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THEOREM 2 (COMPLETENESS THEOREM FOR ARBITRARY CALCULI). If o
is any cardinal number, then an o-wff is an o-theorem in the sirict sense if
and only if it is an a-tautology.

It is well-known that in the case ¢ = o there is an even stronger
completeness result: any o, w-consistent class of w-wifs has a substitu-
tion giving all formulas in the class the value 7. For all ¢ > it can be
shown that such a stronger result fails unless possibly a is a strongly ina-
ceessible cardinal number. Whether the stronger theorem is true in the
inaccessible case is an open question (P 250) seemingly involving fundamen-
tal set-theoretical problems (®). However, certain stronger results are possi-
ble: for example, it should be clear from the proof of Theorem 1 that every
at most denumerable and w,w,-consistent class of w,-wifs has a substi-
tution giving all formulas in the class the value 7.
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(8) This problem is directly rolated to thoso ﬁroblems about inaccessible numboers
formulated at the end of Erdés-Tarski [2].

COLLOQUIUM MATHEMATICUM

VOL. VI DEDIE A M. CASIMIR KURATOWSKI 1958

REMARKS ON PREDICATE LOGIC
WITH INFINITELY LONG EXPRESSIONS
BY
A. TARSKI (BERKELEY)

As extensions of ordinary first order predicate logic P, various systems
of predicate logic with infinitely long expressions can be considered(!).

To fix the ideas we restrict ourselves to the discussion of predicate
logic P; with denumerably long expressions. Atomic formulas in P, are
expressions like

A CIN Y

consisting of a predicate ¢ and a finite sequence of variables {vy, ..., Tp_1>.
The set of all predicates is assumed to be at most denumerable (though
this restriction is not essential) and to contain the binary identity predi-
cate =; instead of =: (v, v;) we write (r, = 2,). Compound well-formed
formulas are obtained from simpler ones by means of the following ope-
rations: (i) the formation of the negation ~F of a formula F; (ii) the
formation of the implication [F, — F,] of two formulas F, and F,; (iii)
the formation of the disjunction

VIF,... F....]
and the conjunction

AlFy... F,...]

of a finite or denumerable sequence of formulas (Fy, ..., F;,...>; (iv)
the universal quantification

(Vog ... 0. ) F

(') This noto containg the text of the remarks made by the author at the
Summer Instituto of Symbolic Logic in 1957 at Cornell University; it first appoared
(undor tho same title, though in a more concisn form) in Summaries of talks presentad
at the Swmmer Instilute of Symbolic Logic in 1957 at Cornell University, vol 1,
p. 160-163 (mimoographnd). Tae rosults of this note wore obtained and thn note was
propared for publication while the author was working on a research project in the
foundations of mathematics sponsored by thn National Science Foundation and carried
through in the Univorsity of California, Berzeley.
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and the existential quantification:
(Hvg oo v .. ) F

of a formula F over a finite or denumerable sequence of variables
{Wyy-evs Vgy ...y, The notion of a free (or bound) occurrence of a variable
in a formula is defined in the usual way. A formula without free oceurrences
of variables is called a sentence. A universal sentence is a sentence of the
form

(Vop e 0.0 ) P '

where F is a formula without quantifiers.

In this note we shall not attempt to define for P, such fundamental
syntactical notions as provability or derivability; we shall be concerned
exclusively with some semantical and, specifically, model-theoretical
problems.

There is no difficulty in extending basic semantical notions to the
logic P, ; in particular, it is clear under what conditions a relational system

A =<4, Ryy ey By o)

is regarded as a model of a sentence & in P, or of a set X of such sentences.
Each of the relational systems 2 involved here is formed by a non-empty
set 4 and by a finite or denumerable sequence of finitary relations
(Ryy .-y Re, ...> among elements of this set. A class K of relational systerms
is called an arithmetical P-class or, simply, a P-class if it coincides with
the class of all models of some set of sentences in the logie P; it is called
a wniversal P-class if it coincides with the class of all models of some set
of universal sentences in P. For P we can take here P,, P,, or any other
logical system which may be mentioned in our further discussion ().

Various notions applying to arbitrary relational systems (such as
similar systems, at most denumerable system, isomorphic image, sub-
system, and extension of a system, union of a class of systems) are assu-
med to be known. A non-empty class L of relational systems is ealled
directed (denumerably directed) if, for every finite (at most denumerable)
subclass M of L, all systems in M have a common extension which belongs
to L. See here [6], part I, p. 573 ff. (A biblicgraphy is given at the end
of this note).

Several known results and observations in the theory of models can
be extended in an appropriate form from the logic P, to the logic P,.
As an example we state the following

(*) The notion of a P,-class (or a universal P,-class) can also be defined in lpumly
@abhematica,l terms, without involving tho logic P, itsolf or any other logical forma-
lism. Compare [9] for an analogous definition of P, classes (arithmetical classes).
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THEOREM 1. For a class K of (simildr) relational systems to be a uni-
versal Py-class it is necessary and sufficient that K satisfy the following three
conditions: N

(i) #f a sysiem belongs to IK, then all its isomorphic images belong to IK;

(i) of a system belongs fo I, then all its subsystems belong to K;

(iii) if @ denumerably directed class of systems is included in K, then
the union of this class belongs to K.

