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Pour p = 8, nous avons pu construire par ce procédé une surface
de genres p, == p, =0, P, = 3, P, = 7 (voir [11]).

8. Nous avons désigné par 7y, s, .... #p_; les dimensions des systeé-
mes linéaires |Ly|, | Ly, -.., |Lpq]. D’aprés la théorie des homographies
cyeliques, on a

Pty P —1 = p,.
Si la surface F est régulidre, cette relation prend la forme
ftnt b p—l =Py =p—1,

d’oltr, =1, = ... = r,_, = 0. Done, si la surface ¥ est réguliére, les cour-
bes K, K, ..., K,_; sont isolées.

Inversement, si ces courbes sont isolées, on a p, = p—1 = p, et F
est réguliére.
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POISSON DISTRIBUTIONS
ON COMPACT ABELIAN TOPOLOGICAL GROUPS
BY
K. URBANIK (WROCLAW)

I. Let @ be a compact Abelian topological group. A regular comple-
tely additive measure u defined on the class of all Borel subsets of @,
with x(@) = 1, will be called a probability distribution. Let X,, X, be the
pair of independent @-valued random variables with the probability di-
stributions uy, us. Lt us denote by A the probability distribution of the
random variable X, X,, where the product is taken in the sense of group
multiplication in G.

It is well known that 1 = uykus, where the convolution * is defined
by the formula .

pakpa(B) = [ iy (Ba™) g (dm).
[ed

We say that a probability distribution u is a Poisson distribution
with the parameter », (@,e@) if there exists a non-negative constant m
such that

m" R
M C B = D) e (=),
kaK(E)
where K (E) denotes the set of. all indices % for which st eR.

We say that a probability distribution u is a composed Poisson destri-
bution if there exists a regular completely additive measure v defined
on the class of all Borel subsets of @, with »(@) < oo, such that

0 g
(2) p= D exp(— (@),
k=0 .

where

g 1 if eel,
TE=N i eem,

PO g™ (B =0,1,...),
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and e denotes the unit element of G. It is easy to sce that a composed
Poisson distribution is a Poisson distribution if and only if » == md,,
where

1 if
0 if

2y,

bq () =
o) e I,

In the present paper we shall give the following characterization of
compoged Poisgon distributions and Poisson distributions:

THEOREM 1. A probability distribution u is @ composed Poisson distri-
bution if and only if there exists a sequence of probabilily distributions

Hyy Mgy +.. SUch that
(3) p=p (n=1,2,..)
and
(4) : Jlimp, (o) = 1.
N—>00

THEOREM 2. A probability distribution u is & Poisson distribution
with the parameter m, or

ulo)=pm) =4, wpE=0 for En(ews)=0

if and only if th*ere exists a sequence of probability distributions gy, puy, ...
23

such that p = p," (n=1,2,...), iminfu,(e) > 0 and
N—>00
(8) Lim np, (G\(¢ v 2,)) = 0.
N—>00

Moreover, if af #¢ dr @y = e, then u s a Poisson distribution.

We remark that the results of this paper are known for finite
Abelian groups (cf. [5]).

.II. Before proving the Theorems we shall give some elementary pro-
permgs of the characteristic function of the probability distribution.

@ will denote the group of all continuous characters of the group &

(cf. [4], Chapter IV). The function
7ul2) = [x@pidr)  (ye)
@

ig called the characteristic function of the probability distribution up. It is
eagy to prove that ' )

(6) L Pain() = 0 (1) 0 ()

POISSON DISTRIBUTIONS 7 15

Let €8 be the Banach gpace of all continuous complex-valued func-
tions f in @ with the norm [|f| = max|f(2)|. By %, we shall denote the sub-
w6

space of 03 containing all functions vanishing at e. According to the Theo-
rem of Peter-Weyl (c¢f. [4], § 21,22) every function belonging to <3 can be
uniformly approximated by linear combinations of characters. Hence

the. equality @,(x) = @.(x) for xefi‘- implies

/ f ) p(dw) = f]‘(w)l(dw) for feB,
¢ G
and consequently p = A. Thus the probability distribution is uniquely
determined by the characterigtic function.

