1764,” . . D. MENCHOFFR

autre ensemble, M = {p(x, B)}, de fonctions o(x, B), tel que les deuw en-
sembles M et M, posscdent les propriéiés suivantes:

1° Chacune des fonctions oz, B) de Densemble M est mesurable et dé-
finie presque partout dans Vensemble correspondant I8 C [ —n, n], mes I > 0.

2° M,C M. :

3° TPensemble M est fermé au sens élroil.

4° Quelle que soit la fonction p(w, €)eM,, nlexiste aucune fonction
rp(w,E)sM' pour laquelle e C H, mes(l—e) > 0 e vz, e) =opx B
presque partout dans e.

5° Quelle que soit la fonction p(@, B) eM, il emiste une jonction y(x, ¢)eM,
pour laquelle B Ce et (z, ¢) = (2, ) presque partout dans .

6° Lorsque {x, ¢)eM, ot ¢ Ce, mes(c—e¢') =0, la fonction g(z, e'),
égale & (x, e) presque partout dans ¢, appartient ausst & Vensemble M.

La question se pose de trouver les conditions nécessaires et suffisan-
tes pour qu'un ensemble M = {p(z, )} soit celui de toutes les fone-
tions limites au sens étroit d'une série trigonométrigue (4) (P 249).
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The results given in this note are esgentially the observations pre-
viously made by the anthors coneerning the equational identities in Boo-
lean algebras with infinitary operations and in particular the relation
between the identities holding in the two-element algebras and those
holding in arbitrary Boolean algebras. These remarks, however, are re-
formulated here in terms of the syntax of the sentential caleulus with
infinitely long formulas. It is to be noted that the discussion of the sen-
tential calculus is part of a comprehensive study concerning the syntax
of the predicate logic with infinitely long expressions which has been
undertaken and carried out by Mrs. Carol Karp. The results of Mrs. Karp
have not yet been published, but they were presented in the seminar
in the foundations of mathematics conducted by L. Henkin and A. Tarski
at the University of California at Berkeley in the fall semester of 1956 (*).

Let @ and f be cardinal numbers. (We shall identify the cardinals
with the initial ordinals of their respective number classes). The sentential
calculi considered will have p different sentential variables and will per-
mit the formation of well-ordered conjunctions and disjunctions in all
lengths less than a. The case where a = § = o is simply the ordinary cal-
culus. The case where a — o, retains much analogy with the ordinary
case and is examined in detail. The cases where a >> w; and § > o present
some peculiarites which require the reformulation of the definition of

() This note is a summary of a lecture given by the authors at the Summer
Institute of Symbolic Logic at Cornell University in July 1957; it appeared under
the same titlo, though in a somewhat shorter version, in Swmmaries of talks presenisd
at the Summer Institute of Symbolic Logic in 1957 at Cornell University, vol. 1, p. 83-89
(mimeographod). The results of this note were obtained and the note was prepared
for publication while Tarski was working on a research project in the foundations
of mathematics sponsored by the National Seience Foundation. For a Boolean algebraic
formulation of the results sce the abstracts Scott [7] and Tarski [10]. Some remarks
concorning the predicate logic with infinitely long expressions (which is not discussed
in this note) can be found in Tarski [11]. .
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a theorem. The exact statement of the result is given, but the proof will
be omitted.

As usual there are two aspects of the formal systems to be consi-
dered: the syntactic and the semantic. The syntactic details involve the no-
tions of a well-formed formula and a theorem, while the semantic consi-
derations make use of the substitutions of 7°s and IMs for the sentential
variables in order to define a tautology. For e < w, it is to be shown that
a well-formed formula is & theorem if and only if it is a tautology. For
a > o, this is generally not the case, unless the notion of theorem is streng-
thened.

