{a}^{b} \mu_1(Ex^{-1}) \mu_2(dx).$$

We say that a probability distribution μ is a *Poisson distribution* with the parameter x_0 ($x_0 \in G$) if there exists a non-negative constant m such that

(1)
$$\mu(E) = \sum_{k \in K(E)} \frac{m^k}{k!} \exp\left(-{^{\circ}m}\right),$$

where K(E) denotes the set of all indices k for which $x_0^k \in E$.

We say that a probability distribution μ is a composed Poisson distribution if there exists a regular completely additive measure ν defined on the class of all Borel subsets of G, with $\nu(G) < \infty$, such that

(2)
$$\mu = \sum_{k=0}^{\infty} \frac{v^{*k}}{k!} \exp\left(-\nu(G)\right),$$

where

$$v^{*0}(E) = egin{cases} 1 & ext{if} & e \in E, \ 0 & ext{if} & e \notin E, \end{cases}$$
 $v^{*(k+1)} = v * v^{*k} \quad (k = 0, 1, \ldots),$

and e denotes the unit element of G. It is easy to see that a composed Poisson distribution is a Poisson distribution if and only if $\nu = m\delta_{x_0}$, where

$$\delta_{x_0}(E) = \begin{cases} 1 & \text{if} & x_0 \in E, \\ 0 & \text{if} & x_0 \notin E. \end{cases}$$

In the present paper we shall give the following characterization of composed Poisson distributions and Poisson distributions:

THEOREM 1. A probability distribution μ is a composed Poisson distribution if and only if there exists a sequence of probability distributions μ_1, μ_2, \ldots such that

(3)
$$\mu = \mu_n^{*n} \quad (n = 1, 2, ...)$$

and

$$\lim_{n\to\infty}\mu_n(e)=1.$$

THEOREM 2. A probability distribution μ is a Poisson distribution with the parameter x_0 or

$$\mu(e) = \mu(x_0) = \frac{1}{2}, \quad \mu(E) = 0 \quad \text{for} \quad E \cap (e \cup x_0) = 0$$

if and only if there exists a sequence of probability distributions μ_1, μ_2, \ldots such that $\mu = \mu_n^{*n}$ $(n = 1, 2, \ldots)$, $\liminf_{n \to \infty} \mu_n(e) > 0$ and

(5)
$$\lim_{n\to\infty} n\mu_n (G \setminus (e \cup x_0)) = 0.$$

Moreover, if $x_0^2 \neq e$ or $x_0 = e$, then μ is a Poisson distribution.

We remark that the results of this paper are known for finite Abelian groups (cf. [5]).

II. Before proving the Theorems we shall give some elementary properties of the characteristic function of the probability distribution.

 \hat{G} will denote the group of all continuous characters of the group G (cf. [4], Chapter IV). The function

$$\varphi_{\mu}(\chi) = \int_{G} \chi(x) \, \mu(dx) \qquad (\chi \, \epsilon \, \hat{G})$$

is called the characteristic function of the probability distribution $\mu.$ It is easy to prove that

(6)
$$\varphi_{\mu_1 * \mu_2}(\chi) = \varphi_{\mu_1}(\chi) \cdot \varphi_{\mu_2}(\chi).$$

Let ${}^{G}\!\!\beta$ be the Banach space of all continuous complex-valued functions f in G with the norm $||f|| = \max_{n \in G} |f(n)|$. By ${}^{G}\!\!\beta_0$ we shall denote the sub-

space of \mathfrak{P} containing all functions vanishing at e. According to the Theorem of Peter-Weyl (cf. [4], § 21,22) every function belonging to \mathfrak{P} can be uniformly approximated by linear combinations of characters. Hence the equality $\varphi_{u}(\chi) = \varphi_{1}(\chi)$ for $\chi \in \hat{G}$ implies

$$\int_{G} f(x) \mu(dx) = \int_{G} f(x) \lambda(dx) \quad \text{for} \quad f \in \mathcal{P},$$

and consequently $\mu=\lambda.$ Thus the probability distribution is uniquely determined by the characteristic function.