It is easy to prove that the characteristic function of the composed
Poisson distribution (2) has the form

N

9,(2) = exp [ {x{@)—1)»(dx).
Q

In particular, the characteristic function of the Poisson distribution
(1) has the form g,(x) = expm (g () —1).

A probability distribution 1 is called symmetric if it is invariant under
the transformation z — x~%, i. e. it 1(H) = A(E™Y) for each Borel subset
EC @, where ™' = {o™": wcB}. It is easy to prove that A is a symmetric
probability distribution if and only if ¢, is a real-valued function.

LeMmA 1. Let iy, pay ... be a sequence of probability distributions

and limpuy, (6) = 1. Then limg, (y) =1 uniformly for yeG.
N->00 N—>00 .

Proof. The assertion of the Lemma is a direct consequence of the
following inequality: )

w0l =| | (L2 (@) (@) | < 2(1—pn(6))-
SCEN

LuMMA 2. Let Ay, Aq, ... be a sequence of symmetric probability distri-
butions such that )

0 W=t (n=1,2,...)
and
) © lim2,(e) = 1.

Then sup supn(l—e, (1) < oo.
nxzl ze@ ’
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16 K. URBANIK

' Proof. Since ¢, (n=1,2,...) are real-valued functions, then,
according to (6), assumption (7) implies

A e

() = Von(n) (0 =1,2,..).

Hence and from the assumption (8), in view of Lemma 1, it [0110WR
that there is an index n, such that § < ¢, (x ) <1 for n =my, ye G. Con-
sequently,

12" < gy (x) <1 for  ge@.
Hence the sequence )
K ——
n(l—g, (1) = n(1—Vey (x) (n=1,2,...)

converges to —loge; (y) uniformly for ye @, which implies the assertion
of Lemma.

Lmvva 3. Let 2y, Ay, ...
butions. Suppose that

sup nd,(G~e) < co.
nz1

Proof. By m we shall denote the Haar measure of ¢ normalized by
supposing m(G) = 1. Let U (U C &) be an arbitrary neighbourhood of e.
There is then a neighbourhood V¥ such that

be a sequence of symmetric probability distri-
conditions (7) and (8) - are fulfilled. Then

(9) ‘ vV-vlcU.

It is well known that there exists a continuous function fy- which
vanighes off V and

(10) [ Tr@)m(dw) 0
Put ¢

(1) 9 (@) = [ fr@)fr (g2 m(dy).
G

The function g, is continuous on @ and the equality fp(z)=0
(2¢V) implies

(12) g7 (@) = [ fr (@) fr (ya~ ym(dy).
v

For each yeV we have the equality fp(yaz™)=0 if eV -V,
Consequently, according to (12),

(13) gr(x) =0 if weV V-

POISSON DISTRIRUTIONS 1;7

Since gy is the convolution of functions with m-integrable squares,
the Fourier expansion

(14) gr(@) = D or(x)z(),
Jor:
where
f gy 2 (y)m(dy),

converges uniformly for ze@ (cf. [4], § 22). Obviously, ¢y () = 0 except
on a countable set of characters. From formulas (10) and (11) it follows
that

(15) () =| f Fr@) x@m@ynf (1@
and k
(16) o< ch #e) < co.

sz

According to Lemma 2, there is a positive constant M such that

n [ (1~ (@) An(de) < M
Q

for each ye@ and each n
the last inequality implies

n f (1——x
ay.v-l
for each ye@ and each n >1. Hence, in view of (15) and (16),

n = oy () 2(@) In(dw) < M 3 ep(x)

AT VL xb P ye@

>1. Since 4, (» = 1,2,...) are symmetric,

(@) n(d) < M

for » == 1,2, ... Hence, according to (14),
n [ (gr0)—gr@)in(de) < Mgple) (n=1,2,...)
[N
Taking into account the formulas (13) and (16) we ‘have
W (V- V)< M (n=1,2,...). Hence, according to (9), for every

neighbourhood U of the unit element ¢ the inequality ni,(A\U) < M
(n=1,2,...) is true. Consequently, %,(G\¢) <M (n=1,2,...).