Ag basic symbols for the caleculi we use —, ~, A, V standing for
implication, negation, conjunction, and disjunction. Brackets [ and ] are
also used. The cardinal § will be fixed for the discussion, and the symbols
Doy Piy+e-- Pey --» (Where & < ff) will be used as sentential variables. It
is assumed that the notion of transfinite concatenation of symbols is
understood. Strictly speaking one should give an explicit set-theoretical
construction of the theory of infinite concatenation, but such details
present no essential difficulties and are much too lengthy for this note.
Concatenation will be denoted here simply by juxtaposition of the sym-
bols.

DerFINITION 1. The class of a-well-formed formulas
is the least class of formulas closed under the following rules:

(i) @ variadble p,, where & < f, is an a-wff;

(i) ¢f A and B are a-wffs, then so are [4 — B] and ~4;

(i) if Ay Ayy.nny Agy ... is 0 well-ordered sequence of o-wffs of type
less than o, then N[AgA,...4;...] and V [A,A4,... 4,...] are o-wffs.

Thus, if ¢ = o, we are considering formulas involving finite conjunc-
tions and disjunctions of arbitrary lengths; while, if a = w,, then denu-
merable conjunctions and disjunctions are permitted. In turns out to be
superfluous to consider certain of the cardinals: namely, the go-called
singular numbers, i. e., those ordinals that can be written as an ordinal
sum of smaller numbers over a smaller index. The first transfinite example
among cardinals is of course w, = > w,. Notice that any conjunction

n<w
of the form A[4,4;...4,...] where £ < o, should he equivalent in
meaning to a conjunction of type w of conjunctions of the various types
w, 28 follows:

(a-2wffs)

A[ATAgds  JATA Ay A . A4, 4 o100+ ] ]
Hence, there will be an equivalence between the sentential calculi of

o, wifs and e,,,-wifs. The details of this equivalence for any singular
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number we leave to the reader and assume henceforth that the cardinal
a is regular (i.e. non-singular) and infinite.

In order to smlphfy the writing of formulas we adopt the following
notation:

* [AAB] for A[4B],
[AVB] for VI[4B],
ANA; for A[4,4,...4,...], \
é<y
si/yAé for  V[4,4,...4,...],

where y is the type of the sequence mentioned.
DEFINITION 2. The class of a-theorems is the least class of a-wffs
closed under the following rules: :
(i) if 4, B,C are a-uffs, then [A —[B - A]],
[[A-—> [B—Cl] > [[4~B]—~[4 —>0]]] and [[~B—~A]->[4 - B]|
are a-theorems;
(i) if 4o, Ay, ..., A, ... 18 a well-ordered sequence of type y < a of
a-wffs, then [ /\Ae ——>A o and [4, — VAE] are a-theorems for each n < y;

(i) 4f [A —- B] and A are a- theo;gms, then so is Bj;

(iv) if Ao, Ay ..., Asy ... 18 a well-ordered sequence of type y < a of
a-wﬁs cmd B is an a-wff, then '

(iv') 4f [B -+ A,] is an a-theorem for all n <y, then [B —>/\AE] is

an a-iheorem
(iv'") ¢f [4,— B] is an a-theorem for all n <y, then [VAE—>B]

is an a-theorem (2).

DErFINITON 3. Let y < a. A dass K of a-wffs is y, a-consistent
tf and only if there is no sequence Ay, A,, ..., 4, ... of elements of K of
wype y' <y such that ~ A A, is an a-theorem.

<y’

In the ordinary calculus with ¢ = » the ordinary notion of consi-
stency is what we would here call w, w-consistency. Actually, the only
notion used below in the proofs is that of w, a-consistency, for which we
now state a fundamental property.

Leyya 1. If A is an a-wff that is not an a-theorem, and if Bi, t < o
and & < o; < a, is a double sequence of a-wffs, then there ewist functions

(*) Rules (i) and (iii) supply us with the theorems of the ordinary sentential
caleulus, and hence the class of all a-wifs can be divided into equivalence classes
forming a Boolean algebra. Rules (ii) and (iv) assure us that the algobra is complete
in all degroes lnss than a. If a = w), for example, we obtain the free Boolean
g-algebra with g generators.
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o dnd p such that ¢(i) < o and (i) < o; for all © < w and the class of for-

mulas
' f~d}o

i8 w, a-consistent (*).

