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1. In [1] Ackermann used double recursion to define a function
which cannot be defined using only primitive recursion and explicit
definition with 0 and 241 as initial funetions. Continuing from this
result, Péter in a series of papers since 1935 has discussed a succession
of types of recursion, producing larger and larger classes of functions
(cf. [12]). Given a recursion defining a funetion ¢, the n-tuples of natural
numbers can be well-ordered so that the value of ¢ for any n-tuple depends
by the recursion on values of ¢ only for preceding n-tuples. Péter has
remarked how her successively stronger types of recursion are associated
with increasing order-types of these well-orderings, and the same feature
appears in the non-primitive recursions employed in Ackermann’s consis-
tency proof [2] for number theory. However this remark does not fully
explain her hierarchy. For as Routledge [15] and Myhill [10] have ob-
served, each general recursive function is definable using besides primitive
recursion only a recursion over a suitable general recursive well-ordering
of the natural numbers of order-type . In Myhill's treatement this well-
-ordering is even primitive recursive. Péter’s hierarchy is kept from
thus collapsing by her using actually only certain particular natural
well-orderings of n-tuples for which no general criteria are given.

80 a problem remains whether the ordinal numbers can be used
to give a satisfactory classification of the general recursive functions
into a hierarchy under some general principle (*). This might be by supplying
criteria for the well-orderings of n-tuples above, or by using some other
method for connecting ordinals with recursive number-theoretic funetions.

(1) Such a classification does exist for general recursive functionals with one-
-place number-theoretic functions as argument~. To a general recursive p(a), We can
associate the ordinal [SR[ < o, of the set SR of [1], § 26, (F) (or [8], XXII) for any

primitive (or general) recursive w, B such that ¢ (o) = lp( (/wR (a (@) )), such y, B exist
by the normal form theorem ({5], Theorem IX* p. 292, forl=m;=1and n =0,
with [6], footnote 2). The author has a proof, by a modification of the construction
for [8), XXIV, that, to any ordinal £ < w;. there is a general recursive g@{a) for
which any such associuted ordinal |8 is > &
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Another method for connecting ordinals with recursive number-
-theoretic functions is proposed in Hilbert’s theory of recursions using
increasing types of variables [4], which has been taken up again in recent
work of Péter [13], [14]. Much remains to be investigated about this.

In the present note we shall propose still another method of agsociat-
ing ordinals with recursive functions, which appears to be worth
investigating (2).

2. Given any countably infinite class € of number-theoretic functions,
Cantor’s diagonal method leads to number-theoretic functions outside C.
We ask now whether it is possible to establish a hierarchy of clagses of
functions, starting from a given class as lowest, by repeated uses of
diagonalization in association with ordinal numbers.

Suppose C contains all the constant one-place functions; then by
a gingle diagonalization, followed by simple operations under which we
shall wish our classes to be closed, we can obtain an arbitrary one-place
function z(a). For let the one-place functions'of ¢ be enumerated (allowing
repetitions) as @, (a) (b = 0,1,2,...) so that py(a) = y(b), and diagona-
lize to obtain g(a) = @,(a)-+1. Then x(a) = p(2a¢)—1. This example
shows that the diagonalization (or the enumeration preceding it, which
is the crucial step)must be controlled, if we are to get a non-trivial hierarchy
based on the number of diagonalizations (or enumerations) required to
define a function,

Now the cases that interest us are when O is a special class of
recursive functions, such as the primitive recursion functions, or the
Osillag-Kalmdr elementary functions (*), or the functions primitive
recursive (or elementary) in a given function 9. In all these cases € is given
effectively (or effectively from 0) as the class of the functions generated
from certain initial functions by repeated application of certain opera-
tions. This manner of generation makes certain enumerations of the one-
-place functions of ¢ immediate. The enumeration (or diagonalization)