Condition (iii) can be equivalenty replaced by:

(iii") 4f every at most denwmerable subsystem of a system belongs to K,
then the system itself belongs to K.

The proof of this theorem follows the lines of the proof of an analo-
gous theorem for the logic Py, in fact, of Theorem 1.2 in [6]. The argument
can be conveniently based upon the following simple

LEeMMA. For every at most denumerable relational system 2 a univer-
sal sentence S in P, can be constructed such that a system B is a model of §
if.and only if no subsystem of B is an isomorphic image of 2.

In connection with this lemma compare Theorem 1.1 in [6] and its
proof.

For illugtration consider the class W of all well-ordered systems
(A, R> (such as the system {w, <) formed by the set w of all natural
numbers and the ovdinary relation <C). It has been shown that W is not
a P,-class; cf. [7], part IT, p. 301, or else [8], p. 382. On the other hand
it is well known that the class K = W satisfies conditions (i) and (ii)
of Theorem 1, and it is easily seen that it also satisfies condition (iii) (®).
Consequently, by Theorem 1, W must be a universal P,-class; and, in
fact, W proves to coincide with the class of models of the following three
universal sentences (in which the binary predicates ¢ and = occur as the
only non-logical constants):

) (Voo0:) [p(me1) — [ (9:96) = (v, = v1)]],
(2) (V”oﬂlvz)[‘ﬁ(”o’uﬂ = [p(v,09) = (P('Uo"’z)]];
®3) (V0 - Ope IV [9(000)) + - 9 (0n0pyy) -o- ]

Here (¥, ..., Vp,...p is an arbitrary simple infinite sequence (of
type o) of distinct variables. The proof that W satisfies condition (iii)
of Theorem 1 and coincides with the class of all models of sentences (1)-(3)
is based upon the axiom of choice.

(*) The fact that IV satisties (iii) has rocently heen noticed by William Hant
and Bjarni Jénsson, who also pointed out that the union of an arbitrary directed
class of well-ordered systems is not, in_general, a well-ordered system.
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With sentence (3) appropriately changed, all remarks in the prece-
ding paragraph extend to the class S of scattered ordered systems.

We shall state still another, related result, which applies, however,
not to arbitrary relational systems, but exclusively to algebraic systems
(algebras). The logical basis is provided by the logic P; which differs from
P, in that it contains no predicates with the exception of the identity
symbol, but contains {initary operation symbols instcad. The set of opera-
tions in each of the algebras involved and the set of operation symbols
in P, are assumed to be at most denumerable,

THEOREM 2. For o class K of (similar) algebras to coincide with the
class of models of a set Z of universal seniences in P;, each of which contains
only finitely many distinct variables, il is necessary and sufficient that K
satisfy the following three conditions:

(i) if an algebra belongs to K, then all ils isomorphic images belong
to K;

(if) % an algebra belongs to K, then all its subalgebras belong fo K;

(iil) if @ directed class of algebras is included in K, then the wnion of
this class belongs to K.

Condition (iii) can be equivalently replaced by:

(iii’) if every finilely generated subalgebra of am algebra belongs to K,
then the algebra itself belongs to K.

The proot is entirely analogous to that of Theorem 1 (or Theorem 1.2
in [6]) and is based upon the following

LeMMA. For every finitely generated algebra U a wniversal sentence §

in Py, with finitely many distinct variables, can be constructed such that an

algebrd B s a model of 8 if and only if no subalgebra of B is an isomorphie
image of .

For illustration.consider the class T' of all torsion groups, <. e., of all
groups without elements of infinite order. It is known that T is not a
Pi-class (where P§ is the logical system related to P, in exactly the-same
way in which P| is related to P,); ¢f. [57, Corollary 6.10, . 269. It is easily
seen, however, that T satisfies conditions (i)- (iii) of Theorem 2 and hence
coincides with the class of models of a set I of universal sentencos in Py,
each of which containg only finitely many distinet variables. In fact,
we can take for X' the set of the following three sentences (in which the

binary operation symbol o and the identity symbol occur as the only
non-logical congtants):

1) (V'l’oﬂlvz)[('uo°(771°'uz.)) = ((”o°”1)°'”2)]7
(@) (V'L’o@'l)\/[('”u = (91°0,)) ... (’Uo = (’U?“”)o)) . ],

)..
(3) (Vvo0y) V[(vo = (7)0”"%)) (’Uo = (”o"”qlhl-l)) ]
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Here the meaning of the symbol +} is determined recursively as follows: -
©; coincides with ,, v}** coincides with (vov;) for every positive natural
number #n (4).

There are, of course, some essential model-theoretical differences
between logics Py and P,. For instance, Theorems 1.6 and 1.7 in [6] do
not extend to the logic P,. More specifically, a class K of relational systems
can be exhibited which is a P;-class and satisfies condition (ii) of Theorem
1, but which is not a universal P,-class. Such is, e. g., the class of all rela-
tional systems 2l = (4, B) where 4 in an arbitrary at most denume-
rable set and B is the binary universal relation in A4, i. e., the relation
holding between any two elements of A. K is a P,-class since it coincides
with the class of all models of the following two sentences:

(1) (o) - Vg ) (V) V(0 = 0) .ol (2 = Ung1) »-1y

(2) (V0o01) @ (050,).