{[B‘lw(i] '%E/\ _BLE:I]Z << (.O} -~ {[ \/ Bif - .B:,jt/,(i)]"l: < CU’
<oy <y

Before we can define the notion of a tautology, it must be verified
that T"s and F’s can be substituted for the sentential variables in the
proper way. Proceeding by a transfinite induction based on Definition 1,
the following lemms ghould be proved:

LEMMA 2. If the function f is a substitution defined on the variables
pe taking the values T and F, then there is o unigque extension 1* of 1o the
class of all o-wffs such that

(i) f* takes on only the values T and F;

(i) f*([A -> B]) = T if and only if either f*(A)

(iil) f*(~d4) = T if and only if j*(4) = F;

(iv) (A4 =T if and only if {*(dg) =T for all &< y;

<
V) (VA = T if and only if 1*(4
i<y

DEFINITION 4. An a-wif A s an a-fautology if and only if f*(4A) =T
for all substitutions f.

THEOREM 1 (COMPLETENESS THEOREM FOR COUNTABLE CALCULIL). If
a < wy, then an a-wff is an a-theorem if and only if it is an a-tautology (*).

Proof (in outline). It is obvious from the definitions that every
a-theorem is an a-tautology. Assume then that A4 is an a-wtf that is not
an a-theorem. Let S be the least class of a-wifs containing A and closed
under the operation of taking subformulas. The essential point of the
argument is that S is ab most denumerable as a consequence of the hypo-
thesis a < w,. Thus there exists a sequence By, 7 < @ and § < ¢; < 0o,
such that all conjunctions and disjunctions in the class § are contained
in the class

=T or f*(B) =T,

=1 for some & < P

{/\ BL5|z<w} {v B’“s < w}.
E<ay E<ay
Apply next Lemma 1 to obtain the w, a-consistent clags mentioned
in the conclusion of Lemma 1. With the aid of some form of the axiom

(?) This is a syntactic formulation of the lemma of Rasiowa-Sikorski [5] (p. 107,
statement (iv)). The proof given there is topological, but a simple inductive proof
(credited to Tarski) is givon in the review by Fuformman [3].

(*y In Boolean algebraic torms, this thoorem in effoct shows that the free
Boolean ¢-algebra is isomorphic to a o-fiold of sots, a statomont equivalent to the

theorem of Loomis [4]. Sec also Rieger [6] and. Sikorski [97]. 'llms, Thoorem 1 is nob
essentially new.
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of choice (°) obtain an extension of that w, a-consistent class to a maxi-
mal w, a-consistent clags M. Define a substitution f on the variables p,
by the condition that f(p,) = T if and only if p, is in the class M. It is
then finally to be verified that f*(4) = ¥, and hence 4 is not a tautology,
a8 was to be shown.

Let us turn now to the case where a > o,. Of course if § were finite,
there would be only a finite number of inequivalent formulas on the basis of
the axioms given in Definition 2. Whence, all infinite operations could
be eliminated in favor of the finite ones. Thus, assume that g > . That
the axioms given above are inadequate for generating all tautologies is
shown by the following counter-example: Let o actually be of greater
power than that of the continuum. Let g, where & < y, be a well-orde-
ring of all functions from the integers to {0,1}. Then the formula

LA P V Pl >V A p2n+¢5(n)]
n<o i<y n<w

is an a-tautology that is not an a-theorem (°). It would seem still to be an

‘open question whether such a counter-example can be given foralla > o,

without the aid of the continunm hypothesis. Nevertheless, an adequate
axiom system can be given for all cardinals « by adding an additional
clause to the definition of a-theorems.

