126 p. ERDOS, P. SZUSZ AND P. TURAN

vergent with denomin:tor g s tisfying
F<qu<eN (6<6 N<N)

has a measure grester th'm 1—-—6:.
We sh_1l return to this subject elsewhere.
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In papers [1] and [2] we have suggested an iterative method for
solving non-linear functional equations in Banach spaces. This method
may also be regarded as a generalization of Newton’s well-kknown clagsical
method. But this generalization is essentially different from that given
by L.V. Kantorovitch [5].

The present paper contains a specification for the case of the real
I7-spaces and a real Hilbert space of the iterative method defined in
paper [2]. An application to approximate solutions of operator equations
in this space is also given. In particular we consider in the IP-gpaces an
analogue of the method of steepest descent for non-linear operator equa-
tions.

The iterative process for solving non-linear functional equations
is defined in papers [17], [2] as follows:

Let X be a Banach space and let F'(z), zeX, be a non-linear conti-
nuous funectional which is differentiable in the sense of Fréchet. Then
the approximate process for solving the non-linear functional equation

1) F(z) =0
is defined by the formula
' F(z,) F(x,)
2 Xy = Ly ——e @, = (I, —— e
(2) 1 0 1) Yo, 41 n Ta(¥n) Yny

where , is the initial approximate solution, f, = F'(a,) for n =0,1,2,...
denotes the Fréchet differential of F'(z) a5 the point & = &, and y, are
elements appropriately chosen in X, 4. e |y, = 1, faltm) = lIfalls
n=0,1,2,..., provided that such a choice is possible.

The specification for the case of the real IP-spaces and the real
Hilbert space consists in the appropriate choice of the elements Yy It
appears that in this case the choice of the elements y, is effective and
may be realized in a simple manner. :
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Now let X be a real Hilbert space and let F(x) be a non-linear
continuons funetional defined on the closed sphere S(mp,7) of X with
centre 7, and radius 7, having two continuous Tréchet derivatives.

" Qince the Fréchet differential F'(x) of F(x) is a linear functional
on the Hilbert space X, it can be represented in the form ‘

F'(@)y = (4F (@), ),
and the eiement AF(x) is called the gradient of . -
The iterative process (2) assumes here the form
T P
AF (@) AR ()]

yeX,

AF (), AR ().

(3) @ =2— Tpp1 = On—
Tt is easy to see that such a choice of the elements y, = AF(x,)

for n = 0,1, 2,... satisfies the condition of Theorem 1.of [2].

A convergence theorem of process (3) to a solution of equation (1)
is given by the general case considered in paper [2] (Theorem .1).

Now let X be the real space L” = L”(a,b) with p > 1; then the
conjugate space of L? is LY where 1/p+1/g = 1.

Let feL? be an arbitrary linear functional on L”. Putting

g(t) = signf(@)fO (a << D),
we have

(4) C ff

i Thus, for § = g/llgll we obtain e L?, |lg|| =1, and it is casy to see thab
‘the norm of the functional f is reached at the element geIL?, i.e.

tydt = |l

! b )
() [iwgwa = ).

As in the case of the Hilbert space, let us assume that F(a) is
a non-linear continuous functional defined on the closed sphere S(w,, ),
having two Fréchet derivatives.

Since the Fréchet differential #'(z) of F(x) is a linear functional
on I”, we put
(6) -~ (2)(t) = mgnF’ o) (¢

‘and° obta.m, by (4 and (5),
b

. fF’(x) (1) g(@) (Dt = |F" ()|,

(@) ()=

fl"

w) () dt = |[F" ()],

“Shere §(z) = g(&) g (@)]
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Iterative process (3) assumes- here the form

F(2,)

F(mn)
17 (@)

7 1 = Lo
@ m=a T @

(wo)y Tpiy = Tp— ( )
where g(z,) for # = 0,1,2, ... is defined by formula (6).

It is easy to see that such a choice of the elements y, = g(x,)
satisfies the above mentioned condition of Theorem 1 of [2].

Thus, Theorem 1 of [2] gives also a convergence theorem of process
(7) to a solution of equation (1).

Paper [3] contains an application of Newton’s method of solving
non-linear functional equations (1), defined by process (3), to the approx-
imate solution of operator equations

(8) P(x) =0

in IP-gpace. It is shown in [3] that equation (8) can be reduced to
equation (1) by setting F(w) = ||P(2)|® = 0.