The proof wo had uses a modification of the construetion for [8], XXIV. The
following is simpler: For any € such that (o) (B2)Q (a(x)), the functional p(a)
= E(,uauQ(E(x))) has no associated ordinal <\.S?J. Using the recursion theorom [5],
p. 352, pick a partial recursive predicate ¢ such that Q=11 y=1,
2 h(0) > 0& Q((y)o, Moy pPit1) if y = 2000 5 1, oo Th(v) >0 & ¢ ({w)a} ([te)o=110)s
-Hi<upg.")i+!) if y = 3.5, Then for each yeO, WQ(y,w) is complotoly dofined,
(@) (B0)@(y,a (@) and 8P| = |y|.

(*) This method essentially was proposed to the Seminar on the Foundations
of Mathematics at the University of Wisconsin in April 1953. Paul Axt answors
some of the questions that arise concerning it in his thesis [3].

() Cf. [5], p. 285, where references to Kalmar's papors are given. Our notations
not otherwise explained are taken from [5] (cf. bottom p. 538).
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will be controlled by using only such an enumeration g,(a). If, to the
initial functions for the generation, we adjoin ¢(b, a) = ¢,(a) (whence
@.(@)+1 can be generated), we get an enlarged class ¢’ generated like C
except for there being the additional initial function. This gives the idea
which we shall use in ils essentials to rise from one class C to another ¢,
corresponding to the step from an ordinal « to its successor a--1.
Corresponding to the passage from a fundamental sequence of
ordinals oy, ay, @y, ... to a =lima,, we can similarly adjoin a function

. n .
which combines the enumerations of the classes corresponding to
ag, &y, 0y, ... However, just as the diagonalization or enumeration cf
a given class must be controlled, here the formation of fundamental
sequences must be controlled. The control will be provided by an appro-
priate version of the Church-Kleene theory-of constructive ordinals.
In the following sections, we shall work out the idea in detail for the
case the initial class is the primitive recursive functions. The reader
should then have no trouble in proceeding similarly from e.g. the
elementary functions as the initial class. '

3. We now assign numbers, to be called indices (indices from 6)
to the primitive recursive functions (functions primitive recursive in assu-
med functions ). An index of a primitive recursive function ¢ (a function ¢
primitive recursive in @) will be obtained by writing in code form via
prime-factor representation the analysis of a primitive recursive descrip-
tion of ¢ (primitive recursive derivation of ¢ from @) (*). Thus an index
of a function will reflect the generation of it by a series of applications
of listed schemata, while a Gdel number of it reflects the linguistic form
of a system B of equations defining it recursively (°).

Let {agy.eey @y = Pi0-...oppp(=1 when n = —1, iLe (>=1)

For a fixed list of 12> 0 assumed functions 6y(a@;, ..., @n), ...y
01(@yy .+ ., Gyy), or briefly 6, a function ¢ primitive recursive in @ can
be introduced by one of the following schemata, where in (IV) and (V)
Yy X1y -eey Xmy x arve functions previously introduced by applications of

(%) Cf. [5], pp. 220, 224; the analysis is the explanation written at the right,
e.g., in Examples 1 and 2, p. 221-222 (cf. p. 234).

(%) The Gdel numbers of general recursive functions, introduced by the author
in 1936 (cf. [5], pp. 289, 292), were so-called because they are obtained by wusing
Godel’'s method or a modification of it to number the systems E. We could use now
the subelass of Godel numbers obtained by restricting the E’s to those of a suitable
special form (cf. [5], Lemma IIa, p. 267), but using the indices avoids the bother of
arithmotizing a language. Indices can also be used for gemeral and partial recur-
sive functions, e. g. on the basis of six schemata ([5], pp. 279, 289, 330, 331);
a treatment, including the normal form theorem, intended for [5] was left out to
save space, but we plan to use such indices in future publications.