It is easy to prove that the characteristic function of the composed Poisson distribution (2) has the form

$$\varphi_{\mu}(\chi) = \exp \int_{\mathcal{O}} (\chi(x) - 1) \nu(dx).$$

In particular, the characteristic function of the Poisson distribution (1) has the form $\varphi_n(\chi) = \exp m(\chi(x_0) - 1)$.

A probability distribution λ is called *symmetric* if it is invariant under the transformation $x \to x^{-1}$, i. e. if $\lambda(E) = \lambda(E^{-1})$ for each Borel subset $E \subset G$, where $E^{-1} = \{x^{-1} : x \in E\}$. It is easy to prove that λ is a symmetric probability distribution if and only if φ_{λ} is a real-valued function.

LEMMA 1. Let μ_1, μ_2, \ldots be a sequence of probability distributions and $\lim_{n\to\infty} \mu_n(e) = 1$. Then $\lim_{n\to\infty} \varphi_{\mu_n}(\chi) = 1$ uniformly for $\chi \in \hat{G}$.

Proof. The assertion of the Lemma is a direct consequence of the following inequality:

$$|1-\varphi_{\mu_n}(\chi)| = \left| \int_{G \setminus e} \left(1-\chi(x)\right) \mu_n(dx) \right| \leqslant 2\left(1-\mu_n(e)\right).$$

LEMMA 2. Let $\lambda_1,\,\lambda_2,\,\dots$ be a sequence of symmetric probability distributions such that

$$\lambda_1 = \lambda_n^{*n} \quad (n = 1, 2, \ldots)$$

and

$$\lim_{n \to \infty} \lambda_n(e) = 1$$

Then
$$\sup_{n\geqslant 1}\sup_{\chi\in\widehat{\mathcal{G}}}n\left(1-\varphi_{\lambda_n}(\chi)\right)<\infty.$$

Proof. Since φ_{λ_n} $(n=1,2,\ldots)$ are real-valued functions, then, according to (6), assumption (7) implies

$$\varphi_{\lambda_n}(\chi) = \sqrt[n]{\varphi_{\lambda_1}(\chi)} \qquad (n = 1, 2, \ldots).$$

Hence and from the assumption (8), in view of Lemma 1, it follows that there is an index n_0 such that $\frac{1}{2} \leqslant \varphi_{\lambda_n}(\chi) \leqslant 1$ for $n \geqslant n_0$, $\chi \in \hat{G}$. Consequently,

$$1/2^{n_0} \leqslant \varphi_{\lambda_1}(\chi) \leqslant 1$$
 for $\chi \in \widehat{G}$.

Hence the sequence

$$n(1-\varphi_{k_n}(\chi)) = n(1-\sqrt[n]{\varphi_{k_1}(\chi)}) \quad (n=1,2,\ldots)$$

converges to $-\log \varphi_{\lambda_1}(\chi)$ uniformly for $\chi \in \widehat{G}$, which implies the assertion of Lemma.

Lemma 3. Let $\lambda_1, \lambda_2, \ldots$ be a sequence of symmetric probability distributions. Suppose that conditions (7) and (8) are fulfilled. Then $\sup_{a \in \mathbb{N}} n\lambda_n(G \setminus e) < \infty$.

Proof. By m we shall denote the Haar measure of G normalized by supposing m(G)=1. Let U ($U\subset G$) be an arbitrary neighbourhood of e. There is then a neighbourhood V such that

$$(9) V \cdot V^{-1} \subset U.$$

It is well known that there exists a continuous function f_V which vanishes off V and

(10)
$$\int_{C} f_{\mathcal{V}}(x) m(dx) \neq 0.$$

Put

$$g_{\mathcal{V}}(x) = \int\limits_{\mathcal{G}} f_{\mathcal{V}}(y) \overline{f_{\mathcal{V}}(yx^{-1})} m(dy).$$

The function $g_{\mathcal{V}}$ is continuous on G and the equality $f_{\mathcal{V}}(x) = 0$ $(x \in \mathcal{V})$ implies