Thus we obtain in [3] the following approximate process for solving
operator equation (8):

o — g IP@I oy IP@P ,
T pllf () T Tl T
where
() f(w) = P'(@)(sign P (w) (1) P (w) (1) ") e LY,

P’'(x) denotes the Fréchet differential of P(z), P’(x) is the adjoint of
P’ (z) and

)=t

Yn = Yn(t) = signf (Ba)|f (%) ( (n=0,1,2,...).

On the other hand, operator equation (8) can also be reduced to
functional equation (1) by setting F(x) = || P(x)| = 0.

Applying process (7) to this case we obtain the following iterative
process of solving operator equation (8):

L IPEr o P@r
GO0 T e T O T e

where f(x,) and y, have the same meaning as above.

Notice that we use here a result of S. Mazur [6] concerning the
(differentiability in Fréchet’s sense of the norm [jo| in I” to compute the
= ||P(@)|| provided that operator P(x)
is differentiable in Fréchet’s sense.

Colloquium Mathemalicum VI 9
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It should also be remarked that in the case of a real Hilbert space,
ag it is shown in [4], process (10) may be regarded as an extension of the
method of steepest descent.

We shall now give a convergence theorem of process (10) to a solu-
tion of operator equation (8).

Let S(zy, ) be a closed sphere in I” with centre z, and radius r.
Consider the mon-linear operator equation (8), where P is a non-linear
continuous operator defined on the sphere §(w,,r) with values in IL?
with 1 < p. '

Let us assume that P(x) is differentiable in the sense of Fréchet
in the sphere S8(w,,r).

‘We suppose also that there exists the Fréchet differential /' (2) of f (),
where f(z) is defined by formula (9) and is bounded in the sphere
8(wy, 1), ©. 6., that there exists a constant K such that

(11) If (@) <K for every « of §(w,,7).

Sufficient conditions for the existence of a solution of equation (8)

" as well & convergence theorem of process (10) to this solution are given
by the following

TEROREM 1. Let us assume that the following conditions are satisfied:
1° the Fréchet differential P'(z) of P(w) ewists and satisfies condition
) .
—_— < B.:
Il =" .

2° the Fréchet differential ' (x) of f(w) ewists and satisfies condition (11);
3° the first approximate solution satisfies the inequality

(12)

_ P(@)P

13
(%) P <™

Jlomy — o]

where n, 48 a constant;
4° the consiants By, n, and K are subjected to the condition

(14) PByEny = hy < }

and

(15) o IoVi—2hy -
ho

Then equation (8) has a solution & which belongs to the sphere S (x,, 1)

and. the sequence of -approvimate solutions @y, defined by process (10)
converges to «°.
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For the error estimate we have the formula

(16)

l2n— 2"l < =73 (2h)™ 130,

2’!&— 1

Proof. Multiplying equations (10) by f(»,) and integrating we obtain

b
1P @a)IP = [ F(0) (8) (B0 — ) (8) 8
b
= [ SignP (@) ()| P (@) ()PP (@) (30— tn12) (1) .
Thus we have
b
@an — P @I = [ f(@n) (1) (n s — ) (1) .

Hence we get

b
IP@)]” = 1P (@a)P =P (@n_ )P — [ f (@) (8) (@n— 2y ()

b

= IP@)P =P @ns)lP =P [ ] (tn_1) (2) (%0 — Ta_) (D)0 +

b
+(2=1) [ (@) (1) (Ba— @0} (1)1
Thus, we have by (17)

b
(18)  [P@)P < [P @)~ 1P @nos)[P—D [ (01} (0)" (@n— 2u_y) (1) .

Using the analogue of Taylor’s formula we ‘have by (18) and (11)

pK

(19) P @l < L= flon—va sl

Sinee [lya|| = |If(2x)I?, we have by (10)

o — PG
T T

Thus we obtain by (19) and (20)

(20

|29 N
(21) Mon o — ol < ETTIEN] llen— @n_a%
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We shall now estimate the norm ||f(x,)||

el > el 1w teat = Wi 77 e Al
Henece, using the analogue of Lagrange’s formula, we have by (12)
and (11). .
I (@l = If (woll- (1 —Bo Kno) = [|f (o)l (1—p By Kmo) = |If (a00)[|(1-~P).