The Lemma is thus proved.

Proof of Theorem 1. Sufficiency of conditions (3) and (4). Suppose

_ that conditions (3) and (4) are satisfied. Puf

n(B) = (B (m=1,2,...)

Colloquium Mathematicum VI 2
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18 K. URBANIK
and
@an M = iy (M=1,2,...).

It is easy to verify that 4, (n =
distributions and

=2 (n=1,2,..),

(18) Mn(B) = pa(B)pale)  (n=1,2,...)

for each Borel subset B C G. The last inequality, in virtue of the assump-
tion (4), implies limi,(e) = 1. Consequently, according to Lemma 3,
N—r00

supnh, (G\e6) < co. Hence, in view of (4) and (18),
n>=l

sup 2 (GN0) < oo

(19) o)

sup nun (G\8) <

Let 93; be the conjugate space of 3, 4.e. the space of a.ll continuous
linear funetionals on <G,. Put

(20) La(f) = n [ f@)palde) (0 =1,2,...;f<B).
[c3
Then [ L, ()| < [flnua(GN\e) (0 =1, 2, ...; feB,). Consequently, accor-
ding to (19),
(21)

sup | Lyl < oo.
n>1

Let us consider the weak topology in 93, i. e. the topology generated
by the family of neighbourhoods of 0
Ufus fos +os Ty &) = () (BB < o}
where ¢ is an arbitrary positive number and fre U, (1 < % < n). Since the
strongly closed sphere in <B; is compact in the Wea,k Lopology (ef. [2],
p. 22), in view of (21) the weak closure 4, of the set {Lk k= 'n} is weakly
compact. Since 4, D4, and 4, #0 (n =1,2,...), Lhcre is a linear
functional L, such that -

Lye () 4,.
N=1
) From the definition of the weak topology it follows that for every
feB, there exists a sequence of indices &, < ks < ... such that

(22) Ly (f) = Um I, (f).

N=r00

icm
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Since L,(f) > 0 for f(#) = 0 (@, fe,), the last equality implies
Lo(f) =0 for f(z) 20 (xe@,fe93,). Consequently, there is a regular
completely additive measure » defined on the class of all Borel subsets
of @, with »(@) < co (cf. [1], p. 247 and 248) such that

Loo(f) = [f@)w(dm)  (FBy).
@

Hence, in view of (20) and (22), it follows that for every fe )3, there
is a sequence of indices k; < ky < ... such that
lim. T, [ () i, (d) = [ () v (da).
n—>00 G @&

Let ye@ Then the function y(z)—1 = x(z)
Consequently

—zx(e) belongs to <B,.

(23) lim %, f

N—o0

(z)—1) ‘uk (do) = f di)
&

for a sequence of indices &, < k, < ... From equalities (3) and (6) it follows

that
n [ (x(@)—1) pn(dw) \"
2(1) = (7, ()" = |14+ -2 - (n =1,2,..)
Hence, according to (23),
?.(1) = exp [ (1(2)—1)p(dm) (xe@).
@

Thus ux is a composed Poisson distribution.

Necessity of conditions (3) and (4). Suppose that u is a composed Pois-
son distribution and equality (2) holds. Put

) ’V*k
fn = Ek!n’“ GXP(—
]

It is easy to verify that equality (3) holds. Further, we have

»(G)

(24) —%—) (n=1,2,..).

u,.(e)>v“°<e)exp(~1§—))=exp(—%m) (n=1,2,..),

which implies equality (4). The Theorem is thus proved.
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LEmMvA 4. Let pg, po, ... be a sequence of probability distributions

satisfying the conditions

(25) /“1=,u:bn (’”‘:1;27'"))

(26) lim inf p,(€) > 0,

@7 Lm g, (BN (e v ) = 0
N—00

for some zye@.
Then pn(B) = po(Bry) (n =1,2,...) for each Borel subset IC @
or limp,(e) = 1.
N300

Moreover, if xf % e or m, == ¢, then the last equality holds.
- Proof. Let A4, (n =1,2,...) be the sequence of symmetric proba-

bility distribution defined by formula (17). Then
28) () =10, =Vip, (P (0 =1,2,..51¢@).