(12)
$$g_{\nu}(x) = \int_{\nu} f_{\nu}(y) \overline{f_{\nu}(yx^{-1})} m(dy).$$

For each $y \in V$ we have the equality $f_{\mathcal{V}}(yx^{-1}) = 0$ if $x \in V \cdot V^{-1}$. Consequently, according to (12),

$$(13) g_V(x) = 0 \text{if} x \notin V \cdot V^{-1}.$$

Since g_F is the convolution of functions with m-integrable squares, the Fourier expansion

$$(14) g_{\mathcal{V}}(x) = \sum_{\mathbf{x} \in G} c_{\mathcal{V}}(\chi) \chi(x) ,$$

where

$$c_{\mathcal{V}}(\chi) = \int_{\mathcal{G}} g_{\mathcal{V}}(y) \overline{\chi(y)} m(dy),$$

converges uniformly for $x \in G$ (cf. [4], § 22). Obviously, $c_{\nu}(\chi) = 0$ except on a countable set of characters. From formulas (10) and (11) it follows that

(15)
$$c_{\mathcal{V}}(\chi) = \left| \int_{\mathcal{L}} f_{\mathcal{V}}(y) \overline{\chi(y)} m(dy) \right|^2 \quad (\chi \in \widehat{G})$$

and

$$(16) 0 < \sum_{\gamma \in \widehat{U}} c_{\mathcal{V}}(\chi) = g_{\mathcal{V}}(e) < \infty.$$

According to Lemma 2, there is a positive constant M such that

$$n\int\limits_{G} (1-\chi(x))\lambda_n(dx) \leqslant M$$

for each $\chi \in \hat{G}$ and each $n \ge 1$. Since λ_n (n = 1, 2, ...) are symmetric, the last inequality implies

$$n \int_{G \setminus \mathcal{V} \cdot \mathcal{V}^{-1}} (1 - \chi(x)) \lambda_n(dx) \leqslant M$$

for each $\chi \in \hat{G}$ and each $n \geqslant 1$. Hence, in view of (15) and (16),

$$n\int\limits_{G \setminus \mathcal{V} \cdot \mathcal{V}^{-1}} \left(\sum_{\chi \in \hat{G}} c_{\mathcal{V}}(\chi) - \sum_{\chi \in \hat{G}} c_{\mathcal{V}}(\chi) \chi(x) \right) \lambda_n(dx) \leqslant M \sum_{\chi \in \hat{G}} c_{\mathcal{V}}(\chi)$$

for n = 1, 2, ... Hence, according to (14),

$$n\int\limits_{\mathcal{O}_{\backslash \mathcal{V},\mathcal{V}^{-1}}} \bigl(g_{\mathcal{V}}(e)-g_{\mathcal{V}}(x)\bigr) \lambda_n(dx) \leqslant Mg_{\mathcal{V}}(e) \qquad (n=1,2,\ldots)$$

Taking into account the formulas (13) and (16) we have $n\lambda_n(G \setminus V \cdot V)^{-1} \leq M$ $(n=1,2,\ldots)$. Hence, according to (9), for every neighbourhood U of the unit element e the inequality $n\lambda_n(G \setminus U) \leq M$ $(n=1,2,\ldots)$ is true. Consequently, $n\lambda_n(G \setminus e) \leq M$ $(n=1,2,\ldots)$.

The Lemma is thus proved.

Proof of Theorem 1. Sufficiency of conditions (3) and (4). Suppose that conditions (3) and (4) are satisfied. Put

$$\bar{\mu}_n(E) = \mu_n(E^{-1}) \quad (n = 1, 2, \ldots)$$

and

(17)
$$\lambda_n = \mu_n * \bar{\mu}_n \quad (n = 1, 2, ...).$$

It is easy to verify that λ_n (n=1,2,...) are symmetric probability distributions and

K. URBANIK

$$\lambda_1 = \lambda_n^{*n} \qquad (n = 1, 2, \ldots),$$

(18)
$$\lambda_n(E) \geqslant \mu_n(E)\mu_n(e) \quad (n = 1, 2, ...)$$

for each Borel subset $E\subset G$. The last inequality, in virtue of the assumption (4), implies $\lim_{n\to\infty}\lambda_n(e)=1$. Consequently, according to Lemma 3, $\sup_{n\to\infty}n\lambda_n(G\setminus e)<\infty$. Hence, in view of (4) and (18),