Thus, we obtain

1 1 B,
(22) el < T <75 = B
! 1—hy ()l 1—h, !
For » = 1, (21) gives by (13) and (22)
B,
23 — <} = _"7.:
(23) ll205 — 4] 1Ty ‘% hy M-
Condition (14) is satisfied for o = w,:
B, K v ke 1
24) hy = pBKn, = pr—tm 00 0 972 L
(24) by = pBEny =p SR S 21— T)? gﬂbu‘/\-z.

Thus, conditions 1°-4° are satisfied for # = #, replacing the numbers
B,, n, and hy by By, 5, and k; defined by (22), (23) and (24). Hence we can
define by induction the approximate solution , and the corresponding
numbers B,, 7, and h,, which satisfy the formmlas analogous to (13),
(22), (23) and (24):

(13%) “mnﬂ—%ﬂ < Ty
(227) By — —Dnt
11—y’

(287) = L Pty

2 1—hyy’

(24') ool R

2 (A—=hpy)

Using the same argument as in paper [2] we obtain from ‘13’ 22’
(25) an (28] [2] (13%), (22),

25 1 "
(25) 7=t (2he)" .

The same argument shows that all the approximate golutions w,
are contained in the sphere S(a, r) defined by (15). It follows from (25)

HmﬂJrz?_ wﬂ“
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that the sequence (x,) converges to an element «* of the sphere S(z,, 7).
Tt follows from (19) that z* i3 a solution of equation (8).
Formula (17) results from (25).

Remark 1. Condition (14) can be replaced by the following:
(14) hy = pBiED < §,

where D is a constant such that ||P{z)|” < D

Remark 2. It is convenient to verify that condition (11) is satisfied
in a constant sphere containing the sphere S(%,,r) where the radius r
is defined by (15). For this purpose we can take, for instance, the sphere
8(xy,r) where r = 27, or r = 2B, D.

Tf X is a real Hilbert space and P is a non-linear operator operating
in this space and defined on the sphere S(w,, r), then the process (10)
is of the form (see [3])

P (@) |12 1P (@)l
(26) By =Dy— Q(x, Tpry = Tp— ————Q (@n)
TRl N 7 TCATER
where Q(z) = P’ (%) P (z).
Suppose that there exists the Fréchet ditferential @'(z) of Q (z) and
that Q' (x) is bounded in the sphere 8 (w,, 7), 4. ., that Lhere exists a con-
stant K such that

(27) 9 (@) < K for every ax of S(z,7).

As a particular case of Theorem 1 we have

THEOREM 2. Let us assume that the following conditions are satisfied:
1° The Fréchet differential P'(z) ewists in the sphere S(z, r) and
satisfies the condition

(28)

1
< By;
@@l ~
920 The Fréchei differential Q' (x) of Q () exists and satisfies the com-
dition (27);
8° The first approzimate solution satisfies the inequality

o = P
Q@

4° The constanis By, 7, and K are subjected to condition (14) with
p =2 and r is defined by (15).

Then equation (8) has a solution which belongs to sphere S(zy,r) and
the sequence of the approwimate solutions z, converges to .

(29) ljs—
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For the error estimate we have the formula (16).
Remark 3. Remarks 1 and 2 are also applicable to Theorem 2.
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G. Cantor [4] (see also [16], p.122-127) considered the representa-
tion of a real number 2 > 1 in the form of the infinite product

(1) & = (1—,L i)

where ¢, = ¢,(#) is a sequence of positive integers, which may be defined
ag follows : we choose for ¢, the least positive integer for which 1+1/g, <

and if q,, ga, + .- @y are already chosen, we choosc for g, the least positive
integer for which ﬁ (14+1/g) < @. Clearly if 2 is contained in the interval
2f-1 < 2F (II:;:I: 1,2 ...), then ¢, =¢ =..=ge,=1, and
1< :v/;ﬁll(l-l—llg;) < 2. Thus we may restrict ourselves to the values

of » lﬁng in the interval 1 < # < 2. In this case clearly

(2) Qn+1>q3» (n=1,2,..).
Let us put
= 1
(3) By(x) =x, Bu(o)= /ﬂ(l—{—aq—k—) (mn=1,2,...).

It is eagy to see that if » is rational, 2 = a/b where a and b are positive
integers, b < a < 2b, then we obtain by the algorithm described above
a finite representation for # of the form

N

=[]0

Tha=]

gince putting Fn(a/d) = apfby, We have Gy, ;3—bn,; < tn—by; it follows
that ¥ < a—b.
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