From definition (17) it follows that

W(@Nevaun) = [ mlGN\(ew ayw 257 a) ua(de)

(o)
Fun (G\ (g © aF o €) g ()
(N0 @ o 37 m6) < Bun(@N\(ev 7)) (n =1,2,..).
Hence, in view of (27), we obtain

(29) Lim A, (N (6 v 4, w 257)) = 0.
N—00

From equality (28) it follows that the limit

(30) p(x) = Em P3,(1)  (ze®)

exists and (y(x))2 = p(x).

Jongequently, there is a closed subgroup @,
of @ such that

(Xfa)a

where m, is the Haar measure of the subgroup @, normalized so that
Mo(Gy) = 1 and my(B) = my(B ~ G,) for each Borel subset B of G (sce
{3, p.259). Hence, in view of {29) and (30)

S(31) (1) = Pmgy (%)

’

(32) Goceuévuva';]‘.

icm
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First we suppose that
(33) - G, = {e}.
Then, according to (30) and (31},

limg, (1) =zx(e) =1 (xe@.
N—>00
Hence, in view of (28),
(34) : limlp, ()l =1 (xe@).
N> 00
Further, we have, in virtue of.(27),
lm [ g(@)u(de) =0 (z¢6).
00 G\ (ensg)
Hence and from (34) we obtain for =z, # e
(35) 1m |y (@) pn (%0) +-pm(e)] =1 (ze@)-
N—r00

It is well known that for o, = ¢ there exists a character y, such thab
1ol@) £ 1 (cf. [4], § 27). Equality (35) for y = y, implies

limmin (e (), pn(e)) = ©-

Hence, in virtue of (26) and (27),

lim us{e) =1 for a, #*e.
N—00

Since for x, = e the last equality is a direct consequence of (26) and
(27), we obtain the assertion of the Lemma in the case (33).

Now we assume that G, = {e, o, 25"} and @, # e.

Since m, is the Haar measure of G, then @m(y) =0 i () # 1
(x<@ (cf. [4], § 20). Hence, according to (28), (30) and (31), ¢, (x) =0
if y(xz,) # 1. This implies

[ %(@) n(modz) = 7(@) [ 1(@)pn(@m) = [g(@palde) (n=1,2,..;2¢0).
G 2] &

Consequently, for every Borel subset E of @ the equality
(36) wn(B) = w(Bmy) (n=1,2,...)
holds.
Let « # e. Then 4@ % @,, and, according to (27), limu,(s}) = 0.
' =00
From equality (36) it follows that un(xz) = (@) (n=1,2,..).
Consequently, limuy(#,) = 0, which, in virtue of (27), implies the rela-

tion limpy,(e) = 1.
M0
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The Lemma is thus proved.

Proof of Theorem 2. Sufficiency. Suppose that the probability
distribution p satisfies the conditions of the Theorem. From Lemma 4 if
follows that -

(37) limn g, () = 1
or e
(38) in(B) = p(B) (0 =1,2,...)

for all Borel subset Z of G. Moreover, equality (37) holds if af + ¢ or o, = e.

First we consider the case (38) for , 5 v, @f = e. Since G, = {e, x,}
is the compact subgroup of @, then the quotient group G(@, is compact.
Further, if F is a Borel subset of /G, then Fv Fr, is a Borel subset
of @. Put

(39) Hn(F) = pn(F v Fato)

Tt is easy to verify, in view of (38), that u, (n =1, 2,...) are proba-
bility distributions on GG, and
(40) oy = "

By ¢ we shjm]l denote the unit element of G/G,. From equality (39)
it follows that . (G[G\8) = un(@\(ev m)) (n=1,2,...). Consequently,
aceording to (5),

(n=1,2,..).

(n=1,2,..).

(41) Hmng, (G/G,\¢) = 0.
N—r00

Hence and from (40), in virtue of Theorem 1, we infer that i, is a com-
posed Poisson distribution on @/@,. There is then a regular completely
additive measure # defined on the class of all Borel subsets of G/G,, with
(G/@,) < oo, such that the characteristic function g 18 given by the
following formula: '
(42) w0 = oxp [ (1e)=1)3 (@) (1<6160).