(19)
$$\sup_{n\geq 1} n\mu_n(G \setminus e) \leqslant \sup_{n\geq 1} \frac{n\lambda_n(G \setminus e)}{\mu_n(e)} < \infty.$$

Let \mathcal{B}_0^* be the conjugate space of \mathcal{B}_0 , *i.e.* the space of all continuous linear functionals on \mathcal{B}_0 . Put

(20)
$$L_n(f) = n \int_{\mathcal{G}} f(x) \mu_n(dx) \qquad (n = 1, 2, \dots; f \in \mathcal{G}_0).$$

Then $|L_n(f)| \leq ||f|| n\mu_n(G \setminus e)$ $(n = 1, 2, ...; f \in \mathcal{P}_0)$. Consequently, according to (19),

$$\sup_{n\geqslant 1}\|L_n\|<\infty.$$

Let us consider the weak topology in \mathfrak{B}_0^* , *i. e.* the topology generated by the family of neighbourhoods of 0

$$U(f_1, f_2, \ldots, f_n; \varepsilon) = \bigcap_{k=1}^n \{L: |L(f_k)| < \varepsilon\},$$

$$L_{\infty}\epsilon \bigcap_{n=1}^{\infty} A_n$$
.

From the definition of the weak topology it follows that for every $f \in \mathcal{B}_0$ there exists a sequence of indices $k_1 < k_2 < \dots$ such that

(22)
$$L_{\infty}(f) = \lim_{n \to \infty} L_{k_n}(f).$$

Since $L_n(f) \geqslant 0$ for $f(x) \geqslant 0$ $(x \epsilon G, f \epsilon \gamma_0)$, the last equality implies $L_{\infty}(f) \geqslant 0$ for $f(x) \geqslant 0$ $(x \epsilon G, f \epsilon \gamma_0)$. Consequently, there is a regular completely additive measure ν defined on the class of all Borel subsets of G, with $\nu(G) < \infty$ (cf. [1], p. 247 and 248) such that

$$L_{\infty}(f) = \int_{\mathcal{G}} f(x) \nu(dx) \quad (f \in \mathcal{G}_0).$$

Hence, in view of (20) and (22), it follows that for every $fe^{\zeta}\beta_0$ there is a sequence of indices $k_1 < k_2 < \dots$ such that

$$\lim_{n\to\infty} k_n \int_G f(x) \, \mu_{k_n}(dx) = \int_G f(x) \, \nu(dx) \, .$$

Let $\chi \in \widehat{\mathcal{G}}$. Then the function $\chi(x)-1=\chi(x)-\chi(e)$ belongs to ${}^{\mathcal{C}}\mathcal{B}_0$. Consequently

(23)
$$\lim_{n\to\infty} k_n \int_{\mathcal{G}} (\chi(x)-1) \mu_{k_n}(dx) = \int_{\mathcal{G}} (\chi(x)-1) \nu(dx)$$

for a sequence of indices $k_1 < k_2 < \dots$ From equalities (3) and (6) it follows that

$$\varphi_{\mu}(\chi) = \left(\varphi_{\mu_n}(\chi)\right)^n = \left(1 + \frac{n\int\limits_G \left(\chi(x) - 1\right)\mu_n(dx)}{n}\right)^n \qquad (n = 1, 2, \ldots).$$

Hence, according to (23),

$$\varphi_{\mu}(\chi) = \exp \int_{G} (\chi(x) - 1) \nu(dx) \quad (\chi \in \widehat{G}).$$

Thus μ is a composed Poisson distribution.

Necessity of conditions (3) and (4). Suppose that μ is a composed Poisson distribution and equality (2) holds. Put

(24)
$$\mu_n = \sum_{k=0}^{\infty} \frac{v^{*k}}{k! \, n^k} \exp\left(-\frac{v(G)}{n}\right) \quad (n = 1, 2, \ldots).$$

It is easy to verify that equality (3) holds. Further, we have

$$\mu_n(e) \geqslant v^{*0}(e) \exp\left(-\frac{\nu(G)}{n}\right) = \exp\left(-\frac{\nu(G)}{n}\right) \quad (n = 1, 2, \ldots),$$

which implies equality (4). The Theorem is thus proved.