[
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the schemata, and m,n >0 except that » > 1 in (III) and (V). The
corresponding indices are wriiten at the right where for (IV) and (V)
g, hyy ooy by b are indices of w, x1, ...y Zm, z 8 previously introduced (°):

() elary ey ) = 0i(ay, ..., Om,) {O0,m , i)
@ pla) =a' = a+1 1,15,
1D play, oees an) = ¢ <2y m, &
(TIL) (ayy «-vy @) = o4 {3,m, .
(IV) @(a, ,an)=1p(x1(a1,...,an),..,,xv,l(al,...,onn))

Ky ty y By ooy B
(0, Gy . ovy @) = p(ag, ..., ay),

@(agy oy vney @) = g(0q, @lay, Aoy ..oy an), Gy, -0, )
Byn, g, k).

: Fpr fixed I, my,...,m >0, we write In™~"(b) to say that b
is an index of a function ¢ from functions © (as above). In™™ ig pri-
mitive recursive, since it satisfies the course-of-values recursion

]-_nml,...,ml(b) =bh = <0’ [ 1> V...Vb = <0, on l> Vb = <17 1>
Vb =2, (b)y, (B)a) V (b = <3, (b)y, (b)) & 1 < (B)y < (D))
V= [T 0968 0) = 4 & mremn),) &

i<(blg,1+3
(Dt s (IO "(B)) & (B)ey = (b),]}
Vb =G5, (B, (B)s, (b)) & In™™(D),] &
(a1 +1 = (b)y & In"™"™((b)y) & (B)y, = (b),+1}.

4. If ¢ i3 a primitive recursive in functions 01(@yy cvy @)y oen
c?,(al, sy Gmy), or briefly 6, with index b, and © are primitive mélursivé
in v Tmth respective indices ¢, ..., ¢;, then ¢ is primitive recursive in ¥
w_ath index tx™~"™(b, ¢,, ..., ¢;) where tr™~" i3 the primitive fecu%u
sive function defined thus: o )

6) Thi ; ;

- g(1 \)TeTZ;IE :(,)gnr:fs :vxi;h bm_sls B of. [~5'], p. 223, 238, excopt that we are letting
N Ee ant functions as initial functions. (In this paper we arc using
w0 for O o1 {flon t'rohmvfa tlolwha,tevor' cla:ss 0 is at the momoat being gonerated,
the i unotions primitive rocursive in 6}, the initial functions inolude both
initial* and assumed*. functions of 1M, pp. 219, 224.)

?
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BB, 0y ey ) =€ I b = (0, my, 1> (i=1,...,1),
=b if Tn™"™(b) &1 < (b), <3,
= 2% 8O0 TT, Licyyya Pi XD ((B)y, €1, - Cm)
i Inme"(b) & (D)) = 4,
= {8, (b), t’rml'm’ml((b)z: Cyy eeny cm)y trml'""ml((b)sa Ciyeeey 0m)>

‘ if In™e™ (b) & (b)y == B,
= 0 otherwise. :

If moreover ¥ are functions of kl, ..., k; variables respectively,
Tnfve (g™ (b, 61, ..., ¢;)) only when In™n--(p). :

5. In the case that In™+"(b), we write pry(a,, ..., a,) for the function
primitive recursive in @ with index b, where n = (b), by the definition of
“]'ndexﬁ. .

Let :
W e ((@)es + - oy (@yp—n) 1 ™),

1% (b, a) = ;
(b, a) 0 otherwise.