Obviously, K satisfies condition (ii) of Theorem 1. However, K does
not satisfy condition (iii") of the same theorem and hence is not a univer-
sal P;-clags. Thus we see that, in opposition to what is true for P,-classes
by virtue of Theorem 1.7 in [6], the P,-classes which satisfy condition
(ii) of Theorem 1 do not coincide with the universal P,-classes. The
problem of finding a purely metamathematical (model-theoretical) char-
acterization for P,-classes satisfying condition (ii) of Theorem 1 is
open (P 25¢). ’

Observations entirely analogous to those made in this note apply to
logics P, for an arbitrary ordinal a. By P, we understand predicate logic
constructed analogously to P, and P, but in which arbitrary sequences
of variables and formulas of any type smaller than the initial ordinal w,
are used.

While in this note we have concerned ourselves with logics in which
all atomie formulas are finite, logical systems with infinitely long, atomic

formulas can be studied as well. In particular, in order to extend theorems

1 and 2 to relational systems with infinitary relations and to algebras
with infinitary operations of denumerable rank, we need a logical system

(*) This opportunity is taken to correct an error in [8], part III, p. 58. Theorem

2.2 as stated thore is wrong: to make it corract, condition (i) (which esgentially coin-

cidos with condition (iii) of Theorom 2 in this noto) must be omitted. In fact, the
class T of torsion groups satisfins conditions (i), (i), and (iii) of Theorem 2.2 although,
as 'we noted above, it is not a P, -class and honce a fortiori not an equational class in

" tho sense of [6]. The error was pointed out to the author by Saunders MacLane.
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in which denumerably long atomic formulas may occur, and disjunctions
and conjunctions of systems of formulas with the power of the continuum
may be formed(5).
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(®) Wo should like to indicate here some other publications in which logical
systems with infinitely long expressions are dirootly or indirectly involved, in fact,
[1]. [2), [3], and [4]. In particular, the obinrvations in this note are related to some
results in [2]. While the discussion in [2] is lacking a precisely defined logical and
set-theoretical basis, it seems that tho rosults of this discussion could be (and probably
ought to bo) interpretod as helonging to tho theory of models for prodicate logic Pg
with arbitrarily long infinite exprossions.

Tae scminar in the foundations of mathematics condunoted by L. Ilenkin and
A. Tarski at the Univorsity of California at Borkeloy in the fall somester of 1956
was entiroly dovoted to tho discussion of predicate logies with infinitely long ex-
préssions. In particular, Henkin and Tarski communicatod some new rosults in this
field (not yet publishod), and Mrs. Carol Karp gave a detailed report on hor investi-

‘gations into the syntax of such logics.
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HOMOLOGICAL RINGOIDS
BY
P.J. HILTON axp W. LEDERMANN (MANCHESTER)

1. Introduction. The algebraic study of homology theory may be
said to have originated with Poincaré who associated with every compact
polyhedron certain numerical invariants, the so-called Betti numbers
and torsion coefficients of the polyhedron ('). Emmy Noether is credited-
with the observation that these numerical invariants were in fact inva-
riants of certain finitely-generated Abelian groups, the homology groups
of the given polyhedron.

More precisely, given any simplicial complex K triangulating a poly-
hedron |K|, one considers, for each dimension #», chains of n-simplexes
of the triangulation K, such an n-chain being abstractly an element of
the free Abelian group freely generated by the n-simplexes. The boundary
of any (oriented) w-simplex is a well-defined (n—1)-chain (consisting
of the suitably oriented (n—1)-faces of the simplex) and one obtains in
this way & homomorphism 4, from C,, the group of n-chains, to 0,_; (?).
The n-cycles of K are the n-chaing in the kernel of 8, and the n-bounda-
ries of K are the n-chains in the image of 9, ;. The fundamental relation
83,10, = 0 (homomorphisms are here written on the right, 50 05,0,
means d,,, followed by 0,) implies that the group of n-boundaries B, (K)
is a subgroup of the group of n-cycles Z, (K) and so a factor group H, (K)
= Z,(K)|B,(K) iz defined. This factor group is the n-th homology group
of K and it may be shown that’if &, I are triangulations of homeomorphie
polyhedra then their homology groups are isomorphic; briefly the homology
groups are topological invariants. Moreover, the Betti numbers and torsion
coefficients of dimension # of the polyhedron |K| are the rank and inva-
riant factors of the finitely-generated Abelian group H,(K).

To-day the scope of homology theory is very broad. There are various
homology theories for general spaces (e. g. singular theory, Cech theory);
there is a dual theory of cohomology in which additional elements of alge-

(4 It is believed that Heegard pointed out to Peincaré the possibility of tor-
sion in homology relations of cycles.

(3) We may put 0_3 =0, dy = 0.
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