Lemma 4. Let μ_1, μ_2, \ldots be a sequence of probability distributions satisfying the conditions

(25)
$$\mu_1 = \mu_n^{*n} \quad (n = 1, 2, ...),$$

(26)
$$\lim_{n\to\infty}\inf\mu_n(e)>0\,,$$

(27)
$$\lim_{n\to\infty} \mu_n \big(G \setminus (e \cup x_0) \big) = 0$$

for some $x_0 \in G$.

Then $\mu_n(E)=\mu_n(Ex_0)$ $(n=1\,,\,2\,,\,\ldots)$ for each Borel subset $E\in G$ or $\lim_{n\to\infty}\mu_n(e)=1.$

Moreover, if $x_0^2 \neq e$ or $x_0 = e$, then the last equality holds.

Proof. Let λ_n (n=1,2,...) be the sequence of symmetric probability distribution defined by formula (17). Then

(28)
$$\varphi_{\lambda_n}(\chi) = |\varphi_{\mu_n}(\chi)|^2 = \sqrt[n]{|\varphi_{\mu_1}(\chi)|^2} \quad (n = 1, 2, ...; \chi \epsilon G).$$

From definition (17) it follows that

$$\lambda_n\big(G\diagdown(e\cup x_0\cup x_0^{-1})\big)=\int\limits_{G\backslash(e_1,x_0)}\mu_n\big(Gx\diagdown(e\cup x_0\cup x_0^{-1})x\big)\mu_n(dx)$$

$$+\mu_n (G \setminus (x_0 \cup x_0^2 \cup e)) \mu_n(x_0)$$

$$+\mu_n(G \setminus (e \cup x_0 \cup x_0^{-1}))\mu_n(e) \leq 3\mu_n(G \setminus (e \cup x_0)) \quad (n = 1, 2, ...).$$

Hence, in view of (27), we obtain

(29)
$$\lim_{n\to\infty} \lambda_n \left(G \setminus (e \cup x_0 \cup x_0^{-1}) \right) = 0.$$

From equality (28) it follows that the limit

(30)
$$\psi(\chi) = \lim_{n \to \infty} \varphi_{\lambda_n}(\chi) \quad (\chi \in \hat{G})$$

exists and $(\psi(\chi))^2 = \psi(\chi)$. Consequently, there is a closed subgroup G_0 of G such that

(31)
$$\varphi(\chi) = \varphi_{m_0}(\chi) \quad (\chi \in \widehat{G}),$$

where m_0 is the Haar measure of the subgroup G_0 normalized so that $m_0(G_0) = 1$ and $m_0(E) = m_0(E \cap G_0)$ for each Borel subset E of G (see [3], p. 259). Hence, in view of (29) and (30),

$$(32) G_0 \subset e \cup x_0 \cup x_0^{-1}.$$

First we suppose that

$$(33) G_0 = \{e\}.$$

Then, according to (30) and (31),

$$\lim_{n\to\infty}\varphi_{\lambda_n}(\chi)=\chi(e)=1 \qquad (\chi\in\widehat{G}).$$

Hence, in view of (28),

(34)
$$\lim_{n \to \infty} |\varphi_{\mu_n}(\chi)| = 1 \quad (\chi \in \widehat{G}).$$

Further, we have, in virtue of (27),

$$\lim_{n\to\infty} \int_{G\setminus (c\cup x_0)} \chi(x) \, \mu_n(dx) = 0 \qquad (\chi \, \epsilon \, \widehat{G}).$$

Hence and from (34) we obtain for $x_0 \neq e$

(35)
$$\lim_{n\to\infty} |\chi(x_0)\mu_n(x_0) + \mu_n(e)| = 1 \quad (\chi \in \widehat{G}).$$

It is well known that for $x_0 \neq e$ there exists a character χ_0 such that $\chi_0(x_0) \neq 1$ (cf. [4], § 27). Equality (35) for $\chi = \chi_0$ implies

$$\lim_{n\to\infty} \min \left(\mu_n(x_0), \, \mu_n(e) \right) = 0.$$

Hence, in virtue of (26) and (27),

$$\lim_{n\to\infty}\mu_n(e)=1\quad\text{ for }\quad x_0\neq e.$$

Since for $x_0 = e$ the last equality is a direct consequence of (26) and (27), we obtain the assertion of the Lemma in the case (33).