Now for each fixed » > 0,

pre(O, {Byy -nvy On)), ]:)I‘@(l, L@y ivey Un)); Pr®(27 {Byy ey App)y -
is an-enumeration with repetitions of the n-place functions primitive
recursive in @. For if ¢(a, ..., a,) is primitive recursive in 0, it has an
index b from O, and @(ay, ..., @Gn) = P (G, ..., an) = DD, (A, ..,y OnD).
Conversely, for each b, pr®(b, {ay, ..., tpy) is primitive recursive in 6O,
since

(b, {ayy ey WD) = O (PR a(b)l)‘ if In™>"(b) & (b)i < n,
pl‘e(b, gy envy Gnp) = 1)1'?(0«1; ey Oy Oy ooy O) 3 In"™(b) & (b), = n,
PIO(B, By sury Q) = 0 if In™e™(h). :

The “enumerating function” pr(b, @) is not primitive recursive
in @. For if it were, so would be pr®(a, {a))-1; but by Cantor’s diagonal
reasoning, the latter function is not in the enumeration pr®(0,<{a)),
(1, (ad), pr°(2, {ap), ... of the one-place functions primitive recursive
in 6.

On the other hand, for ¢ =1,...,1, the function 6; is primitive
recursive in pré (b, a), since 6;(dy, ..., am,) = Pr(C0, miy 1D, {15 oy GmD)-

6. Say that 4,B,( are each a number-theoretic function, predicate or
set. The velation “4 is primitive recursive in B” is reflexive and transitive.
So “4 is primitive recursive.in B, and B ig primitive recursive. iy, 4" is

"
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reflexive, transitive and symmetrie, and hence divides the functions,
predicates and sets into equivalence classes, which we call primitive
recursive degrees, in analogy to the degrees of recursive unsolvability (or
general recursive degrees) of Kleene and Post [9] (ef. p. 381).

The definitions of a << b, a < b, ete,, 0, aub, and the formulas
(1)-(9) of [9], 1.2 and 1. 3 now hold substituting throunghout primitive
recursiveness for general recursiveness.

In the case (I =1, m, = 2) that @ is a single two-place function
6(b, a), we shall sometimes write pr®(b,.a) simply 0'(b, a).

Suppose y(ay, ay) is primitive recursive in y{a,, a,) with index e.
Then by § 4, »'(b, @) = x'(tr%(b, ¢), a). Thus, when v is primitive recur-
sive in y, 3’ will be primitive recursive in y'.

Applying this remark to the case v, y are first 0,, 0, and then 0,, 9,
for two two-place functions 0y, 0, of the same (primitive recursive) degree,
we have that the degree, call it a’, of 0’ is determined by the degree a
of 0; i. e. we can construe ’ as an operation on degrees. Then the remark
gives : . :

(10) a<b—>a b,
and the conclusion of § 5, for 6 as the @, can be stated
(11) a<a

Thus we have an operation ’ which raises primitive recursive degrees
analogous to the operation ’ of Kleene and Post [9], 1.4 which raises
general recursive degrees, and their formulas (1)-(12) all hold. How
much further the theory of primitive recursive degrees can be developed
to parallel that of general recursive degrees has been investigated by
Axt [3]. :

?. We are now in & position to set up a hierarchy of two-place number-
-theoretic functions &, with ascending primitive recursive degrees, analo-
gous to the hierarchy X, of onme-place predicates of Kleeno [6], §6.

For the hierarchy H, the control over the formation of fundamental
sequences was provided by letting y range, not over Cantor’s first and
second number classes, but over the notations 4, of the set O (partially
ordered by <), for ordinals |y| in the system 8, formed under the re-
striction to general recursive fundamental sequences ("). That control
was necessary in order that the hierarchy not collapse by a predicate

of arbitrary degree being definable at the w level, as is shown by [8],
XIII, p. 199.

(") CE [7], §20, or [8], p. 199-200, where further references are given,
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For the present hierarchy based on primitive recursiveness, it would
be out of keeping to allow more than primitive recursive fundamental
sequences. So here we are primarily interested in the case the 0, <o
and | | (called 0', < p and | |’ in §§ 10, 11) differ from those of S; by being
formed under the restriction to primitive recursive fundamental sequen-
ces. That this restriction is necessary, if the hierarchy is not to collapse
by a function of arbitrary primitive recursive degree for a general recur-
sive predicate being definable at the o level, has been shown by Axt [3].