IGo

Put A, = frin (n =1,2,...). Then, according to (40) and (42),

25, (1) = Viga 0P = exp [ (x(2)—1)in(da),
6,

where
P (F) = M (n

- =1,2,..).

icm

POISSON DISTRIBUTIONS 23
Consequently
x >y .
(43) Ay, = x exp (— 7 (G/G)) (n=1,2,...).
s {23
Since
n(GlENE) = [ (160N ) a)itn (dw) <

TN
S/;n(G/Go\g)(] ‘l‘/zn(é)) (n =>112,“-)1

equality (41) implies

(44) limnd, (GJGNE) = 0.
N—00
From equality (43) it follows that
(G [GNG ) €XD (5@ [Gy)) = 15 (G [GNE) = 25 (F]GNE).
Taking into account equality (44) we obtain 7(G/G,\¢) = 0. Hence,
i ~ -~ .
according to (42), oz (x) =1 (1<G/G), whi(ih ~imp]iess u,(e) =1 T.hls
equality, in view of (39), implies ule v ;) = 21(2) = 1. Hence, according
to (38) and the assumption @, # ¢, we obtain ule) = ulx) = %
In the case (38) for &, # ¢, 2f = ¢ the Theorem is thus proved.
For the other case we have equality (37). Let Ay, As, ... be the se-
quence of symmetric probability distributions defined by the formula
A = ot iy (0 =1, 2, ...). Then, according to (37), lim4i,(e) = 1. Hence,
N—r00

in view of Lemma 3, supni,(G\¢) < co. which implies
=1

(45) sup Ny (G\€) < oo.
nx=1

To prove this we must reason in the same way as in the proof of

Theorem 1.
Let x, 7 e. From inequality (48) it follows that there is a sequence
of indices %, < %y < ... for which the limit ) .

m = limk, ug_(%)
N—-ro0

exists. Setting m = 0 for 2, = ¢ we obtain, in virtue of (B), for each ye@

lim%,, f (x(w)——l),u/a”(dm) = m(x(%)"]—)-
N0 G
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Since
—1) , (d) ™
b

Ton [ (1 ()
[

2u(0) = (9, () = |1+
we have ¢,(x) = expm(x(z)—1).
Thus # is a Poisson distribution with the parameter a,.
Necessity. First we suppose that x is a Poisson distribution and
equality (1) holds. Let u, (n = 1,2, ...) be defined by formula (24) with

v = mé,o. Then

(n=1,2,...), limu,(e) =1

N—rc0

p= "
and

m m

m
i [GN(e v 1)) < 1—exp (w 7’;)— — exp(—z) (n=1,2,..).
Consequently h'mnyn((}\(o Ca) =0

Now we assume that af = ¢, 2, # ¢ and u(e) = u(mo) = }.
Setting pu, = u (n =1,2,...) we have

b=, un(e) =% and /.Ln(G\(G\JIL‘O)) =0 (n=1,2,...).

The Theorem is thus proved.
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CONCERNING APPROXIMATION WITH NODES
BY
P. ERDOS (LONDON)

This note contains a remark on the subject treated by Paszkowski
(1l [21.
Define

E, = min max |f(x)—P,(x)|
Pp0)=1(0) —l<z<1

B, = mm max [f(z)—Pu (),
Ppa) —1<a<1

where P,(x) runs through all polynomials of degree n. Clearly
1 By < Bp < 2B,.
I shall prove that there exists an f(z) satisfying

@) IimE, /B, = 2.

N=0c0

Let n; — oo sufficiently fast. Put

= Zoc'Tznk(w)/k!a

where T, (z) is the n-th Tchebycheff polynomial. Because of |T2,,(0 | =1
we have

(3) Bay <

k
< (140(1)/(k+1)! @) = D Tony(@)]j1).
j=1

Next we show that

@) B, = (240 (1)) /(1)1
Equality (2) follows from (1), (3) and (4). Thus we only have to
show (4). )
Let Oy, (%) be the polynomial of degree << 2m; for which

max [f(0)—Ouu, ()] = Byny-
-1zl
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