Now we assume that $G_0 = \{e, x_0, x_0^{-1}\}$ and $x_0 \neq e$.

Since m_0 is the Haar measure of G_0 , then $\varphi_{m_0}(\chi)=0$ if $\chi(x_0)\neq 1$ $(\chi\in\hat{G})$ (cf. [4], § 20). Hence, according to (28), (30) and (31), $\varphi_{\mu_n}(\chi)=0$ if $\chi(x_0)\neq 1$. This implies

$$\int\limits_{G}\chi(x)\,\mu_{n}(x_{0}dx)\,=\,\overline{\chi(x_{0})}\,\int\limits_{G}\chi(x)\,\mu_{n}(dx)\,=\,\int\limits_{G}\chi(x)\,\mu_{n}(dx)\quad (n\,=\,1\,,\,2\,,\,\ldots;\,\chi\,\epsilon\,\hat{G})\,.$$

Consequently, for every Borel subset E of G the equality

(36)
$$\mu_n(E) = \mu_n(Ex_0) \quad (n = 1, 2, ...)$$

holds.

Let $x_0^2 \neq e$. Then $x_0^2 \neq x_0$, and, according to (27), $\lim_{n \to \infty} \mu_n(x_0^2) = 0$.

From equality (36) it follows that $\mu_n(x_0) = \mu_n(x_0^2)$ (n = 1, 2, ...). Consequently, $\lim_{n \to \infty} \mu_n(x_0) = 0$, which, in virtue of (27), implies the relation $\lim_{n \to \infty} \mu_n(e) = 1$.

The Lemma is thus proved.

Proof of Theorem 2. Sufficiency. Suppose that the probability distribution μ satisfies the conditions of the Theorem. From Lemma 4 it follows that

$$\lim_{n \to \infty} \mu_n(e) = 1$$

or

(38)
$$\mu_n(E) = \mu_n(Ex_0) \quad (n = 1, 2, ...)$$

for all Borel subset E of G. Moreover, equality (37) holds if $x_0^2 \neq e$ or $x_0 = e$. First we consider the case (38) for $x_0 \neq e$, $x_0^2 = e$. Since $G_0 = \{e, x_0\}$ is the compact subgroup of G, then the quotient group G/G_0 is compact. Further, if F is a Borel subset of G/G_0 , then $F \cup Fx_0$ is a Borel subset of G. Put

(39)
$$\tilde{\mu}_n(F) = \mu_n(F \cup Fx_0) \quad (n = 1, 2, ...).$$

It is easy to verify, in view of (38), that $\tilde{\mu}_n$ (n=1, 2, ...) are probability distributions on G/G_0 and

(40)
$$\tilde{\mu}_1 = \tilde{\mu}_n^{*n} \quad (n = 1, 2, ...).$$

By \tilde{e} we shall denote the unit element of G/G_0 . From equality (39) it follows that $\tilde{\mu}_n(G/G_0 \setminus \tilde{e}) = \mu_n(G \setminus (e \cup x_0))$ $(n=1,2,\ldots)$. Consequently, according to (5),

$$\lim_{n \to \infty} n \tilde{\mu}_n(G/G_0 \setminus \tilde{e}) = 0.$$

Hence and from (40), in virtue of Theorem 1, we infer that $\tilde{\mu}_1$ is a composed Poisson distribution on G/G_0 . There is then a regular completely additive measure $\tilde{\nu}$ defined on the class of all Borel subsets of G/G_0 , with $\tilde{\nu}(G/G_0) < \infty$, such that the characteristic function $\varphi_{\tilde{\mu}_1}$ is given by the following formula:

$$(42) \hspace{1cm} \varphi_{\tilde{\mu}_{1}}(\chi) = \exp \int\limits_{G/G_{0}} \left(\chi(x) - 1\right) \tilde{\nu} \left(dx\right) \hspace{0.25cm} \left(\chi \epsilon \widehat{G/G_{0}}\right).$$