In §§ 10, 11 we shall compare the two systems of notation for ordinals,
differing by the use of general, or only primitive, recursive fundamental
sequences. The intervening material and §12 actually read ecorrectly
for either system, though principally we intend the latter. In particular,
when 3-5° is a notation for a limit ordinal a = hm ay, then z, or [2], is

the notation for a, in the fundamental sequence of notations having
3:5° as limit notation.

We now define hy(b, a), for each 'L/eO thus: 1. (b, a) =0. 2. If
yeO and y = 9% £ 1, then h, (b, a) = pr'z(b, a), or more Dbriefly hy = hy.
3. If ye0 and y = 3-5%, then By (b, a) = hy((D)o, @) Where A =z .

The hierarchy can be relativized to any given number-theoretic
function »(b, ). If we parallel the relativization of H, in [6], 6.5 (but
cf. also 6.8), the definition is as follows: 1. ki(b, a) = (b, a). 2. If 50"

and y = 2° £ 1, then h;(b, a) =pr"”‘:(b, a). 3. If ye0* and y = 3.5,
then (b, a) = ki ((b)y, @) Where A =z, .

8. The (primitive recursive) degree of h, we write 0 :

In case 3 of the definition of h,: For each ny b, b a) = h y (Cby 1) ),
80 Pk, is primitive recursive in hy.

Usmg this remark with (11), by an induction with cases corresponding
to the clauses (§10, or [7], §20) by which y < o # can hold,

(13a) ¥ <02 —> Oy < Opy).

For any 40, define ¢, = {the functions primitive recursive in %} (*).
Then by (13a)

(13b) y <pz-» (0, CC, &0, #0,).

(8, We have depurtnd from the heuristic account in § 2 in two inessential. re-
spocts. To rise from O == Cy to O = Cye, we could (keeping to the idea of § 2) have
adjoinod mPz(b, {ap), which enumeratvs the one-place functions of C; howover, in
generating ¢ the one-place functions are obtained mteraper:md among m-place
functions for m % 1, and it seems more natural to adjoin pr 5 (5, a), waieh via the
contraction of (ay, ..., an) to @ = <ay, ..., an) enumerates all the fanctions @(Byseees an)
(n varying) of C in a manner which may b considered as immediato from the genera-
tion of . Lhe other doparture is that, instead of at each step adjeining a new initial
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9. Finally, we show that, for each yz0, the function h,, and hence
all the functions ,, are general recursive. i

The function prf(h, a) comes from 0(b, a) by the double course-
-of-values recursion '

(14)  pr'(b, a) = 0((a), (a)y) i In2(b) & (b), = 0,
= (a)y it Tn*(b) & (b)y = 1,

(b)s i In'(d) & (B)y = 2,
= (@)gpe1 i Tn2(0) & (), =3,

D (B2 [Ticpp, 7" @459) if In2(b) & (b) = 4,
pr’ ((‘b)z, [Ticpy12Pi+) it In2(b) & (b)y = 5 & (a)y = 0,
pr’(()s, 2601 g0, 1a21) . [Tice )l;lpgqu24-1 )

I

i

it Tn2(b) & (b)y = 5 & (a)y > 0,
= 0 otherwise. -

As this illustrates for I =1, m; = 2, pr® is double recursive uni-
formly in @ (°).

T‘J'sing the recursion theorem ([5], p. 352), choose a partial recursive
function &(y, b, a) such that

pr},bull((ll)u,b,a)(b , @) if

B((¥)edpyys (Bos @) if
0  otherwise.

Y = 2(1/)0’

(15) h(y, a,b) = y = 3.5,

Now, for each yz0, h(y, b, a) = hy(b, a).

