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For the error estimate we have the formula (16).
Remark 3. Remarks 1 and 2 are also applicable to Theorem 2.
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ON CANTOR’S PRODUCTS
BY
A. RENYI (BUDAPEST)

G. Cantor [4] (see also [16], p.122-127) considered the representa-
tion of a real number 2 > 1 in the form of the infinite product

(1) & = (1—,L i)

where ¢, = ¢,(#) is a sequence of positive integers, which may be defined
ag follows : we choose for ¢, the least positive integer for which 1+1/g, <

and if q,, ga, + .- @y are already chosen, we choosc for g, the least positive
integer for which ﬁ (14+1/g) < @. Clearly if 2 is contained in the interval
2f-1 < 2F (II:;:I: 1,2 ...), then ¢, =¢ =..=ge,=1, and
1< :v/;ﬁll(l-l—llg;) < 2. Thus we may restrict ourselves to the values

of » lﬁng in the interval 1 < # < 2. In this case clearly

(2) Qn+1>q3» (n=1,2,..).
Let us put
= 1
(3) By(x) =x, Bu(o)= /ﬂ(l—{—aq—k—) (mn=1,2,...).

It is eagy to see that if » is rational, 2 = a/b where a and b are positive
integers, b < a < 2b, then we obtain by the algorithm described above
a finite representation for # of the form

N

=[]0

Tha=]

gince putting Fn(a/d) = apfby, We have Gy, ;3—bn,; < tn—by; it follows
that ¥ < a—b.
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If # in irrational, then, by (2), ¢, tends to 4-co for n — oo, and since

1

(5) 1< B2 <1+ 5y
gn—1

it follows that lim E,(x) = 1. This implies the validity of (1). For irra-

N—00
tional values of » clearly strict inequality in (2) stands for an infinity
of values of n, because by the identity

oo

" 1
(6) [[a+a == (al<u);

=0

if equality in (2) stood for n > n,, then x would be rational.

In the present paper we consider the asymptotic behaviour of the .

sequence ¢, = ¢,(®) by using the methods of probability theory.

The other classical representations of real numbers have already
been investigated from this point of view. For ¢g-adic expangions (including
deeimal fractions) the results of H. Borel [1] and D. Raikov [17], for
continued fractions the results of R.-O. Kuzmin [13], A. O. Khintchine
(9], [10], [11], P. Lévy ([15], Chepitre IX, p. 290), and C. Ryll-Nardzewski
[10] (see also [7] and [8]) are well known. Recently [18] I have extended
these results to a general class of representations (including g-adic expan-
sions and continued fractions as special cages) called ‘“f-expansions”
and having the form

(7) -’”=7‘(51+7((92+7‘(83+--')~-~)

where &, &, ... are non-negative integers.

Engel’s series have been investigated from a probabilistic point
of view by B. Borel [2], [8], P. Lévy [14] and recently by P. Erdis,
P. Szisz and the author of the present paper [5]. Tn [5] the statistical
properties of Sylvester’s series

1 1 1
8 =
® Tata Tt
(where @y, 0,, ... are natural numbers
for n =1,2,...) are also considered.

It seems, however, that Cantor’s products have not been considered
up to now from the point of view of probability theory,

The aim of the present paper is to il thig gap. Thus we shall consider
the functions g, = g,(2) (1 < = < 2) as random variables on the pro-
bability space, furnished by the interval (1, 2] and the Lebesgue-measure
on it. In other words, we interpret the Lebesgue-measure of the set of

(0 << 1)

> 2 a’nd Qn.}.l >’ Qn(Qn""l)"l"l
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those real numbers # for which some relation concerning the values of
gn(®) holds as the probability of this relation and denote it by P(...)
where in the brackets the relation in question is indicated.

First we prove the following

LEMMA 1. The random variables
are all wniformly distributed in the interval (0, 1).

Proof of Lemma 1. Clearly 0 < &, < a <1 if « belongs to one
of the disjoint intervals

n=1,2,..)

TT0e5) 70 3)5)

where ¢, > 2 and ¢, >¢; (1 =1,2,...,n—1), and it can be seen by
induction that the total length of these intervals = a. This proves Lemma 1.

It should be mentioned that a similar assertion holds for Sylvester’s
series (8), namely that if we put

1 1
10 B,(z) = — + ..
o "= e T o
then the random variables
(ll) E’n = Qn(Qn—l)R'n(m)

are uniformly distributed in the interval (0, 1).

It follows by Lemma 1 that the random variables 6, = 10g(gn1/25)
are asymptotically exponentially distributed for # — co with mean value
1, exectly as the random variables 4, = log(Qn+1/Q?,) in the case of
Sylvester’s series. Moreover the random variables 4, are almost inde-
pendent in the same sense as the random variables 4,. It can also be
shown easily that the sequence ¢, = g,(%) (n =1, 2,...) of random va-
riables is a homogeneous Markov-chain (similarly to the sequence
@n = Qn(w)) with the transition probabilities (1)

. 7—1 . :
(12) 7t = PlGnia ==k|gn=])=m for k=4
The probability distribution of ¢,(x) is given by
1
=k) = ———0 k=2).
(13) Plo=H =35 (+>2)

» () P(A|B) denotes the conditional probability of the event 4 with respect to
the condition B.
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From (13) and (12) the prcbability distribution of ¢, may be deter-
mined for any . As a matter of fact, putting

(14) Po(k) = Plgn (@) = k)
we have the recurrence relations
(#-1)
(15) Py(k) = ,;:P T
<k

Using the facts mentioned, the following two theorems can be proved,
by the same method as that used in [5] to prove the corresponding
results for Sylvester’s series:

TEEOREM 1. For almost all 'z the limit
(16) 1 (g, (@) = 1(2)
N—>00

exists and 8 finite and greater than 2.
. THEOREM 2. We have
log Ins1(®) —n y

: 0:1(2) ... qn () 1 N
lim P = = wif
amn m o <y o _ie au

for any real y.

It is implied by Theorem 2 that q/_q,, +1(®)/g1(2)...gn(x) tends in
measure to e. Still more is true, namely

THEOREM 3. For almost all

" —
(18) lim ]/ @
oo Vo 1(2) (). .. gn (@)
Theorem 3 can also be expressed by saying that the strong law of

large numbers is valid for the random wvariables d,. A¥ a matter of fact

the assertion of Theorem 3 is equivalent to the statement that for almost
all # we have

(19) lim M =

N—>00 n

1.

- Theorem 3 can be deduced from a theorem of Koksma and Salem (2).

(*) See [12], p. 89, lemma. This lemma is a particular case of a result of I. G4l
and J.F. Koksma [6].
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To apply this theorem we need only to estimate the mean value
of 6, (2)0,,x(x). Since the joint distribution of the variables 0y () and
Onyn(®) can be determined exactly from the formulae (12)-(15), this
is possible. The corresponding result for Sylvester’s series can be proved
in the same way. Details will be published elsewhere.
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