Put $\tilde{\lambda}_n = \tilde{\mu}_n * \bar{\tilde{\mu}}_n$ (n = 1, 2, ...). Then, according to (40) and (42),

$$\varphi_{\tilde{\iota}_n}(\chi) = \sqrt[n]{|\varphi_{\tilde{\mu}_1}(\chi)|^2} = \exp \int_{G/G_0} (\chi(x) - 1) \tilde{\nu}_n(dx),$$

where

$$\tilde{\nu}_n(F) = \frac{\tilde{\nu}(F) + \tilde{\nu}(F^{-1})}{n} \quad (n = 1, 2, \ldots).$$

Consequently

(43)
$$\tilde{\lambda}_n = \sum_{k=0}^{\infty} \frac{\tilde{v}_n^{*k}}{k!} \exp\left(-\tilde{v}_n(G/G_0)\right) \quad (n = 1, 2, \ldots).$$

Since

$$\begin{split} \tilde{\lambda}_n(G/G_0 \diagdown \tilde{e} \) &= \int\limits_{G/G_0} \tilde{\mu}_n \big((G/G_0 \diagdown \tilde{e} \) x \big) \tilde{\mu}_n(dx) \leqslant \\ &\leqslant \tilde{\mu}_n(G/G_0 \diagdown \tilde{e} \) (1 + \tilde{\mu}_n(\tilde{e} \)) \qquad (n = 1 \,, \, 2 \,, \, \ldots), \end{split}$$

equality (41) implies

(44)
$$\lim_{n \to \infty} n \tilde{\lambda}_n(G/G_0 \setminus \tilde{e}) = 0.$$

From equality (43) it follows that

$$n\tilde{\lambda}_n(G/G_0 \setminus \tilde{e}) \exp\left(\tilde{\nu}_n(G/G_0)\right) \geqslant n\tilde{\nu}_n(G/G_0 \setminus \tilde{e}) = 2\tilde{\nu}\left(G/G_0 \setminus \tilde{e}\right).$$

Taking into account equality (44) we obtain $\tilde{\nu}(G/G_0 \setminus \tilde{e}) = 0$. Hence, according to (42), $\varphi_{\tilde{\mu}_1}(\chi) \equiv 1$ ($\chi \in G/G_0$), which implies $\tilde{\mu}_1(\tilde{e}) = 1$. This equality, in view of (39), implies $\mu(e \cup x_0) = \tilde{\mu}_1(\tilde{e}) = 1$. Hence, according to (38) and the assumption $x_0 \neq e$, we obtain $\mu(e) = \mu(x_0) = \frac{1}{2}$.

In the case (38) for $x_0 \neq e$, $x_0^2 = e$ the Theorem is thus proved.

For the other case we have equality (37). Let $\lambda_1, \lambda_2, \ldots$ be the sequence of symmetric probability distributions defined by the formula $\lambda_n = \mu_n * \mu_n$ $(n = 1, 2, \ldots)$. Then, according to (37), $\lim_{n \to \infty} \lambda_n(e) = 1$. Hence, in view of Lemma 3, $\sup_{n \geqslant 1} n\lambda_n(G \setminus e) < \infty$. which implies

$$\sup_{n\geqslant 1} n\mu_n(G \setminus e) < \infty.$$

To prove this we must reason in the same way as in the proof of Theorem 1.

Let $x_0 \neq e$. From inequality (45) it follows that there is a sequence of indices $k_1 < k_2 < \dots$ for which the limit

$$m = \lim_{n \to \infty} k_n \mu_{k_n}(x_0)$$

exists. Setting m=0 for $x_0=e$ we obtain, in virtue of (5), for each $\chi \in \hat{G}$

$$\lim_{n\to\infty}k_n\int\limits_{\mathcal G}\big(\chi(x)-1\big)\,\mu_{k_n}(dx)\,=\,m\big(\chi(x_0)-1\big).$$

K. URBANIK

Since

24

$$\varphi_{\mu}(\chi) = \left(\left(\varphi_{\mu_{k_n}}(\chi) \right)^{k_n} = \left(1 + \frac{k_n \int\limits_{\mathcal{C}} \left(\chi(x) - 1 \right) \mu_{k_n}(dx)}{k_n} \right)^{k_n}$$

we have $\varphi_{\mu}(\chi) = \exp m(\chi(x_0) - 1)$.