10. Some properties (I)-(XXIII) of the predicates aeO and a <o b
of the system 8, of notation for ordinals are collected in [7], §§20-23.
We add one more:

(XXIV) If a <o b, then 2°<p b < 20,

In adapting 'Sa to use only primitive recursive fundamental sequen-
ces {y,}, we can either continue using Gidel numbers, or use indices (§§ 3,5),

?unction for the generation of our class, we have fof each y an initial function f, with
md_ex <0, 2,1 (tho sol(_a assumed function for the rolative primitive recurﬂivzfmass)
which at es.wkf lf;top wo s%mp‘ly chango (the former such functions not being lost sinco
thoy are primitivo rocursivo in the new one); the first class C, is the primitive recursive
functu;ns, .}?ut gererated as the functions primitive recursive in Abg 0.

) () This for O empty constitutos a quite oxpeditious version of tho diagonaliza-
tion proof (Péter [11], § 2) of the existence of non-primitive double rocursive functions.
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in describing the fundamental sequences. We choose to use indices, which
seems more in keeping with the restriction to primitive recursiveness.

The resulting modifications of the notions ac0, 4 <pb, |a| of S;
we distinguish in this and the next section by accents: a¢0’. a <o b,
Ja|’. Their definitions read as before (e. g. [7], § 20), except accents are
inserted and 03 is replaced by: 0'3. If In(y) & (y); = 1 and, for each n,
Yo e O and y, <'oyn+1, where ¥, = pr{y, {noy), then 3-5Y ¢ 0’ and, for
each n, y¥ <3-5Y (and |3-5Y) = Limly,|’).

n

Properties (I)-(XXIV) hold anew for the accented notions
(including ' (b), a+ob, Do). Here a-pb is defined by reworking the
definition of a+ob (see [7], p. 412-413) to make d,, in case 3 an index
of An a+o Pr (¥, (n)), as follows. ‘

First, we adapt Sy ([8], p. 342): The function

8be (2, Yuy -ors Ym)

=4y My 2, (25 1y Yr0y ony 2y My Ym s 351y 1)y ey 3y My 1))

is primitive recursive, and, when z is an index of a primitive recursive func-
Bion @(Uiyevey Ymy Gy --vy Gn)y then, Jor each fiwed yiy ..., Ym, the number
SO (2, Yay onry Um) 18 an index of Ay, @n@(Yry es Ymy Gry - ery On):
Next, we adapt the recursion theorem ([5], p. 352): To any primitive
recursive function (2, 1, ..., ay), there 18 an index ¢ of Ay .. Oy (6, Gy,
., @,). For, let d be an index of Abay...a,p(sbu(b, ), Gy,..., a,), and
take ¢ = shi(d, d). (Both these adaptations hold likewise for functions
primitive recursive in © with indices from 6.) .
‘Now, to define +p, let 8(z,a,y) = (4,1,2,(2,1,ad,y>, so that
(when In(y) & (y), = 1) (e, @, ¥) will be an index of in a-+opr(y, {n))

if ¢ is one of Aaba--pb. Let

aif b=1&a #0,
o¥(za,0)0) if b = 2(b)0 #1,
3.5%=a0)2) it b = 3.5(”)2,

7 otherwise.

v(z, @, b) =1

This is a course-of-values recursion, so w(2,a,b) is primitive recur-
sive. Pick an e for this v(2, @, b) by the (new) recursion theorem, and
let at+ob = (e, a,d).

11. In this section we show that O’ has notations for exactly the same
ordinals (those < w,) as O.

Tt has notations for as many ordinals: There is a primitive recursive
function m-such that, for each.ceO:
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(@) If a <opc, then m(a)e0’ and |n(a)’ = |al.

(i) If @ <ob <ge, then =(a) <on(b).

The proof of the two properties of z will be by induction on ¢ over 0,
First, we treat the three cases (01-03) by which ¢ can <0, in each case
giving a definition of =(¢) that suffices for the case.

Oase 1: ¢ =1, Define a(¢c) = 1. Using (II), we have (i) and (ii).