DEFINITION 5. The class of a-theorems in the strict semse is the
least class of a-wffs closed wnder the rules of Definition 2 as well as the fol-
lowing additional rule:

(V) if y <a and A, with &, 1<y, i¢ a double sequence of a-wffs
such that for any function @ on y into y there exist £, & <<y such that Ay
= ~Agye, then V' A Ay, 98 an a-theorem.

<y tan

Under the new definition the completeness theorem can be proved

in the following form (7):

(5) The full axiom of choice is not really used here. The only consequence needed
is that the ordinal w, is rogular, a fact essential to the proof that the set S is at most
denumerablo. Thon sinee the sequenco of variables is given as a well-ordored se-
quence, the roquired substitution f can bo defined by transfinite recursion by succes-
sively obtaining consistent adjunctions of ps or ~pg to the set constructed in Lom-
ma 1.

(6) This counter-oxample is taken from Sikorski [8].

(7) Tacorom 2 dons seom to be new. In Boolnan algebraic terms’ it yiolds an
explicit equational definition of those Booloan algebras which are representable as
a field of sets complete in all degreos less than a modulo an ideal complete in all
degreos less than a. The proof is based directly on the work of Chang [1]; see espe-
cially p. 209, Definition, and p. 211, Theorem 2.
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THEOREM 2 (COMPLETENESS THEOREM FOR ARBITRARY CALCULI). If o
is any cardinal number, then an o-wff is an o-theorem in the sirict sense if
and only if it is an a-tautology.

It is well-known that in the case ¢ = o there is an even stronger
completeness result: any o, w-consistent class of w-wifs has a substitu-
tion giving all formulas in the class the value 7. For all ¢ > it can be
shown that such a stronger result fails unless possibly a is a strongly ina-
ceessible cardinal number. Whether the stronger theorem is true in the
inaccessible case is an open question (P 250) seemingly involving fundamen-
tal set-theoretical problems (®). However, certain stronger results are possi-
ble: for example, it should be clear from the proof of Theorem 1 that every
at most denumerable and w,w,-consistent class of w,-wifs has a substi-
tution giving all formulas in the class the value 7.
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(8) This problem is directly rolated to thoso ﬁroblems about inaccessible numboers
formulated at the end of Erdés-Tarski [2].
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REMARKS ON PREDICATE LOGIC
WITH INFINITELY LONG EXPRESSIONS
BY
A. TARSKI (BERKELEY)

As extensions of ordinary first order predicate logic P, various systems
of predicate logic with infinitely long expressions can be considered(!).

To fix the ideas we restrict ourselves to the discussion of predicate
logic P; with denumerably long expressions. Atomic formulas in P, are
expressions like

A CIN Y

consisting of a predicate ¢ and a finite sequence of variables {vy, ..., Tp_1>.
The set of all predicates is assumed to be at most denumerable (though
this restriction is not essential) and to contain the binary identity predi-
cate =; instead of =: (v, v;) we write (r, = 2,). Compound well-formed
formulas are obtained from simpler ones by means of the following ope-
rations: (i) the formation of the negation ~F of a formula F; (ii) the
formation of the implication [F, — F,] of two formulas F, and F,; (iii)
the formation of the disjunction

VIF,... F....]
and the conjunction

AlFy... F,...]

of a finite or denumerable sequence of formulas (Fy, ..., F;,...>; (iv)
the universal quantification

(Vog ... 0. ) F

(') This noto containg the text of the remarks made by the author at the
Summer Instituto of Symbolic Logic in 1957 at Cornell University; it first appoared
(undor tho same title, though in a more concisn form) in Summaries of talks presentad
at the Swmmer Instilute of Symbolic Logic in 1957 at Cornell University, vol 1,
p. 160-163 (mimoographnd). Tae rosults of this note wore obtained and thn note was
propared for publication while the author was working on a research project in the
foundations of mathematics sponsored by thn National Science Foundation and carried
through in the Univorsity of California, Berzeley.
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