Thus μ is a Poisson distribution with the parameter x_0 .

Necessity. First we suppose that μ is a Poisson distribution and equality (1) holds. Let μ_n $(n=1,2,\ldots)$ be defined by formula (24) with $\nu=m\delta_{x_0}$. Then

$$\mu = \mu_n^{*n} \quad (n = 1, 2, ...), \quad \lim_{n \to \infty} \mu_n(e) = 1$$

and

$$\mu_n(G \setminus (e \cup x_0)) \leqslant 1 - \exp\left(-\frac{m}{n}\right) - \frac{m}{n} \exp\left(-\frac{m}{n}\right) \quad (n = 1, 2, \ldots).$$

Consequently $\lim_{n\to\infty} n\mu_n (G \setminus (e \cup x_0)) = 0$

Now we assume that $x_0^2 = e, x_0 \neq e$ and $\mu(e) = u(x_0) = \frac{1}{2}$. Setting $\mu_n = \mu$ (n = 1, 2, ...) we have

$$\mu = \mu_n^{*n}, \quad \mu_n(e) = \frac{1}{2} \quad \text{and} \quad \mu_n(G \setminus (e \cup x_0)) = 0 \quad (n = 1, 2, \ldots).$$

The Theorem is thus proved.

REFERENCES

- [1] P. R. Halmos, Measure theory, New York 1950.
- [2] L. H. Loomis, An introduction to abstract harmonic analysis, Toronto, New York, London 1953.
- [3] K. Urbanik, On the limiting probability distribution on a compact topological group, Fundamenta Mathematicae 44 (1957), p. 253-261.
- [4] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1940.
- [5] Н. Н. Воробьев, Сложение независимых случайных величин на конечных абелевых группах, Математический Сборник 34 (1) (1954), р. 89-126.

MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 2, 9, 1957

COLLOQUIUM MATHEMATICUM

VOL. VI

DÉDIÉ À M. CASIMIR KURATOWSKI

1958

CONCERNING APPROXIMATION WITH NODES

BY

P. ERDÖS (LONDON)

This note contains a remark on the subject treated by Paszkowski [1], [2].

Define

$$E_n = \min_{P_n(x)} \max_{-1 \leqslant x \leqslant 1} |f(x) - P_n(x)| \,, \qquad E_n' = \min_{P_n(0) = f(0)} \max_{-1 \leqslant x \leqslant 1} |f(x) - P_n(x)| \,$$

where $P_n(x)$ runs through all polynomials of degree n. Clearly

$$(1) E_n \leqslant E_n' \leqslant 2E_n.$$

I shall prove that there exists an f(x) satisfying

$$\overline{\lim}_{n=\infty} E'_n/E_n = 2.$$

Let $n_k \to \infty$ sufficiently fast. Put

$$f(x) = \sum_{k=1}^{\infty} T_{2n_k}(x)/k!,$$

where $T_n(x)$ is the *n*-th Tchebycheff polynomial. Because of $|T_{2n}(0)|=1$ we have

(3)
$$E_{2n_k} \leqslant (1+o(1))/(k+1)! \qquad (P_n(x)) = \sum_{i=1}^k T_{2n_i}(x)/j!).$$

Next we show that

(4)
$$E'_{2n_k} \ge (2+o(1))/(k+1)!$$

Equality (2) follows from (1), (3) and (4). Thus we only have to show (4).

Let $\Theta_{2n_k}(x)$ be the polynomial of degree $\leq 2n_k$ for which

$$\max_{-1\leqslant x\leqslant 1}|f(x)-\Theta_{2n_k}(x)|=E'_{2n_k}.$$