Case 2: ¢ = 2” with y<0. Define z(c) = 2"¥, Using (V) and the
hypothesis of the induction, we again have (i) and (ii).

Case 3: ¢ = 3-5” and ¢e0. Using the hypothesis of the induction,
(o), (Y1), (Ys),... where y; = ®(y,4p) is a sequence of members
of 0, ascending in the sense <,.. Suppose p is a Godel number of . Tiet q
be a Godel number of Apci®(p, D ((¢s, 4p)). Then s = 82(g, p, ¢) is a Godel
number of the sequence w(y,), % (¥,), #(¥,), ...; 1. e., for each ¢, T(s, 1, 1)
holds for a unique number ¢ = z(i), and =(y;) = U(r(i)). Now (cf. [7]
D. 415-416) let ’

¥(s,0) = 0p =1,
wlyy) it m = 7(i+41),
p(s,n) it (Bi)[n = z(i41)]

- {U((”m(n)q”"l) ift Seq(n) &1h(n) >0 & (¢ Vi I[85 %, n)i=1),
y(s, n) otherwise.

Thus (s, 0), p(s,1), p(s,2),... arises from = (y,), (Y1), 7 (Ya)y... DY
first replacing each member by some succession of repetitions oi 1Lself
and then prefixing some 1’s. Next let o(s,n) = (s, n)+ong.

Now (a) for each n, ¢(s, n)e0’ and (s, n) <o@(s, n+1). For y(s,n)
<otp(.5' n1) (sinee n(y;) is increasing), whence ¢(s, n) = p(s,n)+ono
<op(s, n+1)+omo (using (XXIV) n times) <bw(s,n+1)+b(n—|—1)
‘= @(s, n41).

Fu%*thermore (b) to each i there is an n (namely 7(i--2)) such that
7(Ys) <ow(s, n).

Vice versa (c) to each # there is an ¢ such that ®(s, n) <o n(y,).
For, y(s,n) <o n(y;) for some j, whence (using (XXIV) n times)
p(s, ) <o % (Yjpmi)e

The function ¢ is primitive recursive. Let ¢ be an index of Asa
@(s, nat(a)) where nat(no) = n (cf. [7], p. 410). Let d = sbi (e, 3), 80 d
is an index of @(s, n) as a function of Ng. Define 7 (3-5Y) = 3.5%

To prove (i), assume a << 3+ 5.

Sul::ca.se 1: o =3-5". By (a) and the choice of d, 3-5%¢0", i. e.

7(a) < 0. Also using (b), (¢), and {i) of the hypothesis of the induction,

I (@)l" = limy|p(s, n)|" = lim,fw(y)|" = Lim, [y = |a].

'P(S:“+1) Z'

o=
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Subease 2: a < 3-5%. Use (VI)and the hypothesis of the induction (i).

To prove (ii), assume a <gb <o 3-5%.

Subease 1’: b = 3-5%. For some 4, a <o ¥;y S0 & <p Yiy1 <o Yiz1s
and by (i) of the hypothesis of the induction, wm(a) <p 7(¥iy). But
using (b), for some m, (Y1) <o@(s, n) <o 8:5% =m(b). Thus
a(a) <o 7w(b). ,

Subcase 2': b < 8-5%. Use (VI) and the hypothesis of the indue-
tion (ii).

This completes the three cases. Now we can use the (old) recursion
theorem to find a partial (but by its definition, primitive) recursive g
such that m(e) =1 if ¢=1, =(c) =2 if ¢=2% £1, n(c) =
= 3.5 for d,s,p as above if ¢ = 3-5, and =(c) = 0 otherwise.

Also, 0’ has indices for no more ordinals than O: There is a primitive
recursive function o(c) which maps O’ homologously onto @ subset of O
(cf. [6], 6.4). It suffices to take

life=1,
2¢((eh) if ¢ = 200 #1,

ele) = 3_553(0,",6‘) if ¢ = 3.5(‘)27
0 otherwise,

where 7, g arve Godel numbers of o, iren D (r, pr((c)s, {n))) (cf. §10).
The results of this and the last section are good also for systems

of ordinal notations relativized, e.g. to a one-place predicate @ or a two-

-place function x (cf. §§ 3,5, 7 and [7] § 30, [6] 6.4). :

12. Numerous problems, some specific and some vague, arise in
connection with the hierarchy we have described and similar hierarchies.

P 236. Do the classes G as y ranges over O exhaust the general recursive
functions? If not, can the subclass $,,0C, of the general recursive functions
be characterized in other terms? N

P 237, Do various known classes of general recursive functions, e.g.
Péter’s T-recursive functions for a given k > 1, coincide with Cy, or pe’rhaps
instead with ,.0,0y, for suitable y,s (*)?

P 238. For what ordinals |y| do the classes C, (or equivalently, the
primitive recursive degrees 0,) depmd only on ly| (})?

P 239. Can we say what should constitute inessential modificatitng
in our method, uniform in y, of enumerating Cy, and then show that the
hierarchy (i. e. the classes Cy, or equivalently the primitive recursive degrees
0y)) - is invariant under such modifications?

P 240. If we start lower down (revising O io correspond), e.g. with
the elementary functions, do the primiiive recursive functions appear as
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some G, or Hy oy Oyt More generally, how do the entire hierarchies compare
for different initial classes with specified mode of generation (or in other
terms, for different ways of gemerating a class from an assumed funetion,
which is Aba O for the lowest class)? In particular, how much smuller a class
than the primitive recursive funciions -can one start with and get thé same
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LOCAL ORIENTABILITY
BY

R. L. WILDER (ANN ARBOR, MICH.)

It is the purpose of this paper* 1° to clarify and extend the notion
of local orientability which was defined on p. 281-282 of my book [7], and
2° to apply the results obtained to establish a definition of orientability
for an n-dimensional generalized manifold (== n-gm) which is the exact
analogue of the Poincaré definition (*).

It is hoped that these results will contribute to the solutions of
a number of unsolved problems concerning manifolds (see, for example,

171, p- 382-383, problems 4.1, 4.5).

1. Some basic lemmas. For the proofs given below it is necessary
to have the following definitions and lemmag, which are inserted at this
point for convenience of reference.

1.1. LuemMA. In an n-dimensional space S, if P is an open set with
compact closure, and " is a cycle mod S —P, then there exists a minimal
closed (rel. P) subset ' of P such that y™ is carried by I (S—P).

Proof. The portion of " on P is a cycle Z" mod F(P) on P.As P
is compact, there exists by [7], p. 205-6, Lemma 2.3, & minimal closed
subset 7' of P that contains F(P) such that Z" ~ 0 mod F'; and by [7],
p. 206, Lemma 2.6, F isunique and a closed carrier of Z*. Let F = F'~ P.
Since " ~ Z" mod §—P, the lemma follows.

1.2. LeMMA. If 8 is an n-dimensional locally compact space, then every
infinite cycle I'™ of 8 has a unique minimal closed carrier.

* Prosontod to the Amorican Mathomatical Society November 26, 1949, and
subsequontly augmented and revised. Rescarch on this papor was done under
Contract N 90 nr-89300 with the Offico of Naval Resoarch, and National Science
Foundation Grant G-2783.

Torminology and notation are that of my book [7].

(') This dofinition states that an n-manifold, without boundary, Whose elements
aro otiented %-colls (k' = 0, 1,,..,n) is orientablo if overy “closed chain‘ of colls

-1 n : : n n g -
1’07(1) » um), s Uf(m)’ ”;L(m+1)’ ;‘(m+l), ves 3’}:%‘ in which "k(m) and Fms1y 3¥6 OP

positely related to "1(m-.-1) had +u‘ as .,,end” element. See '[6], §8.
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